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Abstract

This paper present results of ω-order preserving partial contraction mapping

generating a regular weak*-continuous semigroup. We consider a semigroup

on a Banach space X and B : X� → X∗ is bounded, then the intertwining

formula was used to define a semigroup TB(t) on X∗ which extends the

perturbed semigroup TB
0 (t) on X� using the variation of constants formula.

We also investigated a certain class of weak*-continuous semigroups on dual

space X∗ which contains both adjoint semigroups and their perturbations by

operators B : X� → X∗.

1 Introduction

A linear operator A is the infinitesimal generator of a uniformly continuous

semigroup if and only if A is a bounded linear operator, and perturbation

theory comprises methods for finding an approximate solution to a problem.

In perturbation theory, the solution is expressed as a power series in a
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small parameter ε. The first term is the known solution to the solvable

problem. Successive terms in the series at higher powers of ε usually become

smaller. Hille-Yosida theorem characterizes the generators of strongly continuous

one-parameter semigroups of linear operators on Banach spaces. Assume

Fav(T (t)) is a Favard class of semigroup, Xn ⊆ X is a finite set, ω − OCPn

the ω-order preserving partial contraction mapping, Mm be a matrix, L(X) be

a bounded linear operator on X, Pn a partial transformation semigroup, ρ(A)

a resolvent set, σ(A) a spectrum of A and A ∈ ω − OCPn is a generator

of C0-semigroup. This paper consist of results of ω-order preserving partial

contraction mapping generating a regular weak*-continuous semigroup.

Akinyele et al. [1], established some perturbation results of the infinitesimal

generator in the semigroup of the linear operator, also in [2] Akinyele et

al., obtained some results of semigroup of linear operator in spectra theory.

Balakrishnan [3], introduced an operator calculus for infinitesimal generators of

semigroup. Banach [4], established and introduced the concept of Banach spaces.

Batty et al. [5], showed some asymptotic behavior of semigroup of operators.

Chill and Tomilov [6], deduced some resolvent approach to stability operator

semigroup. Davies [7], introduced linear operators and their spectra. Engel

and Nagel [8], presented one-parameter semigroup for linear evolution equations.

Nagel et al. [9], identified extrapolation spaces for unbounded operators. Neerven

[10], deduced some results on adjoint of semigroup of linear operators. Omosowon

et al. [11], proved some analytic results of semigroup of linear operator with

dynamic boundary conditions, and also in [12], Omosowon et al., established dual

Properties of ω-order Reversing Partial Contraction Mapping in Semigroup of

Linear Operator. Rauf and Akinyele [13], obtained ω-order preserving partial

contraction mapping and established its properties, also in [14], Rauf et al.

introduced some results of stability and spectra properties on semigroup of linear

operator. Vrabie [15], proved some results of C0-semigroup and its applications.

Yosida [16], established some results on differentiability and representation of

one-parameter semigroup of linear operators.
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2 Preliminaries

Definition 2.1 (C0-semigroup) [15]

A C0-semigroup is a strongly continuous one parameter semigroup of bounded

linear operator on Banach space.

Definition 2.2 (ω-OCPn) [13]

A transformation α ∈ Pn is called ω-order preserving partial contraction mapping

if ∀x, y ∈ Domα : x ≤ y =⇒ αx ≤ αy and at least one of its transformation

must satisfy αy = y such that T (t+s) = T (t)T (s) whenever t, s > 0 and otherwise

for T (0) = I.

Definition 2.3 (Perturbation) [1]

Let A : D(A) ⊆ X → X be the generator of a strongly continuous semigroup

(T (t))t≥0 and consider a second operator B : D(B) ⊆ X → X such that the sum

A + B generates a strongly continuous semigroup (S(t))t≥0. We say that A is

perturbed by operator B or that B is a perturbation of A.

Definition 2.4 (Regular weak*-continuous semigroup) [10]

A weak*-continuous semigroup TX(t) on a dual Banach space X∗ is called regular

if for all t, s > 0 and x∗ ∈ X∗ we have

TX(t)

(
weak ∗

∫ s

0
T ∗(σ)x∗dσ

)
= weak∗

∫ s

0
TX(t+ σ)x∗dσ.

Example 1

2× 2 matrix [Mm(N ∪ {0})]
Suppose

A =

(
2 0

1 2

)

and let T (t) = etA, then

etA =

(
e2t eI

et e2t

)
.
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Example 2

3× 3 matrix [Mm(N ∪ {0})]
Suppose

A =

2 2 3

2 2 2

1 2 2


and let T (t) = etA, then

etA =

e
2t e2t e3t

e2t e2t e2t

et e2t e2t

 .

