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Abstract

In the present paper, we define a new class NA(n, p, A, «, f) of multivalent functions
which are holomorphic in the unit disk A = {s € C : |s| < 1}. A necessary and sufficient
condition for functions to be in the class NA(n,p, 4, a, ) is obtained. Also, we get
some geometric properties like radii of starlikeness, convexity and close-to-convexity,
closure theorems, extreme points, integral means inequalities and integral operators.

1. Introduction

Let A, be symbolize the function class of the form:

k(s) = s? + Z dys" (s€Efn=p+LpeN={12.}), (L1

n=p+1

which are holomorphic and multivalent in the open unit disk A = {s € C: |s| < 1}.

Let V,, be symbolize the function subclass of A, containing of functions of the form:

k(s) =sP — Z d,s" (seNd,z20;n=2p+L,peN={12.}. (1.2)

n=p+1
For function k(s) € )V, given by (1.2), and i(s) € IV, given by

h(s) = s? — Z ST (SENC,Z0,n=2p+LpeN={12..}), (1.3)

n=p+1
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the convolution (or Hadamard product) of k(s) and 4(s) is defined by

0

(k * h)(s) = sP — Z dc,s™ = (h# k)(s). (14)

n=p+1
A function k(s) € A, is called multivalent starlike of order y (0 <y <p), if k(s)

satisfies the condition:

R sk (5) A0 < ; N ={1,2 1.5
e(k(s)>>y (seEMO<y<p,peN={12..}. (1.5)

Also, a function k(s) € A, is called multivalent convex of order y(0 <y < p), if k(s)
satisfies the condition:

sk’(s)
k'(s)

Symbolize by S (p,y) the class of multivalent starlike functions of order y. Symbolize

Re(1+ >>y (sENO<y<ppeN={12..}. (1.6)

by C,,(p,y) the class of multivalent convex functions of order y, which were studied by
Owa [11]. It is observed that

k(s) € Cy(p,y) if and only if 5"’# € S:(,7).

A function k(s) € A, is called multivalent close to convex of order y(0 <y <p), if

k(s) satisfies the condition:

k'(s)
Re (sp_‘l) >y (SeENO<y<p;peN={12.D}. (1.7)

We recall the principle of subordination between two holomorphic functions k(s) and
h(s) in A. It is known that k(s) is subordinate to A(s), written as k(s) < A(s), s € 4, if
there is a w(s) holomorphic in 4, with w(0) =0 and |[w(s)| <1, s € 4, such that
k(s) = h(w(s)). Moreover, k(s) < h(s) is equivalent to k(0) = 4(0) and k(4) c h(4),
if k(s) is univalent in A.

Definition 1.1. Let k(s) €V, given by (1.2), is said to be in the class
NAM,p, A a, ) if and only if satisfies the following inequality:

sk'(s) + s%k"(s)
€ {Ask (s) + (1— A)k(s)}

sk'(s) + s%k"(s)
k) + A =Dk P| TP

(1.8)

where s EA, 0SB <p,a=200<A<I,n=p+landpeN={12..}.
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We note that by customizing the parameter a, A, p, we get the following various
subclasses as studied by different researchers:

1) If A =1, the class NA(n,p, A, a, B) reduces to the class UCV (p, a, ) which is
introduced by Khairnar and More [8].

2)If A=1anda =0, the class NA(n,p, 4, a, B) reduces to the class C,(p, @)
which is studied by Owa [11] and Salagean et al. [12].

3) If A=1and p =1, the class NA(n,p, 4, a, B) reduces to the class UCT(«, )
which is studied by Bharati et al. [6].

HIfA=1,p=1anda =0, the class NA(n,p, 4, a, B) reduces to the class C(a)
which is studied by Silverman [13].

5)If A=0, p=1anda =0, the class NA(n,p, 4, a,B) reduces to the class
H(1, B) which is studied by Lashin [9].

Lemma 1.1 [3]. Let y = v + iu be complex number. Then Re(y) = B if and only if
ly=@+Bl<ly+@®@—P)| where p = 0.

Lemma 1.2 [3]. Let y = v + iu and f, « be real numbers. Then Re(y) = al|y — p| +
B if and only ifRe{y(l + aeie) — paeie} =>p.

