

Results of Semigroup of Linear Operators Generating a Regular Weak*-continuous Semigroup

Jude Babatunde Omosowon¹, Akinola Yussuff Akinyele^{2,*}, K. A. Bello³ and B. M. Ahmed⁴

Department of Mathematics, University of Ilorin, Ilorin, Nigeria e-mail: jbo0011@mix.wvu.edu¹ e-mail: olaakinyele04@gmail.com² e-mail: bello.ak@unilorin.edu.ng³ e-mail: ahmed.bm@unilorin.edu.ng⁴

Abstract

This paper present results of ω -order preserving partial contraction mapping generating a regular weak*-continuous semigroup. We consider a semigroup on a Banach space X and $B: X^{\odot} \to X^*$ is bounded, then the intertwining formula was used to define a semigroup $T^{B}(t)$ on X^* which extends the perturbed semigroup $T_0^B(t)$ on X^{\odot} using the variation of constants formula. We also investigated a certain class of weak*-continuous semigroups on dual space X^* which contains both adjoint semigroups and their perturbations by operators $B: X^{\odot} \to X^*$.

1 Introduction

A linear operator A is the infinitesimal generator of a uniformly continuous semigroup if and only if A is a bounded linear operator, and perturbation theory comprises methods for finding an approximate solution to a problem. In perturbation theory, the solution is expressed as a power series in a

*Corresponding author Copyright c 2022 Authors

Received: June 1, 2022; Accepted: July 6, 2022

²⁰²⁰ Mathematics Subject Classification: 06F15, 06F05, 20M05.

Keywords and phrases: ω -OCP_n, perturbation, C₀-semigroup, regular weak*-continuous semigroup.

small parameter ε . The first term is the known solution to the solvable problem. Successive terms in the series at higher powers of ε usually become smaller. Hille-Yosida theorem characterizes the generators of strongly continuous one-parameter semigroups of linear operators on Banach spaces. Assume $Fav(T(t))$ is a Favard class of semigroup, $X_n \subseteq X$ is a finite set, $\omega - OCP_n$ the ω -order preserving partial contraction mapping, M_m be a matrix, $L(X)$ be a bounded linear operator on X, P_n a partial transformation semigroup, $\rho(A)$ a resolvent set, $\sigma(A)$ a spectrum of A and $A \in \omega - OCP_n$ is a generator of C_0 -semigroup. This paper consist of results of ω -order preserving partial contraction mapping generating a regular weak*-continuous semigroup.

Akinyele et al. [1], established some perturbation results of the infinitesimal generator in the semigroup of the linear operator, also in $[2]$ Akinyele *et* al., obtained some results of semigroup of linear operator in spectra theory. Balakrishnan [3], introduced an operator calculus for infinitesimal generators of semigroup. Banach [4], established and introduced the concept of Banach spaces. Batty et al. [5], showed some asymptotic behavior of semigroup of operators. Chill and Tomilov [6], deduced some resolvent approach to stability operator semigroup. Davies [7], introduced linear operators and their spectra. Engel and Nagel [8], presented one-parameter semigroup for linear evolution equations. Nagel *et al.* [9], identified extrapolation spaces for unbounded operators. Neerven [10], deduced some results on adjoint of semigroup of linear operators. Omosowon et al. [11], proved some analytic results of semigroup of linear operator with dynamic boundary conditions, and also in [12], Omosowon et al., established dual Properties of ω-order Reversing Partial Contraction Mapping in Semigroup of Linear Operator. Rauf and Akinyele [13], obtained ω -order preserving partial contraction mapping and established its properties, also in [14], Rauf et al. introduced some results of stability and spectra properties on semigroup of linear operator. Vrabie [15], proved some results of C_0 -semigroup and its applications. Yosida [16], established some results on differentiability and representation of one-parameter semigroup of linear operators.

2 Preliminaries

Definition 2.1 (C_0 -semigroup) [15]

A C_0 -semigroup is a strongly continuous one parameter semigroup of bounded linear operator on Banach space.

Definition 2.2 (ω - OCP_n) [13]

A transformation $\alpha \in P_n$ is called ω -order preserving partial contraction mapping if $\forall x, y \in \text{Dom}\alpha : x \leq y \implies \alpha x \leq \alpha y$ and at least one of its transformation must satisfy $\alpha y = y$ such that $T(t+s) = T(t)T(s)$ whenever $t, s > 0$ and otherwise for $T(0) = I$.