Example 3

3× 3 matrix [Mm(C)], we have for each λ > 0 such that λ ∈ ρ(A) where ρ(A) is

a resolvent set on X.

Suppose we have

A =

2 2 3

2 2 2

1 2 2


and let T (t) = etAλ , then

etAλ =

e
2tλ e2tλ e3tλ

e2tλ e2tλ e2tλ

etλ e2tλ e2tλ

 .

Theorem 2.1 Hille-Yoshida [15]

A linear operator A : D(A) ⊆ X → X is the infinitesimal generator for a

C0-semigroup of contraction if and only if

(i) A is densely defined and closed,

(ii) (0,+∞) ⊆ ρ(A) and for each λ > 0, we have

‖R(λ,A)‖L(X) ≤
1

λ
. (2.1)
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3 Main Results

This section present results of semigroup of linear operator by using ω-OCPn to

generate regular weak*-continuous semigroup:

Theorem 3.1

Assume A : D(A) ⊆ X → X is the infinitesimal generator of a C0-semigroup

{T (t) : t ≥ 0} on X and B : X� → X∗ is bounded such that A,B ∈ ω − OCPn,

then we have:

(i) The semigroup TB(t) on X∗ is regular;

(ii) The perturbed integrated semigroup SB(t) satisfies the variation of constants

formula

SB(t)x = S(t)x+ lim
λ

∫ t

0
SB(t− s)BT0(s)λR(λ,A)xds.

Proof:

We need to check weak*-continuity and regularity. Weak*-continuity

is a consequence of the variation of constants formula for TB(t), the

uniform boundedness of the operators λR(λ,A∗) appearing therein and the

weak*-continuity of T ∗(t).

The regularity checked as follows. By extending the semigroup TB0 (t) to a

C0-semigroup on X−1 with generator A−1 + B for all A,B ∈ ω − OCPn. Then

by denoting the extensions of T0(t) and TB0 (t) to the space X−1 by T−1(t) and

TB−1(t) respectively, then we have the following variation of constants formulas:

TB0 (t)x0 = T0(t)x0 +

∫ t

0
TB−1(t− s)BT0(s)x0ds

= T0(t)x0 +

∫ t

0
T−1(t− s)BTB0 (s)x0ds (3.1)
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for all x0 ∈ X0 and the Bochner integrals being X−1. Suppose the part of A∗+B

in X� generates a C0-semigroup TB0 (t) on X� which satisfies

TB0 (t)x� = T�(t)x� +

∫ t

0
T ∗(t− s)BTB0 (s)x�ds (x� ∈ X�). (3.2)

Moreover, both T�(t) and TB0 (t) leave D(A∗) invariant. Therefore the

intertwining formula extends TB0 (t) to semigroup TB(t) on X∗, which satisfies

for all x∗ ∈ X∗ and A,B ∈ ω −OCPn, we have

TB(t)x∗ = T ∗(t)x∗ + weak∗ lim
λ

(
weak∗

∫ t

0
T ∗ (t− s)BλR(λ,A∗)TB(s)x∗ds

)
= T ∗(t)x∗ + weak∗ lim

λ

(
weak∗

∫ t

0
TB(t− s)BλR(λ,A∗)T ∗(s)x∗ds

)
(3.3)

Then (A�)−1 +B = (A�+B)−1 generates the C0-semigroup TB−1(t) = (TB0 (t))−1

on (X�)−1 = (X∗)−1. Identifying X∗ with a sequence of (X∗)−1, we have

TB−1(t)
∣∣∣
X∗

= TB(t)

and

TB−1(t)

∫ s

0
TB−1(σ)x∗dσ =

∫ s

0
TB−1(t+ σ)x∗dσ (3.4)

for all x∗ ∈ X∗ and B ∈ ω − OCPn; this is because the integral is Bochner in

(X∗)−1. Now we need to show that for all y ∈ X∗, the (X∗)−1-Bochner integral∫ s
0 T

B
−1(σ)y∗dσ equals weak∗

∫ s
0 T

B
−1(σ)y∗dσ. But identifying D(A) with a linear

subspace of D(A�∗) ' ((X�)−1)
∗ ' ((X∗)−1)

∗, then we have for any x ∈ D(A)

〈x,
∫ s

0
TB−1(σ)y∗dσ〉 =

∫ s

0
〈x, TB−1(σ)y∗〉dσ

= 〈x,weak∗
∫ s

0
TB−1(σ)y∗dσ〉 (3.5)

and the result follows from the denseness of D(A) which poves (i).

