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Abstract

In this paper, we introduce a new class of operators on Hilbert space called (f* — @)
quasi binormal operator of order y. We study this operator and give some of its

properties.

Introduction

Consider B(H) the algebra of all bounded linear operators on Hilbert space H. An
operator Y is called normal if 4" = YY*, Quasi normal operator was introduced by
Brown in 1953 [1]. In [3] Campbell introduced the class of binormal operators which is
defined as W*YYY* = YY*Y*Y. In [5] Kuffi and Satar generalized a normal operator.

In this paper, we define a new class of operators on Hilbert space as
(U (U YYY*)? = @(Y*YUYUY*)?(U*)T called (F* — @) quasi binormal operator of order ),
where @ is bounded operator, f and 1y are nonnegative integers, and study some of its

properties.

1. Main Results

Definition 1.1. Let Y be a bounded operator on Hilbert space H. Then Y is called
(f* — @) quasi binormal operator of order vy if and only if (W*)I(U*YYY*)? =
Q(U*YYY*)?(Y*) , where @ is bounded operator, f and 1 are nonnegative integers.

Theorem 1.2. Let W be a (* — Q) quasi binormal operator of order v on Hilbert

space H. Then ¥ is a (* — Q) quasi binormal operator of order v.
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Proof. Let W be a (* — @) quasi binormal operator of order p.
By mathematical induction: Since Y be a (f* — @) quasi binormal operator of order 1.
The result is true for k = 1
U (I IYY*)? = QU I9Y™)? (U™, €))
Assume that the result is true when (k = z)
[(4) (4 I4Y")?)” = [Q(4 1YY)?(U)' ]~ ()
We prove the result fork =z + 1
() (4 HYU)] = [ (0HY)?]F [ (4 )Y
= [Q(U YUY Y (U ]* [Q( YY) (1) ]
= [Q(4 YY) (U") |7+,
Then the result is true for k = z + 1.
Hence, U* is a (f* — @) quasi binormal operator of order 1.

Theorem 1.3. Let W and § be two (f* — Q) binormal operators of order vy on Hilbert
space H such that ' =UF =W'F =UF =0. Then U + § is a (f* — Q) quasi

binormal operator of order v.
Proof. Let ¥ and § be two (f* — @) quasi binormal operators of order 1. Then
(1 + I+ M+ HE+ HH + )P
= [T+ FCO)F + -+ (F)T (T + DM + )M + UM + )
= [(1) + &) [((T)° + @)D + §F) (I +F%) () + F))]
= [T+ @A) + (1)
+ (F)° + (F)°F)][(W () +47(F)? + F(4)° + F(F)V)]
= [T+ &)1 [[(W)W + (F)FD[H W) + FEF)HN]
= [(U)" + (&) [P MU)? + (F)FF F)N]
= [(W)E) M) + (F)((F)FF(F)N]
= [Q(UHYY)* (W) + [Q(F FFF )" (F)]
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= Q[ (U +(F FFF) ()]
= Q[(U) W (M)’ (W) + (F)FFEF)DE)
= Q[(U) W (1) + ((F)°FFF)D] [ + ()]
= Q[[(1)"W + (F)"F)I[T(T)? + F(F)M] [+ (F)]
= Q[(U)"+ F)T [ + (17)°F
+ (F)°W + (F)F)I[M W)Y + W (F)° + F M)’ + F(F)N]
[+ &)1
=1 + M+ M+ HM + I + )
=Q[((4 + DM + MU + DM + ] (@) +FU)F + -+ @]
= QU+ @F)MME + F) @ + F) (W) + (@) [ + ()]
= Q[T+ EFMNM@ + §F) @ + F) (@) + @) [ + F)]
=1 + M+ M+ HM + I + )
Hence, U + & is a (f* — @) quasi binormal operator of order 1.

Theorem 1.4. Let Y be a (f* — Q) quasi binormal operator of order v and Y is a
(f*") — quasi binormal operator of order vy on Hilbert space H such that 1°Y) =9 W*
and 19 = PYU. Then 49 is a (f* — Q) quasi binormal operator of order v.

Proof. Let Y be a (f* — @) quasi binormal operator of order y and 9 be a (f*) — quasi

binormal operator of order 1. Then
(CRORUCEINCRIICEIICROBIE

= (4T ()M D)) (D) (M) (D) (1)°(D)’]

= (4@ (M) (I (M)(I) () ()’

= (4 M) (D) (D)D)’ (1)’ (1)(D)° (D)

= [ ()W) M) M) U)*I[D) (D)D) (D) (D]
= [(4)[L) 9 (1) 1D (D) DD (D)HN]
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= [Q(4™49Y)* (4)[(D*VDD)’ (D]

= [Q(47)" ()" (1) (L)L DT IV (D) (D)’ (D) (D)']
= Q(4) (M) (W) (U (D)’ (U DD (D) (D) (D)

= Q(4) (M) (M)’ (4) (4 DD (D) (D) (D)

= QU MDMUDMU DI (UMD
Hence, W9 is a (f* — @) quasi binormal operator of order 1.