Definition 2.3 (Perturbation) [1]

Let $A: D(A) \subseteq X \longrightarrow X$ be the generator of a strongly continuous semigroup $(T(t))_{t>0}$ and consider a second operator $B: D(B) \subseteq X \to X$ such that the sum $A + B$ generates a strongly continuous semigroup $(S(t))_{t>0}$. We say that A is perturbed by operator B or that B is a perturbation of A .

Definition 2.4 (Regular weak*-continuous semigroup) [10]

A weak^{*}-continuous semigroup $T^X(t)$ on a dual Banach space X^* is called *regular* if for all $t, s > 0$ and $x^* \in X^*$ we have

$$
T^{X}(t)\left(weak * \int_{0}^{s} T^{*}(\sigma)x^{*} d\sigma \right) = weak^{*} \int_{0}^{s} T^{X}(t+\sigma)x^{*} d\sigma.
$$

Example 1

 2×2 matrix $[M_m(\mathbb{N} \cup \{0\})]$ Suppose

$$
A = \begin{pmatrix} 2 & 0 \\ 1 & 2 \end{pmatrix}
$$

and let $T(t) = e^{tA}$, then

$$
e^{tA} = \begin{pmatrix} e^{2t} & e^I \\ e^t & e^{2t} \end{pmatrix}.
$$

Earthline J. Math. Sci. Vol. 10 No. 2 (2022), 289-304

Example 2

 3×3 matrix $[M_m(\mathbb{N} \cup \{0\})]$ Suppose

$$
A = \begin{pmatrix} 2 & 2 & 3 \\ 2 & 2 & 2 \\ 1 & 2 & 2 \end{pmatrix}
$$

and let $T(t) = e^{tA}$, then

$$
e^{tA} = \begin{pmatrix} e^{2t} & e^{2t} & e^{3t} \\ e^{2t} & e^{2t} & e^{2t} \\ e^t & e^{2t} & e^{2t} \end{pmatrix}.
$$

Example 3

 3×3 matrix $[M_m(\mathbb{C})]$, we have for each $\lambda > 0$ such that $\lambda \in \rho(A)$ where $\rho(A)$ is a resolvent set on X.

Suppose we have

$$
A = \begin{pmatrix} 2 & 2 & 3 \\ 2 & 2 & 2 \\ 1 & 2 & 2 \end{pmatrix}
$$

and let $T(t) = e^{tA_{\lambda}},$ then

$$
e^{tA_{\lambda}} = \begin{pmatrix} e^{2t\lambda} & e^{2t\lambda} & e^{3t\lambda} \\ e^{2t\lambda} & e^{2t\lambda} & e^{2t\lambda} \\ e^{t\lambda} & e^{2t\lambda} & e^{2t\lambda} \end{pmatrix}.
$$

Theorem 2.1 Hille-Yoshida [15]

A linear operator $A : D(A) \subseteq X \rightarrow X$ is the infinitesimal generator for a C_0 -semigroup of contraction if and only if

- (i) A is densely defined and closed,
- (ii) $(0, +\infty) \subseteq \rho(A)$ and for each $\lambda > 0$, we have

$$
||R(\lambda, A)||_{L(X)} \le \frac{1}{\lambda}.\tag{2.1}
$$

http://www.earthlinepublishers.com

3 Main Results

This section present results of semigroup of linear operator by using ω -OCP_n to generate regular weak*-continuous semigroup:

Theorem 3.1

Assume $A : D(A) \subseteq X \rightarrow X$ is the infinitesimal generator of a C_0 -semigroup $\{T(t): t \geq 0\}$ on X and $B: X^{\odot} \to X^*$ is bounded such that $A, B \in \omega - OCP_n$, then we have:

- (i) The semigroup $T^{B}(t)$ on X^* is regular;
- (ii) The perturbed integrated semigroup $S^{B}(t)$ satisfies the variation of constants formula

$$
S^{B}(t)x = S(t)x + \lim_{\lambda} \int_{0}^{t} S^{B}(t-s)BT_{0}(s)\lambda R(\lambda, A)x ds.
$$

Proof:

We need to check weak*-continuity and regularity. Weak*-continuity is a consequence of the variation of constants formula for $T^{B}(t)$, the uniform boundedness of the operators $\lambda R(\lambda, A^*)$ appearing therein and the weak*-continuity of $T^*(t)$.

