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Abstract

This study employed Lyapunov function method to investigate the stability

of nonlinear ordinary differential equations. Using Lyapunov direct method,

we constructed Lyapunov function to investigate the stability of sixth order

nonlinear ordinary differential equations. We find V (x), a quadratic form,

positive definite and U(x) which is also positive definite was chosen such that

the derivative of V (x) with respect to time was equal to the negative value

of U(x).

1 Introduction

In real life, most problems that occur are non-linear in nature and may not have

analytic solutions except by approximations or stimulations and so trying to find

an explicit solution may in general be complicated and sometimes impossible.

Lyapunov functions are useful tools in determining stability, asymptotic stability,

uniform stability, global stability or out-right instability of differential system

and boundedness of solution of a real scalar fourth-order differential equation

[1-4]. Asymptotic stability is intimately linked to the existence of a Lyapunov’s

function, that is, a proper, non-negative function varnishing only on an invariant

set and decreasing along those curved paths of the system not evolving in the
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invariant set. Lyapunov theorem allows stability of linear and nonlinear system

to be verified without differential equations solution being required. The presence

of Lyapunov function implies asymptotic stability for linear time-invariant systems

[9].

The concept of stability in problems arising from theory and application of

differential equations is very important and an effective approach is the second

approach of Lyapunov [7]. The method of Lyapunov functions was introduced

by Aleksandra M. Lyapunov, a Russian Mathematician. The fundamental of

his proof was centred on the established fact that the sum of energy in a

system is decreasing or constant as it approaches state of equilibrium. Lyapunov

functions have been constructed for linear equations on the platform that given

any that is definite positive, we have another definite positive function U such

that −U = V ∗ and for the nonlinear case, a correlation is taken between the

constant coefficient equations of linear and nonlinear equations which leads to

the appropriate Lyapunov functions for the nonlinear case [1], [5], [6], [8]. Many

authors have obtained useful and valid results using Lyapunov second method

(direct method) for stability analysis and construction of appropriate Lyapunov

function for some differential equations [3], [5]. This paper is motivated by

reviewing [11] where the authors constructed Lyapunov function for fifth order

differential equation, this work extended [11] to sixth order differential equation.

2 Statement of Problems, Preliminaries and

Definitions

Consider the sixth-order differential equation

x(6) + ax(5) + bx(4) + c
...
x + dẍ+ eẋ+ fx = 0, (1)

where a, b, c, d, e and f are constants with a > 0, b > 0, c > 0, d > 0, e > 0 and

f > 0. The equation (1) is equivalent to the following six system of equations:
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ẋ = y

ẏ = z

ż = w

ż = r

ṙ = s

ṡ = −as− br − cw − dz − ey − fx. (2)

The system (2) has negative real parts if and only if a > 0, b > 0, c > 0, d > 0, e > 0

and f > 0. There is therefore need to have a positive definite continuous quadratic

function V and another positive quadratic form V such that

V̇ = −U (3)

along the solution paths of (1) or (2). Before now, the result in equation (3) has

been extended and is established to hold for positive semi definite quadratic U(x)

as well. It is our interest therefore to construct a Lyapunov function that would

ultimately satisfy equation (3).

Lyapunov’s Direct (Second) Method

Given a set of nonlinear first order differential equations

ẋi = fi(x1, x2, ..., xn) for i = 1, 2, ..., n. (4)

where xi = xi(t) for some t and ẋi stands for the time derivative of xi for i =

1, 2, ..., n. Whereas fi are analytic functions such that fi(0, ..., 0) = 0 for i =

1, 2, ..., n so that the origin x = 0 is an equilibrium point.

Lyapunov Test Function

For a function, V (x), where x = (x1, x2, ..., xn), if the following conditions are

satisfied:
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(i) V (x) and ∂V
∂xi

are continuous, for all x ∈ Rn and i = 1, 2, ..., n, not necessarily

at the origin.

(ii) V (0) = 0.

Then we say that V (x) is a possible Lyapunov test function for system (4).