Lemma 1.3 [10]. If k and h are holomorphic in A with k < h, then
2 21
f [k(rei®)|"do < f |h(rei®)|"de,
0 0

where u > 0,s =re® and (0 <r < 1).

Some of the following properties studied for other classes in [1, 2, 4, 5, 7, 14].

2. Coefficient Inequality

From the following theorem, we get the necessary and sufficient condition for the
function k(s) to be in the class NA(n,p, 4, a, ).

Theorem 2.1. Let k(s) be in the form (1.2). Then k(s) is in the class
NAMm,p, A, a,B) if and only if

Z [2(@+1) — (B + ap)(1 + An— D]d, <p?(a@+1) — (B + ap)(1 + Ap — 2), (2.1)

n=p+1
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where sEA0<SB<p,a=00<A<1l,n=p+landpeN={12..}.
The result is sharp for the function k(s) given by

pPl@a+1)—(B+ap)(1+p—-2)
T n2(a+1)-B+ap)(l+An—2)

Proof. Let k(s) € NA(n,p, A, «a, ). Then k(s) satisfies the inequality (1.8). By
using Lemma 1.2, the inequality (1.8) is equivalent to

k(s) = s? s, m=p+1;peN). (22)

(sk'(s) + s%k"(s)) (1 + ae'®) o] <
{ Isk'(s) + (1— Dk(s)  P%¢ } =P

0<Bp<pa=00<i<inz=p+1 peENand—n <0 <m).

Or equivalently,

{(sk’(s) +52k"(s)) (1 + ae®®)  pae®®(Ask'(s) + (1 - /’l)k(S))} >p (23)
Ask'(s) + (1 — Dk(s) Ask'(s) + (1 — Dk(s)
Let
A(s) = (sk'(s) + s2k"(s) )(1 + ae'®) — pae’® (Ask’(s) +(1- A)k(s)).
B(s) = Ask'(s) + (1 — D)k(s).
Then by Lemma 1.1, (2.3) is equivalent to

|A(s) + (p = B)B(s)| = |A(s) = (p + B)B(s)| for 0<pB <p.

Now
|A(s) + (p — B)B(s)|
psP — Z nd,s™ +p(p — 1)s? — Z n(n— 1d,s" (1 + aeie)
n=p+1 n=p+1

= | —pae'®| Aps? — Z And,s™ + (1 —)sP — Z (1—=A)d,s™
n=p+1 n=p+1

0

+(—B)| Aps?P — Z And,s™+ (1 — A)sP — Z (1-Ad,s™

n=p+1 n=p+1
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o0

n=p+1

n=p+1

o0

psP — Z nd,s™ +p(p — 1)s? — Z n(n —1)d,s™ (1 + aeie)

n=p+1

+(p —B- paeie) ApsP — Z And,s™ 4+ (1 —)sP — z (1 —-Ad,s™

n=p+1

0

>

n=p+1

p*(1+ae)sP+ (p— B —pae®)(1+ Ap—2)s?P

n?(1+ ae'®)d,s™ — Z (p — B —pae®)(1 + Ain — D)d,s™

n=p+1

v

(P*!(1+a) +(p— B —pa)(L +Ap — 1))Is|?

- Z (W21 + @) + (p — B — pa)(1 + An — A)) dyls|™

n=p+1
Similarly,
|A(s) — (p + B)B(s)|
psP — Z nd,s™ +p(p — 1)s? — Z nn—1)d,s" (1 + aeie)
n=p+1 n=p+1

—(P +p+ paeie) ApsP — Z And,s™+ (1 —A)sP — z (1 —=Dd,s™
n=p+1

<((p+B+pa)(L+2ap =) —p*(1 + a))ls|?

