Subgroups Inclusions in 3-Factors Direct Product

Brice Réné Amougou Mbarga
Laboratory of Algebra, Geometry and Application, University of Yaoundé I, P.O.Box: 812, Yaoundé, Cameroon; e-mail: renebrice3@gmail.com

Abstract

The aim of this paper is to use a correspondent theorem to characterize containment of a degenerate 2 -factor injective subdirect products. Namely, let Ω, Λ be degenerate 2-factor injective subdirect products of $M_{1} \times M_{2} \times M_{3}$, we provide necessary and sufficient conditions for $\Omega \leq \Lambda$. Based on a decomposition of the inclusion order on the subgroup lattice of a subdirect product as a relation product of three smaller partial orders, we induce a matrix product of three incidence matrices.

1 Introduction

The importance of Goursat lemma is self-evident. It is widely used in many fields, such as geometries, arithmetics, categories and many more. It is a very good mathematical tool to describe subobjects of direct product of two objects. It appears that there is no straightforward generalization to three factors. Indeed, Sen et al. [18] investigate a generalization to an arbitrary finite number of factors by devising a non-symmetric version of Goursat's lemma for two factors that can then be applied recursively. There are a number of interesting possibilities for generalizing this useful lemma. Anderson and Camillo [4] describe how Goursat's lemma can be stated in the context of rings, ideals, subrings and in modules. The most general category in which one can hope to have a Goursat lemma is an exact Goursat category, and for a proof of this fact confer ([7], Proposition 4.2).

Neuen and Schweitzer [8] investigate the structure of subdirect products of 3-factor direct products. The central observation in this structure theorem is that the dependencies

[^0]among the group elements in the subdirect product that involve all three factors are of Abelian nature. They call a subdirect product of $M_{1} \times M_{2} \times M_{3} 2$-factor injective if each of the three projections onto two factors is injective.

This dissertation provides a containment relation theorem between subgroups of a degenerate 2 -factor injective subdirect products, as those who gives by Lewis [16, 6] in the case of 2 -factor. In other words, let Ω, Λ be degenerate 2 -factor injective subdirect products of $M_{1} \times M_{2} \times M_{3}$, we provide necessary and sufficient conditions for $\Omega \leq \Lambda$. We show that this induces a decomposition of the partial order \leqslant as a product of three partial orders, which we denote by $\leqslant_{t}, \leqslant_{t / b}, \leqslant_{b}$ for reasons that will become clear in Section 2. Thus

$$
\leqslant=\leqslant_{t} \circ \leqslant_{t / b} \circ \leqslant_{b} .
$$

2 Preliminaries

Let $M=M_{1} \times M_{2} \times \cdots \times M_{s}$ be a direct product of groups. We define for $i \in\{1, \cdots, s\}$ the map π_{i} as the projection to the i-th coordinate and we define the homomorphism $\psi_{i}: \Lambda \rightarrow M_{1} \times \cdots \times M_{i-1} \times M_{i+1} \times \cdots \times M_{s}:\left(m_{1}, m_{2}, \cdots, m_{s}\right) \mapsto$ $\left(m_{1}, \ldots, m_{i-1}, m_{i+1}, \ldots, m_{s}\right)$. A group $\Lambda \leq M$ of the direct product is said to be a subdirect product if $\pi_{i}(\Lambda)=M_{i}$ for all $1 \leq i \leq s$. Goursat lemma is a classic statement concerned with the structure of subdirect products of direct products of two factors. We now focus on 3-factor subdirect products. We say $\Lambda \leq M_{1} \times M_{2} \times M_{3}$ is 2-factor surjective if ψ_{i} is surjective for all $1 \leq i \leq 3$. Note that the analogous definition of 1 -factor surjectivity (i.e., all ψ_{i} are surjective) means then the same as being subdirect. Similarly, we say Λ is 2 -factor injective if ψ_{i} is injective for all $1 \leq i \leq 3$. Note that this assumption is equivalent to saying that two components of an element of Λ determine the third. Analogously 1 -factor injective then means that one component determines the other two. We argue that we can focus our attention on 2-factor injective degenerate subdirect products. In what follows assume that Λ is a 2 -factor injective subdirect product of $M_{1} \times M_{2} \times M_{3}$. Let $L_{i}=\operatorname{ker}\left(\pi_{i}\right) \cap \Lambda=\left\{\left(m_{1}, m_{2}, m_{3}\right) \in \Lambda \mid m_{i}=1\right\}$. Define $Z_{i}:=\pi_{i}\left(L_{k}\right) \cap \pi_{i}\left(L_{j}\right), D_{i}=\pi_{i}\left(L_{i+2}\right), E_{i}=\pi_{i}\left(L_{i+1}\right)$ where j and k are chosen so that $\{i, j, k\}=\{1,2,3\}$.