Definition

i. A continuous function V (x, t) = V (x1, x2, ..., xn, t) is positive definite if

lim|x|−→0 V (x, t) = 0 and there exist ϕ(‖x‖) such that

V (x, t) > ϕ(‖x‖).

ii. A continuous function V (x, t) = V (x1, x2, ..., xn, t) is positive semi-definite if

lim|x|−→0 V (x, t) = 0 and there exist ϕ(‖x‖) such that

V (x, t) ≤ ϕ(‖x‖).

iii. A continuous function V (x, t) = V (x1, x2, ..., xn, t) is negative definite if

lim|x|−→0 V (x, t) = 0 and there exist ϕ(‖x‖) such that

V (x, t) < −ϕ(‖x‖).

iv. A continuous function V (x, t) = V (x1, x2, ..., xn, t) is negative semi-definite if

lim|x|−→0 V (x, t) = 0 and there exist ϕ(‖x‖) such that

V (x, t) ≤ −ϕ(‖x‖).

v. A continuous function V (x, t) = V (x1, x2, ..., xn, t) is indefinite if it assumes

both positive and negative values in an arbitrary neighbourhood of the origin in

a domain D.

vi. A continuous function v : Rn −→ R is said to be radially unbounded if is

positive definite and v(x) −→∞ as ‖x‖ −→ ∞.
vii. A continuous function V (x, t) = V (x1, x2, ..., xn, t) is said to be decresent if
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a positive definite function v such that

|V (t, x)| ≥ v(x), ∀t ≥ 0 and ∀ x ∈ B(r), r > 0

In another Lyapunov theorem, we reaffirm the definitions in this context. Given

a differential equation

ẋ = f(t, x), f(t, 0) = 0, (5)

where f is continuous in (t, x).

Theorem (Sufficient Conditions for Stability)

The equilibrium point x = 0 of equation (5) is stable if ∃ a C1 function V which

is positive definite and such that its derivative along the solution of (9) is negative

semi-definite, or identically zero (i.e. V̇ (t, x) ≤ 0 or V̇ (t, x) ≡ 0).

Theorem (Sufficient Conditions for Asymptotically

Stability)

The trivial solution x = 0 of the equation (5) is asymptotically stable, if ∃ a C1

function V which is positive definite and whose derivative along the solution of

(5) is negative definite.

Theorem (Lassale’s Invariant Principle)

Assume that V (x) is a Lyapunov function of (5) on a subset G ⊂ Rn, n ≥ 1.

Define S = x ∈ G : V (x) = 0, where G is the closure of G. Let M be maximal

subset S. Then for t ≤ 0, every bounded trajectory of (5) that remains in G

approaches the set M as t −→ +∞.
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3 Methodology and Discussion

The system under investigation is

x(6) + ax(5) + bx(4) + c
...
x + dẍ+ eẋ+ fx = 0.

The above sixth order differential equation can be expressed in a compact form

as:

Ẋ = AX =



0 1 0 0 0 0

0 0 1 0 0 0

0 0 1 1 0 0

0 0 1 0 1 0

0 0 1 0 0 1

−f −e −d −c −b −a





x

y

z

w

r

s


(6)

where a > 0, b > 0, c > 0, d > 0, e > 0, f > 0 for the system to have a negative

real path. The required quadratic form in this case is given as

2V̇ = k1x
2 + k2y

2 + k3z
2 + k4w

2 + k5r
2 + k6s

2 + 2k7xy + 2k8xz + 2k9xw

+ 2k10xr + 2k11xs+ 2k12yz + 2k13yw + 2k14yr + 2k15ys

+ 2k16zw + 2k17zr + 2k18zs+ 2k19wr + 2k20ws+ 2k21rs. (7)

Differentiating (7) with respect to the system (2), we obtain:

2V̇ = 2k1xẋ+ 2k2yẏ + 2k3zż + 2k4wẇ + 2k5rṙ + 2k6sṡ+ 2k7(xẏ + yẋ)

+ 2k8(xż + zẋ) + 2k9(xẇ + wẋ) + 2k10(xṙ + rẋ) + 2k11(xṡ+ sẋ)

+ 2k12(yż + zẏ) + 2k13(yẇ + wẏ) + 2k14(yṙ + rẏ) + 2k15(yṡ+ sẏ)

+ 2k16(zẇ + wż) + 2k17(zṙ + rż) + 2k18(zṡ+ sż)