The regularity checked as follows. By extending the semigroup $T_0^B(t)$ to a C_0 -semigroup on X_{-1} with generator $A_{-1} + B$ for all $A, B \in \omega - OCP_n$. Then by denoting the extensions of $T_0(t)$ and $T_0^B(t)$ to the space X_{-1} by $T_{-1}(t)$ and $T_{-1}^{B}(t)$ respectively, then we have the following variation of constants formulas:

$$
T_0^B(t)x_0 = T_0(t)x_0 + \int_0^t T_{-1}^B(t-s)BT_0(s)x_0ds
$$

= $T_0(t)x_0 + \int_0^t T_{-1}(t-s)BT_0^B(s)x_0ds$ (3.1)

Earthline J. Math. Sci. Vol. 10 No. 2 (2022), 289-304

for all $x_0 \in X_0$ and the Bochner integrals being X_{-1} . Suppose the part of $A^* + B$ in X^{\odot} generates a C_0 -semigroup $T_0^B(t)$ on X^{\odot} which satisfies

$$
T_0^B(t)x^{\odot} = T^{\odot}(t)x^{\odot} + \int_0^t T^*(t-s)BT_0^B(s)x^{\odot}ds \quad (x^{\odot} \in X^{\odot}).\tag{3.2}
$$

Moreover, both $T^{\odot}(t)$ and $T_0^B(t)$ leave $D(A^*)$ Therefore the intertwining formula extends $T_0^B(t)$ to semigroup $T^B(t)$ on X^* , which satisfies for all $x^* \in X^*$ and $A, B \in \omega - OCP_n$, we have

$$
T^{B}(t)x^{*} = T^{*}(t)x^{*} + weak^{*} \lim_{\lambda} \left(weak^{*} \int_{0}^{t} T^{*}(t-s)B\lambda R(\lambda, A^{*})T^{B}(s)x^{*}ds \right)
$$

$$
= T^{*}(t)x^{*} + weak^{*} \lim_{\lambda} \left(weak^{*} \int_{0}^{t} T^{B}(t-s)B\lambda R(\lambda, A^{*})T^{*}(s)x^{*}ds \right)
$$
(3.3)

Then $(A^{\odot})_{-1} + B = (A^{\odot} + B)_{-1}$ generates the C_0 -semigroup $T_{-1}^B(t) = (T_0^B(t))_{-1}$ on $(X^{\odot})_{-1} = (X^*)_{-1}$. Identifying X^* with a sequence of $(X^*)_{-1}$, we have

$$
T_{-1}^{B}(t)\Big|_{X^*} = T^{B}(t)
$$

and

$$
T_{-1}^{B}(t) \int_{0}^{s} T_{-1}^{B}(\sigma) x^{*} d\sigma = \int_{0}^{s} T_{-1}^{B}(t+\sigma) x^{*} d\sigma \qquad (3.4)
$$

for all $x^* \in X^*$ and $B \in \omega - OCP_n$; this is because the integral is Bochner in (X^*) ₋₁. Now we need to show that for all $y \in X^*$, the (X^*) ₋₁-Bochner integral $\int_0^s T_{-1}^B(\sigma) y^* d\sigma$ equals $weak^* \int_0^s T_{-1}^B(\sigma) y^* d\sigma$. But identifying $D(A)$ with a linear subspace of $D(A^{\odot *}) \simeq ((X^{\odot})_{-1})^* \simeq ((X^*)_{-1})^*$, then we have for any $x \in D(A)$

$$
\langle x, \int_0^s T_{-1}^B(\sigma) y^* d\sigma \rangle = \int_0^s \langle x, T_{-1}^B(\sigma) y^* \rangle d\sigma
$$

$$
= \langle x, weak^* \int_0^s T_{-1}^B(\sigma) y^* d\sigma \rangle \tag{3.5}
$$

and the result follows from the denseness of $D(A)$ which poves (i).