Here, we write $A \stackrel{\beta}{\cong} B$ to denote that A and B are isomorphic via an isomorphism β, and $(A, B) \leqslant(C, D)$ if and only if $A \leqslant C$, and $B \leqslant D$. Let (X, \leqslant) be a finite partially ordered set (poset) with incidence matrix

$$
A(\leqslant)=\left(a_{x y}\right)_{x, y \in X}, \quad \text { where } \quad a_{x y}= \begin{cases}1 & \text { if } y \leqslant x \\ 0, & \text { else }\end{cases}
$$

Lemma 2.1. Let i, j, k be integers such that $\{i, j, k\}=\{1,2,3\}$. Then there is a canonical isomorphism $\beta:=\beta_{j, k}^{i}$ from $\pi_{j}\left(L_{i}\right)$ to $\pi_{k}\left(L_{i}\right)$ that maps Z_{j} to Z_{k}.

Proof. Suppose without loss of generality that $i=1, j=2$ and $k=3$. Define a map $\beta: \pi_{2}\left(L_{1}\right) \rightarrow \pi_{3}\left(L_{1}\right)$ such that $\left(1, m_{2}, \beta\left(m_{2}\right)^{-1}\right) \in \Lambda$ for all $m_{2} \in \pi_{2}\left(L_{1}\right)$. Such a map exists and is well defined since Λ is a 2 -factor injective subdirect product. Assume $m_{2} \in Z_{2}$ then $\left(1, m_{2}, \beta\left(m_{2}\right)^{-1}\right) \in \Lambda$ and there is a m_{1} such that $\left(m_{1}, m_{2}, 1\right) \in \Lambda$. Then $\left(1, m_{2}, \beta\left(m_{2}\right)^{-1}\right)\left(m_{1}, m_{2}, 1\right)^{-1}=\left(m_{1}^{-1}, 1, \beta\left(m_{2}\right)^{-1}\right)$ so $\beta\left(m_{2}\right) \in Z_{3}$. It follows by symmetry that all Z_{i} are isomorphic and that $\beta \upharpoonright_{Z_{2}}$ is an isomorphism from Z_{2} to Z_{3}.

Definition 2.2. Let Λ be a subdirect product of $M_{1} \times M_{2} \times M_{3}$. We say Λ is degenerate if $\pi_{i}\left(\operatorname{ker}\left(\pi_{i+1}\right)\right) \cap \pi_{i}\left(\operatorname{ker}\left(\pi_{i+2}\right)\right)=\pi_{i}\left(\operatorname{ker}\left(\psi_{i}\right)\right)\left(\right.$ i.e. $\left.Z_{i}=1\right)$ for some, and thus every, $i \in\{1,2,3\}$.

Neuen and Schweitzer [8] investigate the possibility of having a correspondence theorem in the style of Goursat theorem [18] for 3 -factors.