Theorem 1.5. The set of all (f* — Q) quasi binormal operators of order v on Hilbert
space H is a closed subset of B(H) (the algebra of all bounded linear operators on

Hilbert space H) under scalar multiplication.
Proof. Suppose

T(H) = {4 € B(H):Wis a (f* — @) quasi binormal operator of order v on H for

some nonnegative integer f}.

Let W € T(H), then we have Y is a (f* — @) quasi binormal operator of order y and
(U (U YYY*)? = Q(U*UYY*)Y(U*)!, where @ is bounded operator, f and v are
nonnegative integers.

Let @ be a scalar. Then
(O[O (6) (1) (1))

= (6" (@)[(6)(W)°(8)"(4)"(0)(W)*(@)" (4 )"]

= (0)(6)"(6)°(8)7(9)° (U )] (4)* (W (W) (4)"]

= (0)(8)"(6)°(6)*(8)" (1) [(Y"144")*]

= (0)(8)"(6)°(6)*(0)° [ (U ¥YY")"(¥)]

= (0)'(6)7(6)°(6)7(6)" [Q[ (1) (1)? (N)* (4 )*](¥")']

= Q[(8)"(4")"(6)"(W)?(9)?(D)*(0)" (4 )?1(8) (U™

= Q[(6W)* (W) (O (OW)] (6"

Hence, 04 € T(H).
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Let W, be a sequence in T(H) and converge to W. Then we can prove that
[EPUCRLEOREIUCRCEBRCOI]
= ([0 (0 HuY)?] = [(U ) (U Uo7 + [@(Y, W, Y, W, ) (Y )]
CRCEDRCHU]|
< [ Y)Y = [(4) (U, Y, )|
+||[ @4, Y4, ¥, )P (U, )] — [@CU YY) (U)T]|| - 0 as x - oo
Therefore, W € T(H). Then, T(H) is a closed subset.

Proposition 1.6. If Y~ exists and Y is a (f* — Q) quasi binormal operator of
orderv on Hilbert space H and (W™MYY*)Y commutes with (M*)T, then Y= is a (f* — @)

quasi binormal operator of order .
Proof. Since Y is a (f*— @) quasi binormal operator of order p, we
have (U*) (M*UYY*)? = @(UYYY*)? (W) .
Then
(U HH(EH EHEHE™HD? = (EHHH(EH)TTEHEHEH T
= (D) )Y
= ((ION (Y49 )Y
= (N (9!
= (@ aauy (ay)
= ()~
= [Q(U YY) (U)]
= [(1) '@ 44)]
= Q[(UYYY)°]~ ((UHH?
= Q[ 1Y (1))
= (™) () U U)H)(EH))

Hence, Y~1is (f* — @) quasi binormal operator of order 1 on Hilbert space H.
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Definition 1.7 [4]. If A, B are bounded operators on Hilbert space H. Then A, B are
unitary equivalent if there is an isomorphism U: H — H such that B = UAU* .

Theorem 1.8. Let Y be a (f* — Q) quasi binormal operator of ordervy on Hilbert
space H. Then the operator oM is a (f* — Q) quasi binormal operator of order v for every

real scalar p.

Proof. Let W be a (f* — @) quasi binormal operator of order y and let ¢ be a scalar.
Then

(@)@’ (@D (@D (@)’
= (@ (1@ (1)(0)’ (®"(e) (De(e)’ (4 )]
= ©'@"(2)"(2)"(@)? (4 ")) (D) (D) ()]
= ©'@"(2)"(2)"()? (@ ") [(W"uwu)?]
= @©°(0)"(0)"(@" [@(1" WYY (4")]
= ©'@"(2)"(2) (@ [@[ (1) (D)W ()] (A)]
= ()@ (0)" (W(0) WP (" (4 1@ (")
= Q[(eW)* (e (e (e ((eN")

So, oY is a (f* — @) quasi binormal operator of order y on Hilbert space H.

Theorem 1.9. Let Y be a (f* — Q) quasi binormal operator of ordervy on Hilbert
space H. If W € B(H) is unitary equivalent to Y, then M is a (f* — Q) quasi binormal

operator of order 1.

Proof. Since M is unitary equivalent to Y, we have M = UUU*, (UIU*)"* = U4"U*
and since Y is a (f* — @) quasi binormal operator of order 1, we have (") (W'YUY*)? =
QU YY) (U,

Then

()T (M MIMI*)?
= ((UYUH ((UUU*)* (UEU*) (UDU*)(UDU*)*)?
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= UEUH(UEHPUHUPUHOTTHU M) U)
= (UM)UHWE ) )W) (M)U)
= (VW)U UM@Y) U*)
= (V[ (4" 094)°]U)
= (U[QWYY*)? (4" |U*)
= QUMY U (UMHU*)
UUCBECUICOICORAINUIC O
= (QUM ) UHULPU) U U U M) U UMUHTUY))
= Q((UYU*)*(UMU*)(UMU*) (UHU*)*)? ((UHU*)*)f
= QP MIMM*)? (WM.
Hence, M is (f* — @) quasi binormal operator of order .

