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Abstract

The aim of this paper is to use a correspondent theorem to characterize containment
of a degenerate 2-factor injective subdirect products. Namely, let Ω,Λ be degenerate
2-factor injective subdirect products of M1 ×M2 ×M3, we provide necessary and
sufficient conditions for Ω ≤ Λ. Based on a decomposition of the inclusion order
on the subgroup lattice of a subdirect product as a relation product of three smaller
partial orders, we induce a matrix product of three incidence matrices.

1 Introduction

The importance of Goursat lemma is self-evident. It is widely used in many fields, such
as geometries, arithmetics, categories and many more. It is a very good mathematical
tool to describe subobjects of direct product of two objects. It appears that there is
no straightforward generalization to three factors. Indeed, Sen et al. [18] investigate
a generalization to an arbitrary finite number of factors by devising a non-symmetric
version of Goursat’s lemma for two factors that can then be applied recursively. There
are a number of interesting possibilities for generalizing this useful lemma. Anderson
and Camillo [4] describe how Goursat’s lemma can be stated in the context of rings,
ideals, subrings and in modules. The most general category in which one can hope to
have a Goursat lemma is an exact Goursat category, and for a proof of this fact confer
([7], Proposition 4.2).

Neuen and Schweitzer [8] investigate the structure of subdirect products of 3-factor
direct products. The central observation in this structure theorem is that the dependencies
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among the group elements in the subdirect product that involve all three factors are of
Abelian nature. They call a subdirect product ofM1×M2×M3 2-factor injective if each
of the three projections onto two factors is injective.

This dissertation provides a containment relation theorem between subgroups of a
degenerate 2-factor injective subdirect products, as those who gives by Lewis [16, 6] in
the case of 2-factor. In other words, let Ω,Λ be degenerate 2-factor injective subdirect
products of M1 ×M2 ×M3, we provide necessary and sufficient conditions for Ω ≤ Λ.

We show that this induces a decomposition of the partial order 6 as a product of three
partial orders, which we denote by 6t,6t/b,6b for reasons that will become clear in
Section 2. Thus

6=6t ◦ 6t/b ◦ 6b .

2 Preliminaries

Let M = M1 × M2 × · · · × Ms be a direct product of groups. We define for
i ∈ {1, · · · , s} the map πi as the projection to the i-th coordinate and we define the
homomorphism ψi : Λ→M1×· · ·×Mi−1×Mi+1×· · ·×Ms : (m1,m2, · · · ,ms) 7→
(m1, ...,mi−1,mi+1, ...,ms). A group Λ ≤ M of the direct product is said to be a
subdirect product if πi(Λ) = Mi for all 1 ≤ i ≤ s. Goursat lemma is a classic statement
concerned with the structure of subdirect products of direct products of two factors. We
now focus on 3-factor subdirect products. We say Λ ≤ M1 × M2 × M3 is 2-factor
surjective if ψi is surjective for all 1 ≤ i ≤ 3. Note that the analogous definition of
1-factor surjectivity (i.e., all ψi are surjective) means then the same as being subdirect.
Similarly, we say Λ is 2-factor injective if ψi is injective for all 1 ≤ i ≤ 3. Note that this
assumption is equivalent to saying that two components of an element of Λ determine
the third. Analogously 1-factor injective then means that one component determines
the other two. We argue that we can focus our attention on 2-factor injective degenerate
subdirect products. In what follows assume that Λ is a 2-factor injective subdirect product
of M1 ×M2 ×M3. Let Li = ker(πi) ∩ Λ = {(m1,m2,m3) ∈ Λ| mi = 1}. Define
Zi := πi(Lk)∩πi(Lj), Di = πi(Li+2), Ei = πi(Li+1) where j and k are chosen so that
{i, j, k} = {1, 2, 3}.

http://www.earthlinepublishers.com



Subgroups Inclusions in 3-Factors Direct Product 197

Here, we write A
β∼= B to denote that A and B are isomorphic via an isomorphism β,

and (A,B) 6 (C,D) if and only if A 6 C, and B 6 D. Let (X,6) be a finite partially
ordered set (poset) with incidence matrix

A(6) = (axy)x,y∈X , where axy =

{
1 if y 6 x
0, else.