0

+ Z (R2(1+ @) — (p + B + pa)(1 + An — 1)) dyls|™

n=p+1

n=p+1

Therefore

|A(s) + (p — B)B(s)| — |A(s) — (p + B)B(s)|
>p?(a+1D)—B+ap)(A+p-21)

- Z [n2(a + 1) — (8 + ap)(1 + An — D]d,, = 0.

n=p+1
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Hence

Z [n2(a + 1) — (B + ap)(1 + An — D]d, <p*(a + 1) — (B + ap)(1 + Ap — 1),

n=p+1

Conversely, by considering (2.1), we must show that

(sk'(s) + s2k"(s)) (1 + ae®®)  (pae® + B)(Ask'(s) + (1 — D)k(s)) - 0.(24
{ Ask'(s) + (1 = Dk(s) Ask'(s) + (1 — Dk(s) }— -(24)

Upon choosing the values of s on the positive real axis where 0 <s=7r <1,
Re(—eie) > —|ei9| = —1 and letting r = 17, we conclude to (2.4) by using (2.1) in left
hand of (2.4).

Corollary 2.1. Let k(s) be in the class NA(n,p, A, a, B). Then

pla+1)—(B+ap)(1+p—24)
" n2(a+1D) - B +ap)(Q+An—2)

(2.5)
where 0 S B <p,a=200<A<1n=p+landpeN={12,..}.

3. Radii of Starlikeness, Convexity and Close-to-Convexity

In the next theorems, we will find the radii of starlikeness, convexity and close-to-
convexity for the functions in the class N A(n, p, 1, a, B).

Theorem 3.1. Let k(s) € NAMn,p, A, a,B). Then the function k(s) is multivalent
starlike of order y(0 <y < p) in the disk |s| < Ry, where
1
(p-pY(n*(a+1) =B +ap)(1+n - D))"
(=P a+1) - B +ap)(L+ip-2)

The result is sharp for the function k(s) given by (2.2).

Rl—inf[ , (n=p+1,peN).

n

Proof. It is sufficient to prove

sk'(s)
k(s)

—P‘SP—Y O<y<p)

for |s| < Ry, we get

sk'(s) | _ Zn=pra(n — p)dn|s|*P
k(s) 1-y% dy|s|® P °

n=p+1
http:/fwww.earthlinepublishers.com
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Thus
sk'(s)
— <p—
if
n—y ne
dy|s|™ P <1. (3.1
= PV
n=p+1

Therefore, by using Theorem 2.1, (3.1) will be true if

n—ylsln_p n(a+1) - (B +ap)(1+in— 1)
p—Y Tpia+ D) -B+ap)A+Ap-2)
Hence
A (2 _ PN =
Is| < @ -@*(@+1) - (B +ap)d +in— 1)) ”' (M=p+Lipell).

(n=y)(p?(a+1) - B +ap)(1 +p - 1))
Setting |s| = R,, we obtain the desired result.

Theorem 3.2. Let k(s) € NA(n,p, A, a, B). Then the function k(s) is multivalent
convex of order y(0 < y < p) in the disk |s| < R,, where
= [p(p -N*(@+1) - (B +ap)(1+in—-2))
, =
n [n(n—y)(p2(a+1) = (B +ap)(1 +Ap — 1))

The result is sharp for the function k(s) given by (2.2).

1
n-p
] , mM=2p+1;peN).

Proof. It is sufficient to show that

sk'(s)
‘1 P

—P‘SP—Y O<y<p)

for |s| < R,, we get

‘1 LSK) ‘ _ Zn=pr1n(n = p)dnls|™™?
k'(s) P = Xn=p+1 Nldn|s[*7?

Thus

sk'(s)
MTE)
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if
n(n-y)
p(®—v)

n=p+1

dy|s|™P < 1. (3.2)

Therefore, by using Theorem 2.1, (3.2) will be true if

n(n—1y) (s[P < n2(a+1)— (B +ap)(1+in— 1)
p(P—7) “pfa+D-B+ap)(A+Ap—2)

and hence

5| < [p(p—y)(nz(a+ D—(B+ap)(1+n—2)) "Tp’(n > bt Lip e,

nn-y)(p*(@+1) = (B +ap)(A +p — 1))
Setting |s| = R,, we get the desired result.

Theorem 3.3. Let k(s) € NA(n,p, A, a,B). Then the function k(s) is multivalent
close to convex of order y(0 <y < p) in the disk |s| < Rs, where

Ru i p-V@*@+1) - @B +ap)(1+in— D))"
3 = inf
n n(pz(a +1D)—-B+ap)(1+Ap — /'l))

The result is sharp for the function k(s) given by (2.2).