Theorem 1.10. If Y is a (f* — @) quasi binormal operator of order vy and (1*UYY*)?

commutes with (U, then W* is a (f* — Q) quasi binormal operator of order v.
Proof. Since W is a (f* — @) quasi binormal operator of ordery, we have
(U (M YYY*)? = Q4 I9Y*)? (U™,
Then
(CHPUCHECHICHICHREEI(CHIN(CHECHICHICHBE
= (4N ((19)"(1"W)")?
= ()" (@ uwa)7)’
= (1)) ((ruuw))’
= (@94 (1))’
= (W) (W auy’y?)’

= [Q(YYYY")? (W)
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SICOIUCRCUDEN
= Q[(4"M4Y)T* ()N
= Q[(4 M) (1))
ICBECHICHICOBE(CODL
Hence, Y is a (f* — @) quasi binormal operator of order 1.
Theorem 1.11. Consider that Y1,,4,, ..., Y, are (f* — @) quasi binormal operators of

orderv. Then the direct sum (1, @Y,® ... ®Yy) is a (F* — @) quasi binormal operator of
order v.

Proof. Since every operator of Wy, 4,, ..., 4, is (f* — @) quasi binormal operator of

order y, we have
W (49 Y7)° = (W WY)W, forallj =12, ..., k.
Then
(404 ... 09,)") (4O ... 09, (L, 6L ... O4) (4, S ... OU,) (L, OL® ... &Y,)")’
= [0 (W)®..0 @)N(LOL .. 0%) PG .. 04,)" (1,65 ... 64,)° (|, OU,® ... 04,) )]’
=[40 (L)0..® @O )S (L) .. (U )]U, 04, D ... 04,")
(1'%, ..04,") [(1,)® (L,)®..0 ()]

=[O0 (1) (1)) 1801 (1), (1)) 186 (1) (1) 9 9" (4" ]
= [ (4 L)) 1O[(L) (4 R, 1@ . O (F, 1, ) ]
= [Q((4, "M, 9, 9, 7)) (U, ) 1D[ @4, U, M,9,7)? (U, )16 ... O[Q(H, ", 4, 4, ") (U, )]
= [O((4, )49 (1)) (48[ QL) 9 (1)) ()18 @[e( (1) 44 (1)) (%))
=[Q[(4,)°® (1,)’® .. (U,")](U 049 °®..0%") (1, 049 °0..04") [(|)® (L,)V®.0 (1)

()@ (1,00 (1]
= (1, 0%,® .. O )" (1, OU,® .. U (1,0, ... 04, ) (1,04, .. 0Y,)")° (1,09, .. ®Y,)")
Hence, (4, @Y, ... BY,) is a (f* — @) quasi binormal operator of order y.

Theorem 1.12. Let Yy, Y,,...,Y4; be (f* — @) quasi binormal operators of orderv.

Then the tenser product (1QY,® ...QY,) is a (f* — Q) quasi binormal operator of
ordery.

Proof. Since every operator of Wy, U,, ..., 4y is (f* — @) quasi binormal operator of
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order y, we have
W) (9 ;7)° = (9 WY)W, forallj =12, ..., k.
Then
(1,94, ... ®‘*Ik)*)7((‘*11®‘*12® W QU) (LR ... QW) (U1 QR ... U ) (U, U, ® ... @Y, )")?
(x1®x,® ... Qxy)
=[1)'® LH®..0 (€HN((LOULE®..QW,) (4, ... O,)" (1, QU,® ... )" [(1; QY ® ... ®,) )]
(x1®x,® ... Qxy)
=[(4)'® (1)®..0 @HN[ (L) (U)’R..0 (4)'](4,"®Y,°® ...04,") (4,"QU,’® ...Q4,")
[(1)® (U)'®..0 (4)](*101,® ... ®x)
= [0 (1)) 1@EDS] () (1) 9" (1)) 1()®..©®
[ () (1)) ()]
= [0, )0, 9,9 )7 1)@ () (4, 1,7)° 1062)® - ®[(H ) (4 W, 4 W) (3]
= [, ™9, %, ")) (4, )] (e)® Q(U, W, 4, 4,7)? (4, )1(62)® - @@, W, e Wy ) (U ) ()]
= [O((4, )", (41)) (W) )@ Q( ()74, (1)) () 1(x2)® .. ®
[ )9 (1)) (1) ()
=[O, )’® (Y,)’®..0 (U)"Y,"QY,’®..Q04,") (U,"®Y,’®..Q0u,") [(1,")’® (1,")'®..Q (4,7)"]
[(1L)® (1)@ ... ® (1) (X1 8%,® .. ®x,)
= (N O,® ... )" (O, ® ... W) (U, U, R ... U, ) (; O, ® ... ®W,)*)? (L, U, ® ... ®W,)*)'
(21®x,® ... Qxy).

Hence, (4,QY,® ... ®U4},) is a (f* — @) quasi binormal operator of order p.
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