Lemma 2.1. Let i, j, k be integers such that {i, j, k} = {1, 2, 3}. Then there is a
canonical isomorphism β := βij,k from πj(Li) to πk(Li) that maps Zj to Zk.

Proof. Suppose without loss of generality that i = 1, j = 2 and k = 3. Define a map
β : π2(L1) → π3(L1) such that (1,m2, β(m2)

−1) ∈ Λ for all m2 ∈ π2(L1). Such a
map exists and is well defined since Λ is a 2-factor injective subdirect product. Assume
m2 ∈ Z2 then (1,m2, β(m2)

−1) ∈ Λ and there is a m1 such that (m1,m2, 1) ∈ Λ. Then
(1,m2, β(m2)

−1)(m1,m2, 1)−1 = (m−11 , 1, β(m2)
−1) so β(m2) ∈ Z3. It follows by

symmetry that all Zi are isomorphic and that β �Z2 is an isomorphism from Z2 to Z3. �

Definition 2.2. Let Λ be a subdirect product of M1×M2×M3. We say Λ is degenerate
if πi(ker(πi+1)) ∩ πi(ker(πi+2)) = πi(ker(ψi))(i.e. Zi = 1) for some, and thus every,
i ∈ {1, 2, 3}.

Neuen and Schweitzer [8] investigate the possibility of having a correspondence
theorem in the style of Goursat theorem [18] for 3-factors.

Theorem 2.3. There is a natural one-to-one correspondence between degenerate
2-factor injective subdirect products of M1 ×M2 ×M3 and tuples of the form κ(Λ) =

(D1, D2,D3, E1, E2, E3, β1, β2, β3) for which for all i ∈ {1, 2, 3} (indices taken modulo
3) we have

1. Di, Ei �Mi ,

2. Di ∩ Ei = 1 ,

3. Mi/Ei
βi∼= Mi+1/Di+1 ,

4. [Di, Ei] = 1 ,
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5. βi(DiEi) = Ei+1Di+1 ,

6. β3(β2(β1(m1D1E1))) = m1D1E1 for all m1 ∈M1 ,

7. Λ = {(m1,m2,m3) ∈M1 ×M2 ×M3 | βi(miEi) = mi+1Di+1}.

Proof. For i ∈ {1, 2, 3} define a homomorphism βi : Mi/Ei →Mi+1/Di+1 by setting
βi(miEi) = mi+1Di+1 if (m1,m2,m3) ∈ Λ for some mi ∈ Mi. We first have
to show that βi is well-defined. Without loss of generality consider i = 1 and let
(m1,m2,m3),(m′1, m

′
2,m

′
3) ∈ Λ with m1E1 = m′1E1. Then there is a (e, 1, l2) ∈ Λ

with m′1e = m1. We obtain (m′1,m
′
2,m

′
3)(e, 1, l2)(m1,m2,m3)

−1 = (1,m′2m
−1
2 ,m′′3)

for some m′′3 ∈ M3 and hence, m2D2 = m′2D2 .So βi is well-defined. Since Λ is a
subdirect product, βi is a surjective homomorphism. Suppose β1(m1E1) = D2. Then
(m1e1, d2,m3) ∈ Λ for some e1 ∈ E1, d2 ∈ D2 and m3 ∈ M3. Also there is l3 ∈ M3

with (1, d2, l3) ∈ Λ and hence, (m1e1, 1,m3l
−1
3 ) ∈ Λ implying that m1 ∈ E1. So

Mi/Ei
βi∼= Mi+1/Di+1.