http://www.earthlinepublishers.com
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To prove (ii), this follows from integrating

TB−1x−1 = T−1(t)x−1 + lim
λ

∫ t

0
TB−1(t− s)BλR(λ,A−1)T−1(s)x−1ds

= T−1(t)x−1 + lim
λ

∫ t

0
T−1(t− s)BλR(λ,A−1)T

B
−1(s)x−1ds (3.6)

in X−1, then by the dominated convergence theorem and Fubini theorem, we have

SB(t)x = S(t)x+

∫ t

0
lim
λ

∫ η

0
TB−1(η − s)BλR(λ,A−1)T−1(s)xdsdη

= S(t)x+ lim
λ

∫ t

0

∫ η

s
TB−1(η − s)BλR(λ,A−1)T−1(s)xdηds

= S(t)x+ lim
λ

∫ t

0
sB(t− s)BT0(s)λR(λ,A)xds. (3.7)

The last integral is still in the sense of X−1. But its integrand is continuous as

a function [0, t] → X, so the integral actually exists as a Bochner integral in X.

Hence the prove is completed.

Theorem 3.2

Suppose A : D(A) ⊆ X → X is the infinitesimal generator of a regular,

weak*-continuous semi-group {TX(t); t ≥ 0} on X∗ such that A ∈ ω − OCPn.

Then:

(i) Define operators s∗(t) on X∗ by

SX(t)x∗ := weak∗
∫ t

0
TX(s)x∗ds;

(ii) R(λ,AX)TX(t) = TX(t)R(λ,AX).

In particular, the operators SX(t) define a non-degenerate locally Lipschitz

integrated semigroup on X∗ and TX(t) is an intertwined semigroup with

intertwining operator AX .
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Proof:

By the uniform boundedness theorem, ‖TX(t)‖ is bounded in a neighbourhood of

t = 0. The semigroup property then implies that

‖TX(t)‖ 5Meωt

for some M and ω. This easily implies that SX(t) is locally Lipschitz with respect

to t. Clearly, SX(0) = 0 and t 7−→ SX(t)x∗ is continuous. The regularity

assumption means that we have

TX(t)SX(s) = SX(s)TX(t). (3.8)

Integrating (3.8), we have

S(t)S(s)x =

∫ t

0
(s(s+ η)− S(η))xdη (3.9)

for all x ∈ X. It remains to check that SX(t) in non-degenerate. But if SX(t)x∗ =

0 for all t > 0, then for all x ∈ X we have that∫ t

0
〈TX(s)x∗, x〉 = 0

for all t > 0. This implies that

〈T ∗(t)x∗, x〉 = 0

for all t. Since x is arbitrary, the weak*-continuity of TX(t) implies that x∗ = 0.

If TX(t) is a regular, weak*-continuous semigroup on X∗, then we define the

generator of TX(t) to the generator AX of the associated integrated semigroup

SX(t), and this proves (i).

To prove (ii), we have that for arbitrary x∈X∗ and A ∈ ω −OCPn,

R(λ,AX)TX(t)x∗ = λ

∫ ∞
0

e−λsSX(s)TX(t)x∗ds

= λ

∫ ∞
0

e−λsTX(t)SX(s)x∗ds

= TX(t)λ

∫ ∞
0

e−λsSX(s)x∗ds

= TX(t)R(λ,AX)x∗.

http://www.earthlinepublishers.com
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We used the fact that t 7−→ SX(t)x∗ is Bochner integrable and this archived the

prove.

Theorem 3.3

Let A : D(A) ⊆ X → X be the infinitesimal generator of a C0-semigroup

{T (t); t ≥ 0} where A ∈ ω−OCPn. Then the following assertions are equivalent:

(i) X� defines an equivalent norm on X;

(ii) There is a constant C > 0 such that

lim
t→0

sup t−1‖S(t)x‖ = C‖x‖ for all x ∈ X;

(iii) There is a constant C > 0 such that

lim
λ→∞

sup ‖λR(λ,A)x‖ ≥ C‖x‖ for all x ∈ X and A ∈ ω −OCPn;

(iv) SX(t)x∗ ∈ X� for all t > 0 and

〈Kx��, x∗〉 = lim
t→0

1

t
〈x��, SX(t)x∗〉.

Proof:

To prove (i), let C > 0 be the norming constant of the norm ‖ · ‖ induced by X�.

Suppose x ∈ X, A ∈ ω −OCPn and ε > 0 be arbitrary. There is an x� ∈ X� of

norm one such that

|〈x�, x〉| > C‖x‖ − ε.