+ 2k19(wṙ + rẇ) + 2k20(wṡ+ sẇ) + 2k21(rṡ+ sṙ). (8)
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Dividing equation (8) by 2, we get:

V̇ = k1xẋ+ k2yẏ + k3zż + k4wẇ + k5rṙ + k6sṡ+ k7(xẏ + yẋ)

+ k8(xż + zẋ) + k9(xẇ + wẋ) + k10(xṙ + rẋ) + k11(xṡ+ sẋ)

+ k12(yż + zẏ) + k13(yẇ + wẏ) + k14(yṙ + rẏ) + k15(yṡ+ sẏ)

+ k16(zẇ + wż) + k17(zṙ + rż) + k18(zṡ+ sż)

+ k19(wṙ + rẇ) + k20(wṡ+ sẇ) + k21(rṡ+ sṙ). (9)

Substituting ẋ, ẏ, ż, ẇ, ṙ, and ṡ from equation (6) into equation (9), we obtain:

V̇ = k1xy + k2yz + k3wz + k4rw + k5rs+ k6s(−as− br − cw − dz − ey − fx)

+ k7(y
2 + xz) + k8(xw + yz) + k9(rx+ yw) + k10(sx+ ry)

+ k11(x(−as− br − cw − dz − ey − fx) + sy) + k12(wy + z2)

+ k13(ry + wz) + k14(sy + rz) + k15(y(−as− br − cw − dz − ey − fx) + sz)

+ k16(rz + w2) + k17(sz + rw) + k18(z(−as− br − cw − dz − ey − fx) + sw)

+ k19(sw + r2) + k20(w(−as− br − cw − dz − ey − fx) + rs)

+ k21(r(−as− br − cw − dz − ey − fx) + s2). (10)

Simplifying equation (10), we get:

V̇ = k1xy + k2yz + k3wz + k4rw + k5rs− ak6s2 − bk6rs− ck6sw − dk6sz

− ek6sy − fk6sx+ k7y
2 + k7xz + k8xw + k8yz + k9rx+ k9yw + k10sx

+ k10ry − ak11xs− bk11rx− ck11wx− dk11xz − ek11xy − fk11x2 + k11sy

+ k12wy + k12z
2 + k13ry + wzk13 + k14sy + k14rz − ak15sy − bk15ry

− ck15wy − dk15yz − ek15y2 − fk15xy +K15sz + k16rz + k16w
2 + k17sz + k17rw

− ak18sz − bk18rz − ck18wz − dk18z2 − ek18yz − fk18xz + k18sw+ k19sw+ k19r
2

− ak20sw − bk20rw − ck20w2 − dk20wz − ek20wy − fk20xw + k20rs− ak21rs

− bk21r2 − ck21rw − dk21rz − ek21ry − fk21rx+ k21s
2. (11)

Collecting the like terms and respective coefficients of equation (11), we get:
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Terms Coefficients

x2 −fk11
y2 k7 − ek15
z2 k12 − dk18
w2 k16 − ck20
r2 k19 − bk21
s2 k21 − ak6
xy k1 − ek11 − fk15
yz k2 + k8 − ek18 − dk15
wz k3 + k13 − ck18 − dk20
rw k4 + k17 − bk20 − ck21
rz k14 + k16 − bk18 − dk21
ry k10 + k13 − bk15 − ek21
rx k9 − bk11 − fk21
xz k7 − dk11 − fk18
xw k8 − ck11 − fk20
wy k9 + k12 − ck15 − ek20
sx k10 − fk6 − ak11
sy k11 + k14 − ek6 − ak15
sz k15 + k17 − ak18 − dk6
sw k18 + k19 − ck6 − ak20
rs k5 + k20 − bk6 − ak21
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Next is to determine V̇ such that one of the following axioms holds:

(i) V̇ ≤ −βx2

(ii) V̇ ≤ −βy2

(iii) V̇ ≤ −βz2

(iv) V̇ ≤ −βw2

(v) V̇ ≤ −βr2

(vi) V̇ ≤ −βs2

(vii) V̇ ≤ −β(x2 + y2 + z2 + z2 + w2 + r2 + s2). (12)