Theorem 2.3. There is a natural one-to-one correspondence between degenerate 2-factor injective subdirect products of $M_{1} \times M_{2} \times M_{3}$ and tuples of the form $\kappa(\Lambda)=$ $\left(D_{1}, D_{2}, D_{3}, E_{1}, E_{2}, E_{3}, \beta_{1}, \beta_{2}, \beta_{3}\right)$ for which for all $i \in\{1,2,3\}$ (indices taken modulo 3) we have

1. $D_{i}, E_{i} \unlhd M_{i}$,
2. $D_{i} \cap E_{i}=1$,
3. $M_{i} / E_{i} \stackrel{\beta_{i}}{\cong} M_{i+1} / D_{i+1}$,
4. $\left[D_{i}, E_{i}\right]=1$,
5. $\beta_{i}\left(D_{i} E_{i}\right)=E_{i+1} D_{i+1}$,
6. $\beta_{3}\left(\beta_{2}\left(\beta_{1}\left(m_{1} D_{1} E_{1}\right)\right)\right)=m_{1} D_{1} E_{1}$ for all $m_{1} \in M_{1}$,
7. $\Lambda=\left\{\left(m_{1}, m_{2}, m_{3}\right) \in M_{1} \times M_{2} \times M_{3} \mid \beta_{i}\left(m_{i} E_{i}\right)=m_{i+1} D_{i+1}\right\}$.

Proof. For $i \in\{1,2,3\}$ define a homomorphism $\beta_{i}: M_{i} / E_{i} \rightarrow M_{i+1} / D_{i+1}$ by setting $\beta_{i}\left(m_{i} E_{i}\right)=m_{i+1} D_{i+1}$ if $\left(m_{1}, m_{2}, m_{3}\right) \in \Lambda$ for some $m_{i} \in M_{i}$. We first have to show that β_{i} is well-defined. Without loss of generality consider $i=1$ and let $\left(m_{1}, m_{2}, m_{3}\right),\left(m_{1}^{\prime}, m_{2}^{\prime}, m_{3}^{\prime}\right) \in \Lambda$ with $m_{1} E_{1}=m_{1}^{\prime} E_{1}$. Then there is a $\left(e, 1, l_{2}\right) \in \Lambda$ with $m_{1}^{\prime} e=m_{1}$. We obtain $\left(m_{1}^{\prime}, m_{2}^{\prime}, m_{3}^{\prime}\right)\left(e, 1, l_{2}\right)\left(m_{1}, m_{2}, m_{3}\right)^{-1}=\left(1, m_{2}^{\prime} m_{2}^{-1}, m_{3}^{\prime \prime}\right)$ for some $m_{3}^{\prime \prime} \in M_{3}$ and hence, $m_{2} D_{2}=m_{2}^{\prime} D_{2}$. So β_{i} is well-defined. Since Λ is a subdirect product, β_{i} is a surjective homomorphism. Suppose $\beta_{1}\left(m_{1} E_{1}\right)=D_{2}$. Then $\left(m_{1} e_{1}, d_{2}, m_{3}\right) \in \Lambda$ for some $e_{1} \in E_{1}, d_{2} \in D_{2}$ and $m_{3} \in M_{3}$. Also there is $l_{3} \in M_{3}$ with $\left(1, d_{2}, l_{3}\right) \in \Lambda$ and hence, $\left(m_{1} e_{1}, 1, m_{3} l_{3}^{-1}\right) \in \Lambda$ implying that $m_{1} \in E_{1}$. So $M_{i} / E_{i} \stackrel{\beta_{i}}{=} M_{i+1} / D_{i+1}$.

For every $d_{1} \in D_{1}$ there is a $e_{2} \in E_{2}$ with $\left(d_{1}, e_{2}, 1\right) \in \Lambda$ and $\beta_{1}\left(d_{1} E_{1}\right)=e_{2} D_{2} \in$ $E_{2} D_{2}$. By symmetry it follows that $\beta_{i}\left(D_{i} E_{i}\right)=E_{i+1} D_{i+1}$ for all $i \in\{1,2,3\}$. Now let Λ^{\prime} be the group defined in item (7). Clearly $\Lambda \leq \Lambda^{\prime}$ by the definition of β_{i} for $i \in$ $\{1,2,3\}$. So let $\left(m_{1}^{\prime}, m_{2}^{\prime}, m_{3}^{\prime}\right) \in \Lambda^{\prime}$. Since Λ is subdirect there is a $\left(m_{1}^{\prime}, m_{2}, m_{3}\right) \in \Lambda$ with $m_{2} D_{2}=m_{2}^{\prime} E_{2}$. So we can assume that $m_{2}=m_{2}^{\prime}$. But then, by 2 -factor injectivity of Λ, we get that $m_{3}=m_{3}^{\prime}$. Finally for $\left(m_{1}, m_{2}, m_{3}\right) \in \Lambda$ we have that $\beta_{i}\left(m_{i} D_{i} E_{i}\right)=$ $\beta_{i}\left(m_{i} D_{i}\right) \beta_{i}\left(D_{i} E_{i}\right)=m_{i+1} E_{i+1} D_{i+1}=m_{i+1} D_{i+1} E_{i+1}$. So $\beta_{2}\left(\beta_{1}\left(m_{1} D_{1} E_{1}\right)\right)=$ $\beta_{3}^{-1} m_{1} D_{1} E_{1}$ for all $m_{1} \in M_{1}$.