To prove (ii), this follows from integrating

$$
T_{-1}^{B}x_{-1} = T_{-1}(t)x_{-1} + \lim_{\lambda} \int_{0}^{t} T_{-1}^{B}(t-s)B\lambda R(\lambda, A_{-1})T_{-1}(s)x_{-1}ds
$$

= $T_{-1}(t)x_{-1} + \lim_{\lambda} \int_{0}^{t} T_{-1}(t-s)B\lambda R(\lambda, A_{-1})T_{-1}^{B}(s)x_{-1}ds$ (3.6)

in X_{-1} , then by the dominated convergence theorem and Fubini theorem, we have

$$
S^{B}(t)x = S(t)x + \int_{0}^{t} \lim_{\lambda} \int_{0}^{\eta} T_{-1}^{B}(\eta - s) B\lambda R(\lambda, A_{-1}) T_{-1}(s) x ds d\eta
$$

$$
= S(t)x + \lim_{\lambda} \int_{0}^{t} \int_{s}^{\eta} T_{-1}^{B}(\eta - s) B\lambda R(\lambda, A_{-1}) T_{-1}(s) x d\eta ds
$$

$$
= S(t)x + \lim_{\lambda} \int_{0}^{t} s^{B}(t - s) BT_{0}(s) \lambda R(\lambda, A) x ds.
$$
 (3.7)

The last integral is still in the sense of X_{-1} . But its integrand is continuous as a function $[0, t] \rightarrow X$, so the integral actually exists as a Bochner integral in X. Hence the prove is completed.

Theorem 3.2

Suppose $A : D(A) \subseteq X \rightarrow X$ is the infinitesimal generator of a regular, weak*-continuous semi-group $\{T^X(t); t \geq 0\}$ on X^* such that $A \in \omega - OCP_n$. Then:

(i) Define operators $s^*(t)$ on X^* by

$$
S^X(t)x^* := weak^* \int_0^t T^X(s)x^*ds;
$$

(ii)
$$
R(\lambda, A^X)T^X(t) = T^X(t)R(\lambda, A^X).
$$

In particular, the operators $S^X(t)$ define a non-degenerate locally Lipschitz integrated semigroup on X^* and $T^X(t)$ is an intertwined semigroup with intertwining operator A^X .

Earthline J. Math. Sci. Vol. 10 No. 2 (2022), 289-304

Proof:

By the uniform boundedness theorem, $||T^X(t)||$ is bounded in a neighbourhood of $t = 0$. The semigroup property then implies that

$$
||T^X(t)|| \leq Me^{\omega t}
$$

for some M and ω . This easily implies that $S^X(t)$ is locally Lipschitz with respect to t. Clearly, $S^X(0) = 0$ and $t \mapsto S^X(t)x^*$ is continuous. The regularity assumption means that we have

$$
T^{X}(t)S^{X}(s) = S^{X}(s)T^{X}(t).
$$
\n(3.8)

Integrating (3.8), we have

$$
S(t)S(s)x = \int_0^t (s(s+\eta) - S(\eta))x d\eta
$$
\n(3.9)

for all $x \in X$. It remains to check that $S^X(t)$ in non-degenerate. But if $S^X(t)x^* =$ 0 for all $t > 0$, then for all $x \in X$ we have that

$$
\int_0^t \langle T^X(s)x^*, x \rangle = 0
$$

for all $t > 0$. This implies that

$$
\langle T^*(t)x^*, x \rangle = 0
$$

for all t. Since x is arbitrary, the weak*-continuity of $T^X(t)$ implies that $x^* = 0$. If $T^X(t)$ is a regular, weak^{*}-continuous semigroup on X^* , then we define the generator of $T^{X}(t)$ to the generator A^{X} of the associated integrated semigroup $S^X(t)$, and this proves (i).

To prove (ii), we have that for arbitrary $x \in X^*$ and $A \in \omega - OCP_n$,

$$
R(\lambda, A^X)T^X(t)x^* = \lambda \int_0^\infty e^{-\lambda s} S^X(s)T^X(t)x^* ds
$$

= $\lambda \int_0^\infty e^{-\lambda s}T^X(t)S^X(s)x^* ds$
= $T^X(t)\lambda \int_0^\infty e^{-\lambda s}S^X(s)x^* ds$
= $T^X(t)R(\lambda, A^X)x^*.$

We used the fact that $t \mapsto S^X(t)x^*$ is Bochner integrable and this archived the prove.