, (n=p+1,peN).

Proof. It is sufficient to show that

k'(s)
- p|sp-v (O=y<p),

s
for |s| < R, we get
K'(s) N ]
-1 P < Z nd,|s[*7P.
n=p+1
Thus
k'(s)
-1 PSP~V
if
S ndy|s|vP
Z % <1. (3.3)
n=p+1 Py
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Therefore, by using Theorem 2.1, (3.3) will be true if

s n(a+1) - (B +ap)(1+in— 1)
P—v Tpfa+D-(B+ap)(A+Ap-A)

and hence

(p—y)(n*(a+1) - B +ap)A+n— D))"
n(pz(a +1D) - +ap)(A+p— /1))

The result is sharp for the function k(s) given by (2.2).

Is| <

, (n=Zp+1L;peN).

4. Closure Theorems

Theorem 4.1. Let the functions k,, defined as

k,(s) = sP — Z pos™  (dny=0n=p+LpeNv=12 1), (41)

n=p+1
be in the class NA,p, A, a, B) for everyv = 1,2, ..., L.

Then the function m,(s) defined as

my(s) = sP — Z e,s”, (e,=20n=p+1,p€eEN),
n=p+1

also belongs to the class NA(n,p, A, a,B), where

en =

l
1
Tzd"'”' (n=p+1,peN).
v=1

Proof. Since k,, € NA(n,p, 4, a, B) it follows from Theorem 2.1 that

> @+ D= (B +ap)(1 + A= Dldny <p?(@+ 1) = (B +ap)(1+p = 1),
n=p+1
for every v = 1,2, ..., l. Therefore

o0

Z [n2(a + 1) — (B + ap)(1 + An — D]e,

n=p+1
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© l
- ngl[nZ(a +1) = (B + ap)(1 + An — D] %Zi Ay

o0

l
1
= [n*(a+1) — (B +ap)(1 + n— D]d,,
12 | 2

n=p+1
<p*(a+1)—(B+ap)(1+ip—2).
Using Theorem 2.1, it follows that m4(s) € NA(n,p, 1, a, B).

Theorem 4.2. Let the function k,, defined by (4.1) be in the class NAn,p, A, a,B)
foreveryv = 1,2, ..., L. Then the function m,(s) defined as

l

mo(s) = )ty ly(s)

v=1

is also in the class NA(n,p, A, a, B), where

l
Zt,,=1, (t, = 0).
v=1

Proof. Using Theorem 2.1, for every v = 1,2, ..., [, we get

Z [n2(a + 1) — (B + ap)(1 + An — Dldny <p?(@ + 1) — (B + ap)(1 + Ap — A).

But
l l 0 © l
my(s) = Z ty, ky(s) = Z ty| sP — Z dpys™ | =sP — Z Z tydny |S™
v=1 v=1 n=p+1 n=p+1 \v=1
Therefore

© l
Z [n2(a +1) — (B + ap)(1 + An — )] tvdn_,,>
=1

n=p+1 v

[ee]

l
- Z t, Z [n2(a +1) — (B + ap)(1 + An — A)]dn_,,>
v=1

n=p+1

http:/fwww.earthlinepublishers.com



New Class of Multivalent Functions with Negative Coefficients 281

l
< Z t,(P?(a+ 1) — (B +ap)(1+ip— 1))
v=1

=p*l@a+D-(B+ap)A+p -1
and the proof is complete.

Corollary 4.1. The class N A(n,p, A, a, B) is close under convex linear combination.

5. Extreme Points
We get here an extreme point of the class NA(n,p, 4, a, B).

Theorem 5.1. Let k,(s) = sP and

pla+D-B+ap)A+Ap-21)

k =gP 5.1
) =S e D G rap A+ =) G-
wheres e A0S B <p,a=00<A<1ln=p+landpeN={12..}
Then k(s) € NA(n,p, A, a, B) if and only if it can be expressed as:
k(s) = yps? + Z Ynkn(S), (5.2)

n=p+1
where (yp >0, y,=20,n=2p+ 1) and ¥y + Xp=ps1¥n = 1.