The converse is straightforward and will be omitted.

Proposition 2.4. There is a natural one-to-one correspondence between degenerate subdirect products of $M_{1} \times M_{2} \times M_{3}$ and tuples of the form $\kappa(\Lambda)=$ $\left(P_{1}, P_{2}, P_{3}, D_{1}, D_{2}, D_{3}, E_{1}, E_{2}, E_{3}, \beta_{1}, \beta_{2}, \beta_{3}\right)$ for which for all $i \in\{1,2,3\}$ (indices taken modulo 3) we have

1. $P_{i} \unlhd M_{i}$,
2. $D_{i}, E_{i} \unlhd M_{i} / P_{i}$,
3. $D_{i} \cap E_{i}=1$,
4. $\left(M_{i} / P_{i}\right) / E_{i} \stackrel{\beta_{i}}{\cong}\left(M_{i+1} / P_{i+1}\right) / D_{i+1}$,
5. $\left[D_{i}, E_{i}\right]=1$,
6. $\beta_{i}\left(D_{i} E_{i}\right)=E_{i+1} D_{i+1}$,
7. $\beta_{2}\left(\beta_{1}\left(m_{1} D_{1} E_{1}\right)\right)=\beta_{3}^{-1}\left(m_{1} D_{1} E_{1}\right)$ for all $m_{1} \in M_{1} / P_{1}$.

Proof. There is a natural one-to-one correspondence between subdirect products of $\Lambda^{\prime} \leq$ $M_{1} \times M_{2} \times M_{3}$ and the tuples $\left(P_{1}, P_{2}, P_{3}, \Lambda\right)$, where $P_{i}=\pi_{i}\left(\operatorname{ker}\left(\psi_{i}\right) \unlhd M_{i}\right.$ for every $i \in\{1,2,3\}$ and Λ is a 2 -factor injective subdirect product of $M_{1} / P_{1} \times M_{2} / P_{2} \times M_{3} / P_{3}$. And we apply Theorem 2.3 then we have a correspondence as desired.

Theorem 2.5. There is a natural one-to-one correspondence between subdirect products Λ of $M_{1} \times M_{2} \times M_{3}$ which are 2-factor injective satisfying $\Lambda=\left\langle L_{1}, L_{2}, L_{3}\right\rangle$ and tuples of the form $\kappa(\Lambda)=\left(D_{1}, D_{2}, D_{3}, E_{1}, E_{2}, E_{3}, \beta_{1}, \beta_{2}, \beta_{3}\right)$ for which for all $i \in\{1,2,3\}$ (indices taken modulo 3) we have

1. $D_{i}, E_{i} \unlhd M_{i}$,
2. $E_{i} D_{i}=M_{i}$,
3. $E_{i} \stackrel{\beta_{i}}{\cong} D_{i+1}$,
4. $E_{i} / Z_{i} \stackrel{\beta_{i}}{\cong} D_{i+1} / Z_{i+1}$,
5. $\left[D_{i}, E_{i}\right]=1$,
6. $\beta_{i}\left(D_{i} \cap E_{i}\right)=D_{i+1} \cap E_{i+1}$,
7. $\left.\left.\left.\beta_{3}\right|_{Z_{3}} \circ \beta_{2}\right|_{Z_{2}} \circ \beta_{1}\right|_{Z_{1}}=i d$.