Theorem 3.3

Let $A : D(A) \subseteq X \rightarrow X$ be the infinitesimal generator of a C₀-semigroup ${T(t); t \geq 0}$ where $A \in \omega - OCP_n$. Then the following assertions are equivalent:

- (i) X^{\odot} defines an equivalent norm on X;
- (ii) There is a constant $C > 0$ such that

$$
\lim_{t \to 0} \sup t^{-1} ||S(t)x|| \geqq C ||x|| \quad \text{for all} \quad x \in X;
$$

(iii) There is a constant $C > 0$ such that

 $\lim_{\lambda \to \infty} \sup ||\lambda R(\lambda, A)x|| \ge C||x||$ for all $x \in X$ and $A \in \omega - OCP_n$;

(iv) $S^X(t)x^* \in X^\odot$ for all $t > 0$ and

$$
\langle K x^{\odot \odot}, x^* \rangle = \lim_{t \to 0} \frac{1}{t} \langle x^{\odot \odot}, S^X(t) x^* \rangle.
$$

Proof:

To prove (i), let $C > 0$ be the norming constant of the norm $\|\cdot\|$ induced by X^{\odot} . Suppose $x \in X$, $A \in \omega - OCP_n$ and $\varepsilon > 0$ be arbitrary. There is an $x^{\odot} \in X^{\odot}$ of norm one such that

$$
|\langle x^{\odot}, x \rangle| > C \|x\| - \varepsilon.
$$

Hence for λ sufficiently large, also

$$
\|\lambda R(\lambda, A)x\| \ge |\langle x^{\odot}, \lambda R(\lambda, A)x \rangle| = |\langle \lambda R(\lambda, A)^* x^{\odot}, x \rangle| > C \|x\| - \varepsilon \qquad (3.10)
$$

and we have

$$
\|\lambda R(\lambda, A)x\| \ge C\|x\|
$$

for all $x \in X$ and $A \in \omega - OCP_n$ which obtained (iii).

(ii) Follows similarly from (i) by observing that

$$
S^*(t)\Big|_{X^\odot} = \int_0^t T^\odot(s)
$$

where $T^{\odot}(t)$ is the semigroup of a restricted a map i_0^* which induces an isomorphism $X^{\odot} \simeq (X_0)^{\odot}$ under which we have

$$
i_0^* T^\odot(t) = T^\odot(t) i_0^*.
$$
\n(3.11)

Moreover, for all $x \in X$ and $x^{\odot} \in X^{\odot}$ we have

$$
\langle x^\odot, x \rangle = \lim_{n \to \infty} \langle i_0^* x^\odot, x_n \rangle
$$

where (x_n) is any bounded sequence in X_0 such that $R(\mu, A)x_n \to R(\mu, A)x$ in X for all $A \in \omega - OCP_n$ and $x_n \to x$ in X_{-1} . This identity is an easy consequence of the fact that integrated semigroup generated by a Hille-Yosida operator is unique. So for $t \to 0$ and $x^{\odot} \in X^{\odot}$ we have $t^{-1}S^{*}(t)x^{\odot} \to x^{\odot}$.

Now let (iii). For $x \in X$ and $\varepsilon > 0$, choose $x^* \in X^*$ of norm one and $\lambda > 0$ such that

$$
|\langle x^*, \lambda R(\lambda, A)x \rangle| > C ||x|| - \varepsilon.
$$

Then also,

$$
|\langle \lambda R(\lambda,A)^*x^*,x\rangle|>C\|x\|-\varepsilon
$$

and (i) follows from $\lambda R(\lambda, A)^* x^* \in X^\odot$. The implication (ii) \implies (i) is proved similarly.

To prove (iv). The first statement follows from X^{\odot} is the space of strong continuity of $T^X(t)$ and we have

$$
T^X(t)\Big|_{X^\odot} = T^\odot(t). \tag{3.12}
$$

Indeed, by a trivial direct computation we shows that $t \mapsto S^X(t)x^*$ is strongly continuous. Since $||t^{-1}S^*(t)||$ is bounded in a neighbourhood of $t = 0$ and since

http://www.earthlinepublishers.com

for every $x^* \in X^*$ we have

$$
\lim_{t \to 0} \frac{1}{t} R(\lambda, A^X) S^X(t) x^* = \lim_{t \to 0} \frac{1}{t} \int_0^t T^\odot(s) R(\lambda, A^X) x^* ds
$$

$$
- R(\lambda, A^X) x^* \tag{3.13}
$$

and by applying (3.11) in (3.13) , we have

$$
\langle Kx^{\odot \odot}, x^* \rangle = \lim_{t \to 0} \frac{1}{t} \langle x^{\odot \odot}, S^*(t)x^* \rangle.
$$

Hence, the prove is completed.