Hence for λ sufficiently large, also

‖λR(λ,A)x‖ = |〈x�, λR(λ,A)x〉| = |〈λR(λ,A)∗x�, x〉| > C‖x‖ − ε (3.10)

and we have

‖λR(λ,A)x‖ = C‖x‖

for all x ∈ X and A ∈ ω −OCPn which obtained (iii).
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(ii) Follows similarly from (i) by observing that

S∗(t)
∣∣∣
X�

=

∫ t

0
T�(s)

where T�(t) is the semigroup of a restricted a map i∗0 which induces an

isomorphism X� ' (X0)
� under which we have

i∗0T
�(t) = T�(t)i∗0. (3.11)

Moreover, for all x ∈ X and x� ∈ X� we have

〈x�, x〉 = lim
n→∞

〈i∗0x�, xn〉

where (xn) is any bounded sequence in X0 such that R(µ,A)xn → R(µ,A)x in X

for all A ∈ ω−OCPn and xn → x in X−1. This identity is an easy consequence of

the fact that integrated semigroup generated by a Hille-Yosida operator is unique.

So for t→ 0 and x� ∈ X� we have t−1S∗(t)x� → x�.

Now let (iii). For x ∈ X and ε > 0, choose x∗ ∈ X∗ of norm one and λ > 0

such that

|〈x∗, λR(λ,A)x〉| > C‖x‖ − ε.

Then also,

|〈λR(λ,A)∗x∗, x〉| > C‖x‖ − ε

and (i) follows from λR(λ,A)∗x∗ ∈ X�. The implication (ii) =⇒ (i) is proved

similarly.

To prove (iv). The first statement follows from X� is the space of strong

continuity of TX(t) and we have

TX(t)
∣∣∣
X�

= T�(t). (3.12)

Indeed, by a trivial direct computation we shows that t 7−→ SX(t)x∗ is strongly

continuous. Since ‖t−1S∗(t)‖ is bounded in a neighbourhood of t = 0 and since

http://www.earthlinepublishers.com
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for every x∗ ∈ X∗ we have

lim
t→0

1

t
R(λ,AX)SX(t)x∗ = lim

t→0

1

t

∫ t

0
T�(s)R(λ,AX)x∗ds

−R(λ,AX)x∗ (3.13)

and by applying (3.11) in (3.13), we have

〈Kx��, x∗〉 = lim
t→0

1

t
〈x��, S∗(t)x∗〉.

Hence, the prove is completed.

Theorem 3.4

Suppose A ∈ ω−OCPn is the generator of a regular weak*-continuous semigroup

{TX(t); t = 0} on a dual space X∗. Then:

(i) |x∗| := sup
‖x��‖>1

|〈Kx��, x∗〉| defines an equivalent norm on X∗;

(ii) Every regular weak*-continuous semigroup TX(t) is the restriction to a

closed subspace of an adjoint semigroup where TX(t) = T��∗(t)
∣∣∣
X∗

.

Proof:

By applying (i), (ii) and (iii) of Theorem 3.3, we have that for every t > 0, x ∈ X
of norm one and x∗ ∈ X∗ we have

1

t
‖SX(t)x∗‖ = 1

t
|
∫ t

0
〈TX(s)x∗, x〉ds|.

Letting t→ 0, it follows from the weak*-continuity of TX(t) that

lim
t→0

sup
1

t
‖SX(t)x∗‖ = |〈x∗, x〉|.

This holds for every x ∈ X of norm one, and therefore

lim
t→0

sup
1

t
‖SX(t)x∗‖ = ‖x∗‖

Earthline J. Math. Sci. Vol. 10 No. 2 (2022), 289-304
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which proves (i).

To prove (ii). By (iv) of Theorem 3.3, we have

〈T��(t)x��, x∗〉 = lim
s→0

1

s
〈T��(t)x��, SX(s)x∗〉

= lim
s→0

1

s
〈x��, T�(t)SX(s)x8〉

= lim
s→0

1

s
〈x��, SX(s)TX(t)x∗〉

= 〈x��, TX(t)x∗〉 (3.14)

and this achieved the proof.

Theorem 3.5

Let A : D(A) ⊆ X → X be the generator of a regular, weak*-continuous semigroup

{TX(t); t = 0} such that A ∈ ω −OCPn. Then we have

(i) For all x�� ∈ X�� and x∗ ∈ X∗, we have

〈x��, R(λ,AX)x∗ =

∫ ∞
0

e−λt〈x��, TX(t)x∗〉dt

and

〈x��, weak ∗
∫ t

0
TX(s)x∗ds〉 =

∫ t

0
〈x��, TX(s)x∗〉ds;

(ii) x∗ ∈ D(A∗), A ∈ ω −OCPn with AXx∗ = y∗ if and only if

σ(X∗, X��)− lim
t→0

1

t
(TX(t)x∗ − x∗) = y∗.