Proof. Define Λ to be the set of triples $\left(m_{1}, m_{2}, m_{3}\right) \in M_{1} \times M_{2} \times M_{3}$ that satisfy $m_{i}=d_{i} e_{i}^{-1}$ for $e_{i} \in E_{i}, d_{i} \in D_{i}, d_{i+1} Z_{i+1}=\beta_{i}\left(e_{i} Z_{i}\right)$, and $d_{3} \beta_{2}\left(e_{2}\right)^{-1} . \beta_{3}^{-1}\left(d_{1}\right) e_{3}^{-1} \cdot \beta_{2}\left(d_{2} \beta_{1}\left(e_{1}^{-1}\right)\right)=1$.

3 Correspondence Theorems

We now describe and analyze the partial order of subgroups of $M_{1} \times M_{2} \times M_{3}$ in terms of pairs of morphisms.

Let $\Lambda, \Omega \leq M_{1} \times M_{2} \times M_{3}$ be degenerate 2 -factor injective subdirect products and the tuples of the form $\kappa(\Lambda)=\left(D_{1}, D_{2}, D_{3}, E_{1}, E_{2}, E_{3}, \beta_{1}, \beta_{2}, \beta_{3}\right)$ and $\kappa(\Omega)=$ $\left(B_{1}, B_{2}, B_{3}, A_{1}, A_{2}, A_{3}, \beta_{1}^{\prime}, \beta_{2}^{\prime}, \beta_{3}^{\prime}\right)$ with the assumptions of Proposition 2.3. Given morphisms

$$
\begin{aligned}
& M_{i} / E_{i} \stackrel{\alpha_{i}}{\cong} U_{i} \stackrel{\theta_{i}^{-1}}{\cong} M_{i+1} / D_{i+1} \\
& M_{i} / A_{i} \stackrel{\alpha_{i}^{\prime}}{\cong} U_{i}^{\prime} \\
& \stackrel{\theta_{i}^{\prime-1}}{\cong} M_{i+1} / B_{i+1}
\end{aligned}
$$

Then $\beta_{i}=\theta_{i}^{-1} \alpha_{i}=\Pi\left(\theta_{i}, \alpha_{i}\right): M_{i} / E_{i} \longrightarrow M_{i+1} / D_{i+1}$ and $\beta_{i}^{\prime}=\theta_{i}^{\prime-1} \alpha_{i}^{\prime}=\Pi\left(\theta_{i}^{\prime}, \alpha_{i}^{\prime}\right)$ whose graphs are subgroups $\Omega, \Lambda \leqslant M_{1} \times M_{2} \times M_{3}$.

Proposition 3.1. Let $\alpha_{i}: M_{i} / E_{i} \xrightarrow{\sim} U_{i}$ and $\theta_{i}: M_{i+1} / D_{i+1} \xrightarrow{\sim} U_{i}$ be isomorphisms for $i \in\{1,2,3\}$ (indices taken modulo 3), let $\beta_{i}=\Pi\left(\theta_{i}, \alpha_{i}\right), \beta_{i}^{\prime}=\Pi\left(\theta_{i}^{\prime}, \alpha_{i}^{\prime}\right)$ with corresponding subgroups Λ, Ω of $M_{1} \times M_{2} \times M_{3}$. Then $\Omega \leqslant \Lambda$ if and only if
(a) $\left(E_{i}, D_{i}\right) \leqslant\left(A_{i}, B_{i}\right)$;
(b) $\lambda_{i}=\omega_{i}$ for $\lambda_{i}=\alpha_{i} \varphi_{i} \alpha_{i}^{\prime-1}, \omega_{i}=\theta_{i} \varphi_{i}^{\prime-1} \theta_{i}^{\prime-1}$, and $\varphi_{i}, \varphi_{i}^{\prime}$ are the homomorphisms defined by $\varphi_{i}\left(m_{i} A_{i}\right)=m_{i} E_{i}, \varphi_{i}^{\prime}\left(m_{i+1} B_{i+1}\right)=m_{i+1} D_{i+1} ;$
(c) $\beta_{i} \varphi_{i}=\varphi_{i}^{\prime} \beta_{i}^{\prime}$.