Theorem 3.4

Suppose $A \in \omega - OCP_n$ is the generator of a regular weak*-continuous semigroup ${T^X(t); t \ge 0}$ on a dual space X^* . Then:

- (i) $|x^*| := \sup$ $||x^{\odot}\odot||>1$ $|\langle Kx^{\odot \odot}, x^* \rangle|$ defines an equivalent norm on X^* ;
- (ii) Every regular weak*-continuous semigroup $T^X(t)$ is the restriction to a closed subspace of an adjoint semigroup where $T^X(t) = T^{\odot \odot *} (t) \Big|_{X^*}.$

Proof:

By applying (i), (ii) and (iii) of Theorem 3.3, we have that for every $t > 0$, $x \in X$ of norm one and $x^* \in X^*$ we have

$$
\frac{1}{t}||S^X(t)x^*|| \ge \frac{1}{t}|\int_0^t \langle T^X(s)x^*, x\rangle ds|.
$$

Letting $t \to 0$, it follows from the weak*-continuity of $T^X(t)$ that

$$
\lim_{t \to 0} \sup \frac{1}{t} \| S^X(t)x^* \| \geqq |\langle x^*, x \rangle|.
$$

This holds for every $x \in X$ of norm one, and therefore

$$
\lim_{t \to 0} \sup \frac{1}{t} \| S^X(t) x^* \| \geqq \| x^* \|
$$

Earthline J. Math. Sci. Vol. 10 No. 2 (2022), 289-304

which proves (i).

To prove (ii). By (iv) of Theorem 3.3, we have

$$
\langle T^{\odot \odot}(t)x^{\odot \odot}, x^* \rangle = \lim_{s \to 0} \frac{1}{s} \langle T^{\odot \odot}(t)x^{\odot \odot}, S^X(s)x^* \rangle
$$

\n
$$
= \lim_{s \to 0} \frac{1}{s} \langle x^{\odot \odot}, T^{\odot}(t)S^X(s)x^8 \rangle
$$

\n
$$
= \lim_{s \to 0} \frac{1}{s} \langle x^{\odot \odot}, S^X(s)T^X(t)x^* \rangle
$$

\n
$$
= \langle x^{\odot \odot}, T^X(t)x^* \rangle
$$
 (3.14)

and this achieved the proof.

Theorem 3.5

Let $A: D(A) \subseteq X \to X$ be the generator of a regular, weak*-continuous semigroup ${T^X(t); t \ge 0}$ such that $A \in \omega - OCP_n$. Then we have

(i) For all $x^{\odot \odot} \in X^{\odot \odot}$ and $x^* \in X^*$, we have

$$
\langle x^{\odot \odot}, R(\lambda, A^X) x^* = \int_0^\infty e^{-\lambda t} \langle x^{\odot \odot}, T^X(t) x^* \rangle dt
$$

and

$$
\langle x^{\odot \odot},weak*\int_0^t T^X(s)x^*ds\rangle = \int_0^t \langle x^{\odot \odot},T^X(s)x^*\rangle ds;
$$

(ii) $x^* \in D(A^*)$, $A \in \omega - OCP_n$ with $A^X x^* = y^*$ if and only if

$$
\sigma(X^*, X^{\odot \odot}) - \lim_{t \to 0} \frac{1}{t} (T^X(t)x^* - x^*) = y^*.
$$

Proof:

In $(X^*)_{-1}$ we have $R(\lambda, A^X)x^* = \int_0^\infty e^{-\lambda t} T^X(t)x^*dt$. Identifying $((X^*)_{-1})^*$ with $D(A^{\odot *})$ by letting A be a densely defined generalized Hille-Yosida operator on X. Then θ defined an isomorphism of $D(A^*)$ onto $(X_{-1})^*$, which is independent of μ . Moreover, if A is a generator, then θ maps $D(A^{\odot})$ onto $(X_{-1})^{\odot}$. Then by identity let A be Hille-Yosida on X. Suppose A is a closed operator with $\lambda \in \rho(A)$, then

http://www.earthlinepublishers.com

 $D(A_{-1}) = X_0$ and $\lambda - A_{-1} : X_0 \to X_{-1}$ is a isomorphism such that A is the part of A_{-1} in X. If $\lambda \in \rho(A)$, then $\lambda \in \rho(A_{-1})$ and

$$
R(\lambda, A) = R(\lambda, A_{-1})\Big|_X.
$$
\n(3.15)