For every d1 ∈ D1 there is a e2 ∈ E2 with (d1, e2, 1) ∈ Λ and β1(d1E1) = e2D2 ∈
E2D2. By symmetry it follows that βi(DiEi) = Ei+1Di+1 for all i ∈ {1, 2, 3}. Now
let Λ′ be the group defined in item (7). Clearly Λ ≤ Λ′ by the definition of βi for i ∈
{1, 2, 3}. So let (m′1,m

′
2,m

′
3) ∈ Λ′. Since Λ is subdirect there is a (m′1,m2,m3) ∈ Λ

withm2D2 = m′2E2 . So we can assume thatm2 = m′2. But then, by 2-factor injectivity
of Λ, we get that m3 = m′3. Finally for (m1,m2,m3) ∈ Λ we have that βi(miDiEi) =

βi(miDi)βi(DiEi) = mi+1Ei+1Di+1 = mi+1Di+1Ei+1. So β2(β1(m1D1E1)) =

β−13 m1D1E1 for all m1 ∈M1.
The converse is straightforward and will be omitted. �

Proposition 2.4. There is a natural one-to-one correspondence between degenerate
subdirect products of M1 × M2 × M3 and tuples of the form κ(Λ) =

(P1, P2, P3, D1, D2, D3, E1, E2, E3, β1, β2, β3) for which for all i ∈ {1, 2, 3} (indices
taken modulo 3) we have

1. Pi �Mi ,

2. Di, Ei �Mi/Pi ,
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3. Di ∩ Ei = 1 ,

4. (Mi/Pi)/Ei
βi∼= (Mi+1/Pi+1)/Di+1 ,

5. [Di, Ei] = 1 ,

6. βi(DiEi) = Ei+1Di+1 ,

7. β2(β1(m1D1E1)) = β−13 (m1D1E1) for all m1 ∈M1/P1.

Proof. There is a natural one-to-one correspondence between subdirect products of Λ′ ≤
M1 ×M2 ×M3 and the tuples (P1, P2, P3,Λ), where Pi = πi(ker(ψi) �Mi for every
i ∈ {1, 2, 3} and Λ is a 2-factor injective subdirect product ofM1/P1×M2/P2×M3/P3.
And we apply Theorem 2.3 then we have a correspondence as desired. �

Theorem 2.5. There is a natural one-to-one correspondence between subdirect products
Λ of M1×M2×M3 which are 2-factor injective satisfying Λ = 〈L1, L2, L3〉 and tuples
of the form κ(Λ) = (D1, D2, D3, E1, E2, E3, β1, β2, β3) for which for all i ∈ {1, 2, 3}
(indices taken modulo 3) we have

1. Di, Ei �Mi ,

2. EiDi = Mi,

3. Ei
βi∼= Di+1,

4. Ei/Zi
βi∼= Di+1/Zi+1 ,

5. [Di, Ei] = 1 ,

6. βi(Di ∩ Ei) = Di+1 ∩ Ei+1 ,

7. β3 |Z3 ◦β2 |Z2 ◦β1 |Z1= id.

Proof. Define Λ to be the set of triples (m1,m2,m3) ∈ M1 × M2 × M3 that
satisfy mi = die

−1
i for ei ∈ Ei, di ∈ Di, di+1Zi+1 = βi(eiZi), and

d3β2(e2)
−1.β−13 (d1)e

−1
3 .β2(d2β1(e

−1
1 )) = 1. �
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3 Correspondence Theorems

We now describe and analyze the partial order of subgroups of M1 ×M2 ×M3 in terms
of pairs of morphisms.

Let Λ,Ω ≤ M1 × M2 × M3 be degenerate 2-factor injective subdirect products
and the tuples of the form κ(Λ) = (D1, D2, D3, E1, E2, E3, β1, β2, β3) and κ(Ω) =

(B1, B2, B3, A1, A2, A3, β
′
1, β
′
2, β
′
3) with the assumptions of Proposition 2.3. Given

morphisms

Mi/Ei
αi∼= Ui

θ−1
i∼= Mi+1/Di+1,

Mi/Ai
α′i∼= U ′i

θ′−1
i∼= Mi+1/Bi+1.