Proof. Write

$$
\Omega=\left\{\left(m_{1}, m_{2}, m_{3}\right) \in M_{1} \times M_{2} \times M_{3} \mid \alpha_{i}^{\prime}\left(m_{i} A_{i}\right)=\theta_{i}^{\prime}\left(m_{i+1} B_{i+1}\right)\right\}
$$

and

$$
\Lambda=\left\{\left(m_{1}, m_{2}, m_{3}\right) \in M_{1} \times M_{2} \times M_{3} \mid \alpha_{i}\left(m_{i} E_{i}\right)=\theta_{i}\left(m_{i+1} D_{i+1}\right)\right\}
$$

Then $\Omega \leqslant \Lambda$ if and only if $\left(E_{i}, D_{i}\right) \leqslant\left(A_{i}, B_{i}\right), i=1,2,3$, and, for $m_{i} \in M_{i}$; $\left(m_{1}, m_{2}, m_{3}\right) \in \Omega \leq \lambda$ we have $\left(m_{i} E_{i}\right)^{\alpha_{i}}=\left(m_{i+1} D_{i+1}\right)^{\theta_{i}}$, but if $\left(m_{i}\right) \in \Omega$, then

$$
\begin{aligned}
\left(m_{i} E_{i}\right)^{\alpha_{i}} & =\alpha_{i} \varphi_{i}\left(\left(m_{i} A_{i}\right)\right. \\
& =\lambda_{i} \alpha_{i}^{\prime}\left(\left(m_{i} A_{i}\right)\right.
\end{aligned}
$$

So,

$$
\begin{aligned}
\left(m_{i} E_{i}\right)^{\alpha_{i}} & =\theta_{i}\left(\left(m_{i+1} D_{i+1}\right)\right. \\
& =\theta_{i} \varphi_{i}^{\prime}\left(\left(m_{i+1} B_{i+1}\right)\right. \\
& =\omega_{i} \theta_{i}^{\prime}\left(\left(m_{i+1} B_{i+1}\right)\right.
\end{aligned}
$$

if and only if $\lambda_{i} \alpha_{i}^{\prime}\left(m_{i} A_{i}\right)=w_{i} \theta_{i}^{\prime}\left(m_{i+1} B_{i+1}\right)$ and $\left(m_{1}, m_{2}, m_{3}\right) \in \Omega$. Then $\lambda_{i}=\omega_{i}$.

Let $\Lambda, \Omega \leq M_{1} \times M_{2} \times M_{3}$ be degenerate subdirect products and the tuples of the form $\kappa(\Lambda)=\left(P_{1}, P_{2}, P_{3}, D_{1}, D_{2}, D_{3}, E_{1}, E_{2}, E_{3}, \beta_{1}, \beta_{2}, \beta_{3}\right)$ and $\kappa(\Omega)=$ $\left(Q_{1}, Q_{2}, Q_{3}, B_{1}, B_{2}, B_{3}, A_{1}, A_{2}, A_{3}, \beta_{1}^{\prime}, \beta_{2}^{\prime}, \beta_{3}^{\prime}\right)$ with the assumptions of Proposition 2.4. Given morphisms

$$
\begin{aligned}
&\left(M_{i} / P_{i}\right) / E_{i} \stackrel{\alpha_{i}}{\cong} U_{i} \stackrel{\theta_{i}^{-1}}{\cong}\left(M_{i+1} / P_{i+1}\right) / D_{i+1} \\
&\left(M_{i} / Q_{i}\right) / A_{i} \stackrel{\alpha_{i}^{\prime}}{\cong} U_{i}^{\prime} \\
& \stackrel{\theta_{i}^{\prime-1}}{\cong}\left(M_{i+1} / Q_{i+1}\right) / B_{i+1}
\end{aligned}
$$