Then there is a natural isomorphism: $\varphi : X_{-1} \simeq (X_0)_{-1}$, combining this with isomorphism $\phi: (X^*)^{-1} \simeq (X_1)^*$ induces by an isomorphism $(X^{\odot})^{-1} \simeq (X_1)^{\odot}$, then we obtain a natural isomorphism $\xi : D(A_{\odot}^{*}) \simeq (X_{-1})^{*}$ by putting

$$
\langle \xi x_0^\odot, x_{-1} \rangle := \langle \theta x_0^\odot, \varphi x_{-1} \rangle.
$$

In particular, by regarding X as a subspace of X_{-1} , there is a natural action of an $x_0^{\odot} \in D(A_0^*)$ on an $x \in X$. Letting $i: X \to X_{-1}$ be the inclusion map, we claim that

$$
\langle \xi x_0^{\odot},ix \rangle = \langle Kx_0^{\odot},x \rangle.
$$

Indeed,

$$
\langle \xi x_0^{\odot}, ix \rangle = \lim_{\lambda} \langle \xi x_0^{\odot}, \lambda R(\lambda, A_{-1}) ix \rangle
$$

\n
$$
= \lim_{\lambda} \langle \theta x_0^{\odot}, \varphi \lambda R(\lambda, A_{-1}) ix \rangle
$$

\n
$$
= \lim_{\lambda} \langle (\mu - A_0^*) x_0^{\odot}, R(\mu, (A_0)_{-1}) \lambda R(\lambda, A) x \rangle
$$

\n
$$
= \lim_{\lambda} \langle x_0^{\odot}, \lambda R(\lambda, A) x \rangle
$$

\n
$$
= \langle K x_0^{\odot}, x \rangle,
$$
 (3.16)

so that for each $x^{\odot *} \in D(A^{\odot *})$ and $A \in \omega - OCP_n$ we have

$$
\langle x^{\odot}, R(\lambda, A^X) x^* \rangle = \langle x^{\odot *}, \int_0^{\infty} e^{-\lambda t} T^X(t) x^* dt \rangle = \int_0^{\infty} \langle x^{\odot *}, e^{-\lambda t} T^X(t) x^* \rangle dt.
$$
\n(3.17)

Using that the integral is Bochner in (X^*) ₋₁. Since $D(A^{\odot *})$ is dense in $X^{\odot\odot}$, the dominated convergence theorem implies that these identities hold for every $x^{\odot \odot} \in X^{\odot \odot}$, and this completes the prove of (i).

To prove (ii), first let $x^* \in D(A^X)$ and $A^X x^* = y^*$. Put

$$
z^* := (\lambda - A^X)x^* = \lambda x^* - y^*.
$$

Earthline J. Math. Sci. Vol. 10 No. 2 (2022), 289-304

A little computation involving the first identity in (i) of Theorem 3.5 shows that for $x^{\odot \odot} \in X^{\odot \odot}$,

$$
\frac{1}{t}\langle x^{\odot \odot}, T^X(t)x^* - x^* \rangle = \langle x^{\odot \odot}, \frac{e\lambda t - 1}{t}x^* \rangle - \frac{e^t}{t} \int_0^t e^{-\lambda t} \langle x^{\odot \odot}, T^X(s)z^* \rangle ds. \tag{3.18}
$$

Letting $t \to 0$ we obtain, using the $\sigma(X^*, X^{\odot \odot})$ -continuity of $T^X(t)$,

$$
\lim_{t \to 0} \frac{1}{t} \langle x^{\odot \odot}, T^X(t)x^* - x^* \rangle = \lambda^{\odot \odot}, x^* \rangle - \langle x^{\odot \odot}, z^* \rangle = \langle x^{\odot \odot}, y^* \rangle. \tag{3.19}
$$

Conversely, suppose that for some $x^* \in X^*$ the $\sigma(X^*, X^{\odot \odot})$ -limits and equals y^* . Put

$$
z^* := R(\lambda, A^X)(\lambda x^* - y^*).
$$

Fix $x^{\odot\odot} \in X^{\odot\odot}$. Then

$$
\langle x^{\odot \odot}, z^* \rangle = \langle R(\lambda, A^{\odot \odot}) x^{\odot \odot}, \lambda x^* - y^* \rangle
$$

= $\lambda \langle R(\lambda, A^{\odot \odot}) x^{\odot \odot}, x^* \rangle - \lim_{t \to 0} t^{-1} (T^{\odot *}(t) - I) R(\lambda, A^{\odot \odot}) x^{\odot \odot}, x^* \rangle$
= $\langle (\lambda - A^{\odot \odot}) R(\lambda, A^{\odot \odot}) x^{\odot \odot}, x^* \rangle$
= $\langle x^{\odot \odot}, x^* \rangle.$ (3.20)

Therefore

$$
x^* = z^* = R(\lambda, A^X)(\lambda x^* - y^*) \in D(A^X)
$$

and

$$
A^X x^* = y^*.
$$

Hence the proof is completed.