Proof:

In (X∗)−1 we have R(λ,AX)x∗ =
∫∞
0 e−λtTX(t)x∗dt. Identifying ((X∗)−1)

∗ with

D(A�∗) by letting A be a densely defined generalized Hille-Yosida operator on X.

Then θ defined an isomorphism of D(A∗) onto (X−1)
∗, which is independent of µ.

Moreover, if A is a generator, then θ maps D(A�) onto (X−1)
�. Then by identity

let A be Hille-Yosida on X. Suppose A is a closed operator with λ ∈ ρ(A), then

http://www.earthlinepublishers.com
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D(A−1) = X0 and λ−A−1 : X0 → X−1 is a isomorphism such that A is the part

of A−1 in X. If λ ∈ ρ(A), then λ ∈ ρ(A−1) and

R(λ,A) = R(λ,A−1)
∣∣∣
X
. (3.15)

Then there is a natural isomorphism: ϕ : X−1 ' (X0)−1, combining this with

isomorphism φ : (X∗)−1 ' (X1)
∗ induces by an isomorphism (X�)−1 ' (X1)

�,

then we obtain a natural isomorphism ξ : D(A∗�) ' (X−1)
∗ by putting

〈ξx�0 , x−1〉 := 〈θx�0 , ϕx−1〉.

In particular, by regarding X as a subspace of X−1, there is a natural action of

an x�0 ∈ D(A∗0) on an x ∈ X. Letting i : X → X−1 be the inclusion map, we

claim that

〈ξx�0 , ix〉 = 〈Kx�0 , x〉.

Indeed,

〈ξx�0 , ix〉 = lim
λ
〈ξx�0 , λR(λ,A−1)ix〉

= lim
λ
〈θx�0 , ϕλR(λ,A−1)ix〉

= lim
λ
〈(µ−A∗0)x�0 , R(µ, (A0)−1)λR(λ,A)x〉

= lim
λ
〈x�0 , λR(λ,A)x〉

= 〈Kx�0 , x〉, (3.16)

so that for each x�∗ ∈ D(A�∗) and A ∈ ω −OCPn we have

〈x�, R(λ,AX)x∗〉 = 〈x�∗,
∫ ∞
0

e−λtTX(t)x∗dt〉 =

∫ ∞
0
〈x�∗, e−λtTX(t)x∗〉dt.

(3.17)

Using that the integral is Bochner in (X∗)−1. Since D(A�∗) is dense in X��,

the dominated convergence theorem implies that these identities hold for every

x�� ∈ X��, and this completes the prove of (i).

To prove (ii), first let x∗ ∈ D(AX) and AXx∗ = y∗. Put

z∗ := (λ−AX)x∗ = λx∗ − y∗.
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A little computation involving the first identity in (i) of Theorem 3.5 shows that

for x�� ∈ X��,

1

t
〈x��, TX(t)x∗−x∗〉 = 〈x��, eλt− 1

t
x∗〉− e

t

t

∫ t

0
e−λt〈x��, TX(s)z∗〉ds. (3.18)

Letting t→ 0 we obtain, using the σ(X∗, X��)-continuity of TX(t),

lim
t→0

1

t
〈x��, TX(t)x∗ − x∗〉 = λ〈��, x∗〉 − 〈x��, z∗〉 = 〈x��, y∗〉. (3.19)

Conversely, suppose that for some x∗ ∈ X∗ the σ(X∗, X��)-limits and equals

y∗. Put

z∗ := R(λ,AX)(λx∗ − y∗).

Fix x�� ∈ X��. Then

〈x��, z∗〉 = 〈R(λ,A��)x��, λx∗ − y∗〉

= λ〈R(λ,A��)x��, x∗〉 − lim
t→0

t−1(T�∗(t)− I)R(λ,A��)x��, x∗〉

= 〈(λ−A��)R(λ,A��)x��, x∗〉

= 〈x��, x∗〉. (3.20)

Therefore

x∗ = z∗ = R(λ,AX)(λx∗ − y∗) ∈ D(AX)

and

AXx∗ = y∗.

Hence the proof is completed.

Conclusion

In this paper, it has been established that ω-order preserving partial contraction

mapping generates some results of regular weak*-continuous semigroup.
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