We are now in a position to state the following corollary, in analogy to Proposition 3.1.
Corollary 3.2. Let $\alpha_{i}:\left(M_{i} / P_{i}\right) / E_{i} \xrightarrow{\sim} U_{i}$ and $\theta_{i}:\left(M_{i+1} / P_{i+1}\right) / D_{i+1} \xrightarrow{\sim} U_{i}$ be isomorphisms for $i \in\{1,2,3\}$ (indices taken modulo 3), let $\beta_{i}=\Pi\left(\theta_{i}, \alpha_{i}\right), \beta_{i}^{\prime}=$ $\Pi\left(\theta_{i}^{\prime}, \alpha_{i}^{\prime}\right)$ with corresponding subgroups Λ, Ω of $M_{1} \times M_{2} \times M_{3}$. Then $\Omega \leqslant \Lambda$ if and only if
(a) $\left(M_{i} / P_{i}, E_{i}, D_{i}\right) \leqslant\left(M_{i} / Q_{i}, A_{i}, B_{i}\right)$;
(b) $\lambda_{i}=\omega_{i}$ for $\lambda_{i}=\alpha_{i} \varphi_{i} \alpha_{i}^{\prime-1}, \omega_{i}=\theta_{i} \varphi_{i}^{\prime-1} \theta_{i}^{\prime-1}$;
(c) $\beta_{i} \varphi_{i}=\varphi_{i}^{\prime} \beta_{i}^{\prime}$.

Definition 3.3. Let $\Lambda=\left(\beta_{i}:\left(M_{i} / P_{i}\right) / E_{i} \xrightarrow{\sim}\left(M_{i+1} / P_{i+1}\right) / D_{i+1}\right)$ and $\Omega=\left(\beta_{i}^{\prime}:\right.$ $\left.\left(M_{i} / Q_{i}\right) / A_{i} \xrightarrow{\sim}\left(M_{i+1} / Q_{i+1}\right) / B_{i+1}\right)$ be degenerate subdirect products of $M_{1} \times M_{2} \times$ M_{3} and suppose that $\Omega \leqslant \Lambda$. We write
(i) $\Omega \leqslant_{t} \Lambda$, if $M_{i} / P_{i}=M_{i} / Q_{i}, i=1,2,3$, i.e., if both Λ, Ω have same top groups,
(ii) $\Omega \leqslant{ }_{b} \Lambda$, if $\left(E_{i}, D_{i}\right)=\left(A_{i}, B_{i}\right), i=1,2,3$, i.e., if both Λ, Ω have same bottom groups,
(iii) $\Omega \leqslant_{t / b} \Lambda$, if the canonical homomorphisms $\varphi_{i}, \varphi_{i}^{\prime}$ (see (2)) are isomorphisms.

All three relations are obviously partial orders. Moreover, they decompose the partial order \leqslant on the subgroups of $M_{1} \times M_{2} \times M_{3}$.

Theorem 3.4. Let $\Lambda=\left(\beta_{i}:\left(M_{i} / P_{i}\right) / E_{i} \xrightarrow{\sim}\left(M_{i+1} / P_{i+1}\right) / D_{i+1}\right)$ and $\Omega=\left(\beta_{i}^{\prime}:\right.$ $\left.\left(M_{i} / Q_{i}\right) / A_{i} \xrightarrow{\sim}\left(M_{i+1} / Q_{i+1}\right) / B_{i+1}\right)$ degenerate subdirect products of $M_{1} \times M_{2} \times M_{3}$ be such that $\Omega \leqslant \Lambda$. Define a map

$$
\begin{aligned}
\widehat{\beta}_{i}^{\prime}:\left(M_{i} / Q_{i}\right) /\left(\left(M_{i} / Q_{i}\right) \cap E_{i}\right) & \longrightarrow\left(M_{i+1} / Q_{i+1}\right) /\left(\left(M_{i+1} / Q_{i+1}\right) \cap D_{i+1}\right) \\
g_{i}\left(\left(M_{i} / Q_{i}\right) \cap E_{i}\right) & \longmapsto g_{i+1}\left(\left(M_{i+1} / Q_{i+1}\right) \cap D_{i+1}\right),
\end{aligned}
$$

and a map

$$
\begin{aligned}
\widetilde{\beta}_{i}:\left(M_{i} / Q_{i}\right) E_{i} / E_{i} & \longrightarrow\left(M_{i+1} / Q_{i+1}\right) D_{i+1} / D_{i+1} \\
g_{i} E_{i} & \longmapsto g_{i+1} D_{i+1} .
\end{aligned}
$$