Conclusion

In this paper, it has been established that ω -order preserving partial contraction mapping generates some results of regular weak*-continuous semigroup.

Acknowledgment

We acknowledge the management of the University of Ilorin for providing us with a suitable research laboratory and library to enable us carried out this research.

References

- [1] A. Y. Akinyele, O. Y. Saka-Balogun and O. A. Adeyemo, Perturbation of infinitesimal generator in semigroup of linear operator, South East Asian J. Math. Math. Sci. 15(3) (2019), 53-64.
- [2] A. Y. Akinyele, O. Y. Saka-Balogun and M. A. Ganiyu, Results of semigroup of linear operator in spectra theory, Asia Pac. J. Math. 8 (2021), 8 pp. <https://doi.org/10.28924/APJM/8-8>
- [3] A. V. Balakrishnan, An operator calculus for infinitesimal generators of semigroup, Trans Amer. Math. Soc. 91 (1959), 330-353. <https://doi.org/10.1090/S0002-9947-1959-0107179-0>
- [4] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux $équations$ intégrales, Fund. Math. 3 (1922), 133-181. <https://doi.org/10.4064/fm-3-1-133-181>
- [5] C. J. K. Batty, R. Chill and Y. Tomilov, Strong stability of bounded evolution families and semigroup, J. Funct. Anal. 193 (2002), 116-139. <https://doi.org/10.1006/jfan.2001.3917>
- [6] R. Chill and Y. Tomilov, Stability of operator semigroups: ideas and results, Banach Center Publ., 75, Polish Acad. Sci. Inst. Math., Warsaw, 2007, pp. 71-109.
- [7] E. B. Davies, Linear operators and their spectra, Cambridge Studies in Advanced Mathematics, 106, Cambridge University Press, Cambridge, 2007.
- [8] K.-J. Engel and R. Nagel, One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, 194, Springer, New York, 2000.
- [9] R. Nagel, G. Nickel, and S. Romanelli, Identification of extrapolation spaces for unbounded operators, Quaestiones Mathematicae 19 (1996), 83-100. <http://doi.org/10.1080/16073606.1996.9631827>
- [10] J. van Neerven, The adjoint of a semigroup of linear operators, Lecture Notes in Mathematics, 1529, Springer-Verlag, Berlin, 1992.
- [11] J. B. Omosowon, A. Y. Akinyele, O. Y. Saka-Balogun and M. A. Ganiyu, Analytic results of semigroup of linear operator with dynamic boundary conditions, Asian Journal of Mathematics and Applications (2020), Article ID ama0561, 10 pp.
- [12] J. B. Omosowon, A. Y. Akinyele and F. M. Jimoh, Dual properties of ω -order reversing partial contraction mapping in semigroup of linear operator, Asian Journal of Mathematics and Applications (2021), Article ID ama0566, 10 pp.
- [13] K. Rauf and A. Y. Akinyele, Properties of ω -order-preserving partial contraction mapping and its relation to C_0 -semigroup, *Int. J. Math. Comput. Sci.* 14(1) (2019), 61-68.
- [14] K. Rauf, A. Y. Akinyele, M. O. Etuk, R. O. Zubair and M. A. Aasa, Some result of stability and spectra properties on semigroup of linear operator, Advances in Pure Mathematics 9 (2019), 43-51. <https://doi.org/10.4236/apm.2019.91003>
- [15] I. I. Vrabie, C_0 -semigroups and applications, North-Holland Mathematics Studies, 191, North-Holland Publishing Co., Amsterdam, 2003.
- [16] K. Yosida, On the differentiability and representation of one-parameter semigroups of linear operators, J. Math. Soc. Japan 1 (1948), 15-21. <https://doi.org/10.2969/jmsj/00110015>

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted, use, distribution and reproduction in any medium, or format for any purpose, even commercially provided the work is properly cited.