Then βi = θ−1i αi = Π(θi, αi) : Mi/Ei −→ Mi+1/Di+1 and β′i = θ′−1i α′i = Π(θ′i, α
′
i)

whose graphs are subgroups Ω,Λ 6M1 ×M2 ×M3.

Proposition 3.1. Let αi : Mi/Ei
∼−→ Ui and θi : Mi+1/Di+1

∼−→ Ui be isomorphisms
for i ∈ {1, 2, 3} (indices taken modulo 3), let βi = Π(θi, αi), β

′
i = Π(θ′i, α

′
i) with

corresponding subgroups Λ,Ω of M1 ×M2 ×M3. Then Ω 6 Λ if and only if

(a) (Ei, Di) 6 (Ai, Bi);

(b) λi = ωi for λi = αiϕiα
′−1
i , ωi = θiϕ

′−1
i θ′−1i , and ϕi, ϕ′i are the homomorphisms

defined by ϕi(miAi) = miEi, ϕ′i(mi+1Bi+1) = mi+1Di+1;

(c) βiϕi = ϕ′iβ
′
i.

Mi/EiOO
ϕi

αi // UiOO

ωi

OO

λi

Mi+1/Di+1
θioo

OO

ϕ′i

Mi/Ai
α′i// U ′i Mi+1/Bi+1

θ′ioo

(1)

Proof. Write

Ω = {(m1,m2,m3) ∈M1 ×M2 ×M3|α′i(miAi) = θ′i(mi+1Bi+1)}

and
Λ = {(m1,m2,m3) ∈M1 ×M2 ×M3|αi(miEi) = θi(mi+1Di+1)}.
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Then Ω 6 Λ if and only if (Ei, Di) 6 (Ai, Bi), i = 1, 2, 3, and, for mi ∈ Mi;
(m1,m2,m3) ∈ Ω ≤ λ we have (miEi)

αi = (mi+1Di+1)
θi , but if (mi) ∈ Ω, then

(miEi)
αi = αiϕi((miAi)

= λiα
′
i((miAi)

So,

(miEi)
αi = θi((mi+1Di+1)

= θiϕ
′
i((mi+1Bi+1)

= ωiθ
′
i((mi+1Bi+1)

if and only if λiα′i(miAi) = wiθ
′
i(mi+1Bi+1) and (m1,m2,m3) ∈ Ω. Then λi = ωi.

�

Let Λ,Ω ≤ M1 × M2 × M3 be degenerate subdirect products and the tuples
of the form κ(Λ) = (P1, P2, P3, D1, D2, D3, E1, E2, E3, β1, β2, β3) and κ(Ω) =

(Q1, Q2, Q3, B1, B2, B3, A1, A2, A3, β
′
1, β
′
2, β
′
3) with the assumptions of Proposition

2.4. Given morphisms

(Mi/Pi)/Ei
αi∼= Ui

θ−1
i∼= (Mi+1/Pi+1)/Di+1,

(Mi/Qi)/Ai
α′i∼= U ′i

θ′−1
i∼= (Mi+1/Qi+1)/Bi+1.

We are now in a position to state the following corollary, in analogy to Proposition 3.1 .

Corollary 3.2. Let αi : (Mi/Pi)/Ei
∼−→ Ui and θi : (Mi+1/Pi+1)/Di+1

∼−→ Ui

be isomorphisms for i ∈ {1, 2, 3} (indices taken modulo 3), let βi = Π(θi, αi), β
′
i =

Π(θ′i, α
′
i) with corresponding subgroups Λ,Ω of M1 ×M2 ×M3. Then Ω 6 Λ if and

only if

(a) (Mi/Pi, Ei, Di) 6 (Mi/Qi, Ai, Bi);

(b) λi = ωi for λi = αiϕiα
′−1
i , ωi = θiϕ

′−1
i θ′−1i ;
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(c) βiϕi = ϕ′iβ
′
i.