For the realization of any of these cases; from Table 1.1, we impose the following

conditions:

k11 = 0 (13)

k7 − ek15 > 0 (14)

k12 − dk18 = 0 (15)

k16 − ck20 = 0 (16)

k19 − bk21 = 0 (17)

k21 − ak6 = 0 (18)

since k11 = 0, from the table we get:

k1 = fk15 (19)

k9 = fk21 (20)

k7 = fk18 (21)

k8 = fk20 (22)

k10 = fk6 (23)

k12 = ck15 + ek20 − k9 (24)

k14 = ek6 + ak15 (25)
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k15 = dk6 + ak18 − k17 (26)

k18 = ck6 + ak20 − k19 (27)

k5 = bk6 + ak21 − k20 (28)

k10 = bk15 + ek21 − k13 (29)

k14 = bk18 + dk21 − k16 (30)

k4 = bk20 + ck21 − k17 (31)

k3 = ck18 + dk20 − k13 (32)

k2 = ek18 + dk15 − k8. (33)

Recall that one of the interest is on equation (14)

k7 − ek15 > 0.

In equation (21), k7 = fk18, thus

=⇒ fk18 − ek15 > 0. (34)

In equation (27),

k18 = ck6 + ak20 − k19 but k19 = abk6

=⇒ k18 = ck6 + ak20 − abk6. (35)

From equation (24),

k9 = ck15 + ek20 − k12 but k9 = afk6 and k12 = dk18

=⇒ afk6 = ck15 + ek20 − dk18. (36)

Substituting (35) into (36), we have

k15 =
af

c
k6 + dk6 −

abd

c
k6 +

ad

c
k20 −

e

c
k20

=⇒ k15 =
(af + cd− abd)

c
k6 +

(ad− e)
c

k20. (37)
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In equation (30),

k14 = bk18 + dk21 − k16, but k16 = ck20 and k21 = ak6

=⇒ k14 = bk18 + adk6 − ck20.

But k14 = ek6 + ak15 from (25),

=⇒ ek6 + ak15 = bk18 + adk6 − ck20.

Substituting (35) and (37) into the above equation, we get:

=⇒ k20 =
ce+ a2f + acd− a2bd− bc2 + ab2c− acd

abc+ a2d− c2 − ae
k6.

Let

Ψ =
ce+ a2f + acd− a2bd− bc2 + ab2c− acd

abc+ a2d− c2 − ae
.

Then,

=⇒ k20 = Ψk6.

Therefore, we have the following:

k1 =

(
fd− abdf

c
− efΨ

c
− adfΨ

c
+
af2

c

)
k6

k2 =

(
d2 − abd2

c
− deΨ

c
− ad2Ψ

c
+
adf

c
+ ec− abe+ aeΨ− fΨ

)
k6

k3 =

(
c2 − abc+ acΨ− dΨ− ae− f − bd+

ab2d

c
+
beΨ

c
+
abdΨ

c
− abf

c

)
k6
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k4 = (bΨ− ac− cf + abf − afΨ) k6

k5 = (b+ a2 −Ψ)k6

k7 = (cf − abf + afΨ)k6

k8 = fΨk6

k9 = afk6

k10 = fk6

k11 = 0

k12 = (cd− abd+ adΨ)k6

k13 =

(
ae− f − bd+

ab2d

c
+
beΨ

c
+
abdΨ

c
− abf

c

)
k6

k14 = (e+ ad− a2bd

c
− aeΨ

c
− a2dΨ

c
+
a2f

c
)k6

k15 =
1

c
(cd− abd− eΨ− adΨ + af) k6

k16 = cΨk6

k17 = (d+ ac− a2b+ a2Ψ− 1

c
(cd− abd− eΨ− adΨ + af))k6

k18 = (c− ab+ aΨ)k6

k19 = abk6

k20 = Ψk6

k21 = ak6. (38)

From (34),

fk18 − ek15 > 0

=⇒ f(c− ab+ aΨ)k6 −
e

c
(cd− abd− eΨ− adΨ + af) k6

=⇒ (c2 − abcf + acfΨ− ced+ abde+ e2Ψ + adeΨ− aef)k6 > 0.
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Ploughing (48) back into equation (7) gives