Proof. Suppose that k(s) is represented in the form (5.2). Then

~ N p’(@+1)— (B+ap)(L+ap—2)
k(S)—Vpsp'i'n;lyn [Sp_nz(a+1)—(ﬁ+ap)(1 +/1n—l)s
pPla+1)—B+ap)A+p—2)
@+ D-@+ap)( Y an—p

=P —

n=p+

Hence

S n2(a+ 1) — (B +ap)(1+n—2)
Z p2(a+ 1) —(B+ap)(1+ip—2)

n=p+1

p*(a+1)— (B +ap)(1+Ap — Dy,
n(a+1)— B +ap)(1+An— 1)

Earthline J. Math. Sci. Vol. 10 No. 2 (2022), 271-288
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= Z Yhn=1-pyp <1

n=p+1
Then k(s) € NA(n,p, A4, B).
Conversely, suppose that k(s) € NA(n,p, 4, a, ). We may set

_nfla+ D) - (B+ap)(1+in—21)
e+ D-B+rap)A+ip—A) "

where d,, is given by (2.5). Then

o0

k(s) =sP — Z d,s"

n=p+1

pPla+ D —(B+ap)A+ip—21)

=Sp — Yns
n2(a+1)— (B +ap)(1+in—1)
n=p+1
=sP — Z [Sp - kn(s)]yn ={1- Z Yn sP + Z ynkn(s)
n=p+1 n=p+1 n=p+1

=Vpsp+ z Ynkn(s)-

n=p+1

This completes the proof of Theorem 5.1.

6. Integral Means Inequalities

By using Theorem 2.1 and Lemma 1.3, we prove the following theorems.

Theorem 6.1. Let > 0. If k(s) E NAM,p, A a,B) and suppose that k¢(s) is
defined by

p’la+)—(B+ap)(1+ip—2) ,

k() =~ T D Grapatac—n "

(t=p+1;peN).

If there is a holomorphic function w(s) defined by

tp @+ D) = (B+ap)(L+at—2) .
W&) = T DG A)n; o™

http:/fwww.earthlinepublishers.com
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Then, for s = re'® and (0 <r < 1),

f lk(s)|*de sf Ik, (s)|dB,  (u> 0). 6.1)
0 0

Proof. We must show that

21 0 M 21
e p*(@+1)— (B +ap)A+Ap—2)
f 1= Z dns™" desﬂl CatD-GrapAra=n"

dH.

0 n=p+1

By using Lemma 1.3, it suffices to show that

. pra+D)—B+ap)A+p—-2) ,
1= Z s < G DGt ap) A+ A =D

n=p+1
Put
— a+1)— (B +ap)(1+ip—2
1 Z dns"_p=1— P*( ) — (B + ap)( p— )( ())tp_
t?2(a+1)—B+ap)(1 + At —
n=p+1
We find that

tp _ 2@+ D) —(B+ap)A+A—2D) - o
(w(s) Pa+D-F+ap)A+ip—1) Z dns™7,

that yield easily w(0) = 0.

In addition by using (2.1), we get

@+ -@rap@+ac-2) .
WO = e D= B+ e Hp—z)n;d“ '
1ol i n?(@+1)— (B +ap)(1 + An — )
T4, PatD-@rad+ -
<|s| <1

Next, the proof for the first derivative.

Earthline J. Math. Sci. Vol. 10 No. 2 (2022), 271-288
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Theorem 6.2. Let 4 > 0. If k(s) € NAn,p, A, a,B) and

pPla+1)—(B+ap)(1+ip—12) ,

ke(s) = sP — 2@+ D—B+ap)(L+t—21) "

(t=p+1;peEN).

Then, for s = re'® and (0<r<1),

21 2T
f|k'(s)|ﬂde sf ke (s)|"do,  (u>0). (6.2)
0 0

Proof. It is sufficient to show that

o0

- Z ™ g snp < 1_t(pZ(a+1)—(ﬂ+ap)(1+;1p—;1))st_p_
p(t2(a+1) — (B+ap)(1+ At — 1))