(Mi/Pi)/EiOO
ϕi

αi // UiOO

ωi

OO

λi

(Mi+1/Pi+1)/Di+1
θioo

OO

ϕ′i

(Mi/Qi)/Ai
α′i // U ′i (Mi+1/Qi+1)/Bi+1

θ′ioo

(2)

Definition 3.3. Let Λ = (βi : (Mi/Pi)/Ei
∼−→ (Mi+1/Pi+1)/Di+1) and Ω = (β′i :

(Mi/Qi)/Ai
∼−→ (Mi+1/Qi+1)/Bi+1) be degenerate subdirect products of M1×M2×

M3 and suppose that Ω 6 Λ. We write

(i) Ω 6t Λ, if Mi/Pi = Mi/Qi, i = 1, 2, 3, i.e., if both Λ,Ω have same top groups,

(ii) Ω 6b Λ, if (Ei, Di) = (Ai, Bi), i = 1, 2, 3, i.e., if both Λ,Ω have same bottom
groups,

(iii) Ω 6t/b Λ, if the canonical homomorphisms ϕi, ϕ′i (see (2)) are isomorphisms.

All three relations are obviously partial orders. Moreover, they decompose the partial
order 6 on the subgroups of M1 ×M2 ×M3.

Theorem 3.4. Let Λ = (βi : (Mi/Pi)/Ei
∼−→ (Mi+1/Pi+1)/Di+1) and Ω = (β′i :

(Mi/Qi)/Ai
∼−→ (Mi+1/Qi+1)/Bi+1) degenerate subdirect products ofM1×M2×M3

be such that Ω 6 Λ . Define a map

β̂′i : (Mi/Qi)/((Mi/Qi) ∩ Ei) −→ (Mi+1/Qi+1)/((Mi+1/Qi+1) ∩Di+1)

gi((Mi/Qi) ∩ Ei) 7−→ gi+1((Mi+1/Qi+1) ∩Di+1),

and a map

β̃i : (Mi/Qi)Ei/Ei −→ (Mi+1/Qi+1)Di+1/Di+1

giEi 7−→ gi+1Di+1.

Then

(i) β̂′i and β̃i are isomorphisms with corresponding graphs Ω
β̂′

and Λ
β̃
6M1×M2×

M3.
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(ii) Ω
β̂′

and Λ
β̃

are the unique degenerate subdirect products of M1 ×M2 ×M3 with

Ω 6t Ω
β̂′
6t/b Λ

β̃
6b Λ.

Proof. Define by ϕ′i, ϕi as (2). According to the homomorphism theorem ϕi can be
decomposed into a surjective, bijective and injective part, that is ϕi = ϕi,3ϕi,2ϕi,1, we
have a commutative diagram:

(Mi/Qi)/Ai
ϕi //

ϕi,1

��

(Mi/Pi)/Ei

((Mi/Qi)/Ai)/ kerϕi ϕi,2

// Imϕi

ϕi,3

OO

and ϕ′i = ϕ′i,3ϕ
′
i,2ϕ

′
i,1. By Corollary 4.2, βiϕi = ϕ′iβ

′
i. It follows that (Imϕi)

βi =

Imϕ′i and (kerϕi)
β′i = kerϕ′i. Thus βi restricts to an isomorphism β̃i from

Imϕi to Imϕ′i and β′i induces an isomorphism β̂′i from ((Mi/Qi)/Ai)/ kerϕi to
((Mi+1/Qi+1)/Bi+1)/ kerϕ′i and the following diagram commutes:

Imϕi
β̃i //

ϕi,3 ��

Imϕ′i

ϕ′i,3
��

(Mi/Qi)/Ai

kerϕi

ϕi,2 44
β̂′i //

OO

ϕi,1

(Mi+1/Qi+1)/Bi+1

kerϕ′i

ϕ′i,2 33

OO

βi
(Mi/Pi)
Ei ϕ′i,1

// (Mi+1/Pi+1)
Di+1

(Mi/Qi)
Ai β′i

//
ϕi

55

(Mi+1/Qi+1)
Bi+1

ϕ′i

33

Imϕi = (Mi/Qi)Ei/Ei ; Imϕ′i = (Mi+1/Qi+1)Di+1/Di+1.

And

(Mi/Qi)/Ai
kerϕi

∼= (Mi/Qi)/((Mi/Qi) ∩ Ei),

(Mi+1/Qi+1)/Bi+1

kerϕ′i

∼= (Mi+1/Qi+1)/((Mi+1/Qi+1) ∩Di+1).

�
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We denote by SM1×M2×M3 the set of all finite degenerate subdirect products ofM1×
M2 ×M3.

Corollary 3.5. The partial order 6 on SM1×M2×M3 is a product of three relations:

6=6t ◦ 6t/b ◦ 6b .

Moreover, if A(R) denotes the incidence matrix of the relation R, the stronger property

A(6) = A(6t) ·A(6t/b) ·A(6b)

also holds.

Proof. This follows from the uniqueness of the intermediate subgroups in Theorem 3.4.
�

4 Subgroups of a Direct Product

The goal of this section is to give another type of characterization of containment of
subgroups in a product of groups. This is accomplished in Theorem 4.1.

Theorem 4.1. Let Λ,Ω ≤ M1 ×M2 ×M3 be 2-factor injective subdirect products and
the tuples of the form κ(Λ) = (D1, D2, D3, E1, E2, E3, β1, β2, β3) with Zi = Di ∩ Ei,
and κ(Ω) = (A1, A2, A3, B1, B2, B3, γ1, γ2, γ3), Yi = Ai ∩ Bi with the assumptions of
Theorem 2.5. Then Ω ≤ Λ if and only if

(1) Ai ≤ Di, Bi ≤ Ei,

(2)
(
BiZi
Zi

)βi
= Ai+1Zi+1

Zi+1
,

(3)
(Bi ∩ Zi

Yi

)γi
=
Ai+1 ∩ Zi+1

Yi+1
,

(4) (Bi)
βi = Ai+1,

(5) θi ◦ β̃i = γ̃i ◦ αi where β̃i and γ̃i are restrictions of βi and γi respectively.
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An equivalent statement for (5) is that the following diagram is a commutative diagram.

BiZi
Zi

β̃i //

αi

��

Ai+1Zi+1

Zi+1

θi
��

Bi
Bi∩Zi

γ̃i // Ai+1

Ai+1∩Zi+1

Proof. (⇒) Assume that Ω ≤ Λ. It is clearly that Ai ≤ Di, Bi ≤ Ei, (BiZi
Zi

)βi =
Ai+1Zi+1

Zi+1
, (Bi∩Zi

Yi
)γi = Ai+1∩Zi+1

Yi+1
. The diagram below is a commutative diagram.

(Bi
Yi

)/(Bi∩Zi
Yi

)

εi

��

γ̂i // (Ai+1

Yi+1
)/(Ai+1∩Zi+1

Yi+1
)

ρi

��
Bi

Bi∩Zi

γ̃i // Ai+1

Ai+1∩Zi+1

Where εi and ρi are isomorphisms and γ̃i = ρiγ̂iε
−1
i . Therefore, it suffices to

demonstrate that the diagram commutes. More explicitly that θi ◦ β̃i = γ̃i ◦ αi. Let
(m1,m2,m3) ∈ Ω such that mi = aib

−1
i for bi ∈ Bi, ai ∈ Ai, ai+1Yi+1 = γi(biYi).