2V =

(
fd− abdf

c
− efΨ

c
− adfΨ

c
+
af2

c

)
x2k6

+

(
d2 − abd2

c
− deΨ

c
− ad2Ψ

c
+
adf

c
+ ec− abe+ aeΨ− fΨ

)
y2k6

+

(
c2 − abc+ acΨ− dΨ− ae− f − bd+

ab2d

c
+
beΨ

c
+
abdΨ

c
− abf

c

)
z6k6

+(bΨ− ac− cf + abf − afΨ)w2k6+(b+a2−Ψ)r2k6+s
2k6+2(cf−abf+afΨ)xyk6

+ 2fΨxzk6 + 2afxwk6 + 2fxrk6 + 2(cd− abd+ adΨ)yzk6

+ 2

(
ae− f − bd+

ab2d

c
+
beΨ

c
+
abdΨ

c
− abf

c

)
ywk6

+ 2(e+ ad− a2bd

c
− aeΨ

c
− a2dΨ

c
+
a2f

c
)ryk6

+
2

c
(cd− abd− eΨ− adΨ + af) syk6 + 2cΨwzk6

+ 2(d+ ac− a2b+ a2Ψ− 1

c
(cd− abd− eΨ− adΨ + af))rzk6

+ 2(cab+ aΨ)szk6 + 2abrwk6 + 2Ψswk6 + 2arsk6. (39)

By setting k6 = 1 in (39) and dividing through by 2, we obtain:

V =
1

2

(
fd− abdf

c
− efΨ

c
− adfΨ

c
+
af2

c

)
x2

+
1

2

(
d2 − abd2

c
− deΨ

c
− ad2Ψ

c
+
adf

c
+ ec− abe+ aeΨ− fΨ

)
y2

+
1

2

(
c2 − abc+ acΨ− dΨ− ae− f − bd+

ab2d

c
+
beΨ

c
+
abdΨ

c
− abf

c

)
z6

+
1

2
(bΨ− ac− cf + abf − afΨ)w2 +

1

2
(b+ a2 −Ψ)r2

+
1

2
s2 + (cf − abf + afΨ)xy

+fΨxz + afxw + fxr + (cd− abd+ adΨ)yz

+

(
ae− f − bd+

ab2d

c
+
beΨ

c
+
abdΨ

c
− abf

c

)
yw
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+(e+ ad− a2bd

c
− aeΨ

c
− a2dΨ

c
+
a2f

c
)ry

+
1

c
(cd− abd− eΨ− adΨ + af) sy + cΨwz

+(d+ ac− a2b+ a2Ψ− 1

2c
(cd− abd− eΨ− adΨ + af))rz

+(cab+ aΨ)sz + abrw + Ψsw + ars.

If ad < e, ab < c and if we choose a = b = c = d = e = f > 1, then these values

of the constants guarantee the positive definiteness of V . The corresponding time

derivative:

V̇ = −(c2 − abcf + acfΨ− ced+ abde+ e2Ψ + adeΨ− aef)y2 (40)

since equation (41) satisfies V defined by equation (40) satisfied equation (1)

if U is replaced by V̇ = −(c2 − abcf + acfΨ − ced + abde + e2Ψ + adeΨ −
aef)y2, then V defined by (40) is a Lyapunov function for the sixth order system

(2). The existence of Lyapunov function guarantee the stability of nonlinear

ordinary differential equations and by Lasalleâs theorem on stability of a system

in (Theorem ), the system is locally and globally asymptotically stable.

4 Conclusion

We have seen that the Lyapunov function candidate constructed in this work

is a good techniques in the stability analysis of dynamical systems. Without

solving the systems of differential equations involved, we were able to obtain

the qualitative behaviour of the systems near their equilibrium points. A valid

quadratic form and positive definite V (x) and also positive definite U(x) was

chosen such that the derivative of V (x) with respect to time along the solution

paths of the six scales system is equal to the negative U(x), that is, V̇ = −U .

The existence of Lyapunov function for the sixth order nonlinear system guarantee

local and global asymptotic stability of the system as corroborated by Lassale’s

Invariant theorem.
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