n=p+1
This follows because
p(t2@+ 1) —(B+ap)(1+1t—2)  n

t-p — D o
w(s)l t(p2(a+1) — (B +ap)(1+p—2)) S5 P o

<ol i n2(a+1)—(ﬁ+ap)(1+/1n—/1)d
<|s
@+ D) —-B+ap)A+ap—-) "
n=p+1
<|s| <1
Theorem 6.3. Let h(s)=sP =¥l 1cps" (€N, =20, n=2p+;pEN=
{1,2,..}) and k(s) € NA(n,p, A, a, B) be of the form (1.2) and let for some t € N,
Q¢ . Qn
— = min —,
c; n2p+lcy,
where
_nfla+ 1) - (B +ap)(1+In—2)
P2+ D) - Brap)A+ap -2
Also, let for such t € N, the functions k; and h; be defined by

p*(a+1)—(B+ap)(1+p —D
t2(a+1D)—B+ap) @ +Aat—-21) "’

Qn

ke(s) = 5P -

h.(s) = sP — ¢,st. (6.3)
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New Class of Multivalent Functions with Negative Coefficients 285

If there is a holomorphic function w(s) defined by

tp _ tHa+ D) —(B+ap)A+Ait—2) N
(w(s) T (Pra+ D - +ap) A +p - D)c Z e

then, for i > 0,s =re'? and (0 <r < 1),

f |G % W)(5)|HdB < f |Gke * h)()1#d6, (> 0).
0 0

Proof. Convolution of k(s) and h(s) is defined by
(k *h)(s) =sP — Z dpcps™

n=p+1

Similarly, from (6.3), we get

(P*a+D)—B+ap)(1+p— l))ctst

(ke * he)(s) = sP — t2(a+1)—(B+ap)(1 + At — 1)

To prove the theorem, we must show that for u > 0,s = ret® and (0<r<1),

fl—chns”p do

n=p+1

u
daeé.

<ﬂ1 (PPt D-B+anU+ap - .,
= - S
t2(a+1D)— B +ap) A+t —2)

Therefore, using Lemma 1.3, it is sufficient to show that

a+1l)—(B+ap)(1+Ap—2))c
L Z ic n_p<1_(p 2( )= (B+ap)(1+2p— 1)) e (o)
t?2la+1D)—B+ap)@+At—1)
If the subordination (6.4) is correct, then there is a holomorphic function w(s) with
[w(s)|] <1 and w(0) = 0 such that

Oy (PPat D)= (Bap)a+Ap- A))Ct -
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According to the assumption of the theorem, there is a holomorphic function w(s) given
by

t2(a+ 1) —(B+ap)(1+ At — 1)

t-p _
(W(S)) - (pZ(a +1D)-B+ap)(1+Aip — A))Ct

n—
dpcys™P,
n=p+1

which readily yield w(0) = 0. So for such function w(s), using the assumption in the
coefficient inequality for the class NA(n, p, A, a, B), we have

t2(@+1) — (B + ap)(1 + At — 1) i P

t-p —

sl (P2(@+ 1) = (B +ap)(A+2p - D)c, S
s t2(@+1)— (B +ap)(1 + At — A) i e
T @2a+ D) - B+ ap)+Ap — D)e, WS "”
<|s| <1

Therefore, the subordination (6.4) holds true.

7. Integral Operators

In this segment, we consider integral transforms of functions in the class
NAM,p, A a,pB).

Theorem 7.1. Let k(s) € NAn,p, A, a,B) be defined by (1.2) and ¢ be any real

number such that c > —p. Then the integral operator

G(s) = Cg#f tc 1 k(t)dt(c > —p), (7.1)
0

also in the class NA(n,p, A, a, B).
Proof. By virtue of (7.1) it follows from (1.2) that

s )
G(s)=C:CpftC‘1 tP — Z d,t" |dt
0 n=p+1
S [ee]
_ C:'Cpf gpHe—1 _ Z d, gnte=1 | gt
0 n=p+1
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[ee] + [ee]
cTp
=1 3 (Rt == 3 e
c+n
n=p+1 n=p+1

where h, = (H—p) dy.

But

[n?(a+1)— (B +ap)(1+ An— D]h,
n=p+1
— Z [n2(a + 1) — (B + ap)(1 + An — )] (%) d,.
n=p+1

Since (:—Z) < 1 and by (2.1), the last expression is less than or equal to p?(a + 1) —
(B + ap)(1 + Ap — A). This ends the proof.
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