Since Ω ≤ Λ we know ai+1Zi+1 = βi(biZi) and β̃i is a restriction of β. Then(
(biZi)

β̃i
)θi = (ai+1Zi+1)

θi = ai+1(Ai+1 ∩ Zi+1). On the other side, we obtain(
(biZi)

αi
)γ̃i =

(
bi(Bi ∩ Zi)

)γ̃i = ai+1(Ai+1 ∩ Zi+1).

Therefore, θi ◦ β̃i = γ̃i ◦ αi, and the diagram commutes.
(⇐) Conversely, suppose the containments hold and the diagram commutes. Our

goal is to show Ω ≤ Λ. Let (m1,m2,m3) ∈ Ω. Then γi(biYi) = ai+1Yi+1. We have

(biZi)
β̃i = (biZi)

αiγ̃iθ
−1
i

= (bi(Bi ∩ Zi))γ̃iθ
−1
i

= (ai+1(Ai+1 ∩ Zi+1))
θ−1
i

= ai+1Zi+1.

And βi |Bi= γi. We conclude that (m1,m2,m3) ∈ Λ, and Ω ≤ Λ. �
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Corollary 4.2. Let Λ,Ω ≤ M1 ×M2 ×M3 be degenerate subdirect products and the
tuples of the form κ(Λ) = (P1, P2, P3, D1, D2, D3, E1, E2, E3, β1, β2, β3) and κ(Ω) =

(Q1, Q2, Q3, B1, B2, B3, A1, A2, A3, γ1, γ2, γ3) with the assumptions of Proposition 2.4.
Then Ω ≤ Λ if and only if

(a) Ai ≤ Ei, Bi ≤ Di,Mi/Qi ≤Mi/Pi ,

(b)
( (Mi/Qi)Ei

Ei

)βi = (Mi+1/Qi+1)Di+1

Di+1
,

(c)
((Mi/Qi) ∩ Ei

Ai

)γi
=

(Mi+1/Qi+1) ∩Di+1

Bi+1
,

(d) the following diagram is a commutative diagram

(Mi/Qi)Ei

Ei

β̃i //

αi

��

(Mi+1/Qi+1)Di+1

Di+1

θi
��

(Mi/Qi)
(Mi/Qi)∩Ei

γ̃i // (Mi+1/Qi+1)
(Mi+1/Qi+1)∩Di+1

Proof. The proof of this corollary come immediately from Theorem 4.1 and Proposition
2.4. �

5 Application

The next application, that of determining the cyclic subgroups of M1 ×M2 ×M3 will
involve more substantial use of Theorem 2.3. Cyclic subgroups are not closed under
products.We shall henceforth use additive notation since M1,M2,M3 will be abelian.

Theorem 5.1. Let Λ be a degenerate 2-factor injective subdirect products ofM1×M2×
M3 with the assumptions of Theorem 2.3, and tuples of the form

κ(Λ) = (D1, D2, D3, E1, E2, E3, β1, β2, β3).

(a) The subgroup Λ is finite cyclic if and only if M1,M2,M3 are finite cyclic and each
of the pairs of integers (|D2|, |E1|), (|D1|, |E3|), (|D3|, |E2|) is coprime. In this
case one also has

|Λ| = lcm(|M1|, |M2|, |M3|).
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(b) The subgroup Λ is infinite cyclic if and only if one of the following three cases (up
to obvious permutation of indices) occur:

(i) M1 ≈ Z, M2 and M3 are finite cyclic, D2 = E3 = {0}, and (|D3|, |E2|) are
coprime.

(ii) M1 ≈M2 ≈ Z, M3 finite cyclic, and D2 = E1 = E3 = D3 = {0}.

(iii) Mi ≈ Z and Di = Ei = {0} for i = 1, 2, 3.

Proof. This is an immediate consequence of Theorem 4.5 in [18]. �
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