Then
(i) $\widehat{\beta}_{i}^{\prime}$ and $\widetilde{\beta}_{i}$ are isomorphisms with corresponding graphs $\Omega_{\widehat{\beta}^{\prime}}$ and $\Lambda_{\widetilde{\beta}} \leqslant M_{1} \times M_{2} \times$ M_{3}.
(ii) $\Omega_{\widehat{\beta}^{\prime}}$ and $\Lambda_{\widetilde{\beta}}$ are the unique degenerate subdirect products of $M_{1} \times M_{2} \times M_{3}$ with

$$
\Omega \leqslant t \Omega_{\widehat{\beta}^{\prime}} \leqslant t / b \Lambda_{\widetilde{\beta}} \leqslant b \Lambda
$$

Proof. Define by $\varphi_{i}^{\prime}, \varphi_{i}$ as (2). According to the homomorphism theorem φ_{i} can be decomposed into a surjective, bijective and injective part, that is $\varphi_{i}=\varphi_{i, 3} \varphi_{i, 2} \varphi_{i, 1}$, we have a commutative diagram:

and $\varphi_{i}^{\prime}=\varphi_{i, 3}^{\prime} \varphi_{i, 2}^{\prime} \varphi_{i, 1}^{\prime}$. By Corollary 4.2, $\beta_{i} \varphi_{i}=\varphi_{i}^{\prime} \beta_{i}^{\prime}$. It follows that $\left(\operatorname{Im} \varphi_{i}\right)^{\beta_{i}}=$ $\operatorname{Im} \varphi_{i}^{\prime}$ and $\left(\operatorname{ker} \varphi_{i}\right)^{\beta_{i}^{\prime}}=\operatorname{ker} \varphi_{i}^{\prime}$. Thus β_{i} restricts to an isomorphism $\widetilde{\beta}_{i}$ from $\operatorname{Im} \varphi_{i}$ to $\operatorname{Im} \varphi_{i}^{\prime}$ and β_{i}^{\prime} induces an isomorphism $\widehat{\beta}_{i}^{\prime}$ from $\left(\left(M_{i} / Q_{i}\right) / A_{i}\right) / \operatorname{ker} \varphi_{i}$ to $\left(\left(M_{i+1} / Q_{i+1}\right) / B_{i+1}\right) / \operatorname{ker} \varphi_{i}^{\prime}$ and the following diagram commutes:

And

$$
\begin{aligned}
\frac{\left(M_{i} / Q_{i}\right) / A_{i}}{\operatorname{ker} \varphi_{i}} & \cong\left(M_{i} / Q_{i}\right) /\left(\left(M_{i} / Q_{i}\right) \cap E_{i}\right) \\
\frac{\left(M_{i+1} / Q_{i+1}\right) / B_{i+1}}{\operatorname{ker} \varphi_{i}^{\prime}} & \cong\left(M_{i+1} / Q_{i+1}\right) /\left(\left(M_{i+1} / Q_{i+1}\right) \cap D_{i+1}\right)
\end{aligned}
$$

We denote by $S_{M_{1} \times M_{2} \times M_{3}}$ the set of all finite degenerate subdirect products of $M_{1} \times$ $M_{2} \times M_{3}$.

Corollary 3.5. The partial order \leqslant on $S_{M_{1} \times M_{2} \times M_{3}}$ is a product of three relations:

$$
\leqslant=\leqslant_{t} \circ \leqslant_{t / b} \circ \leqslant_{b}
$$

Moreover, if $A(R)$ denotes the incidence matrix of the relation R, the stronger property

$$
A(\leqslant)=A\left(\leqslant_{t}\right) \cdot A\left(\leqslant_{t / b}\right) \cdot A\left(\leqslant_{b}\right)
$$

also holds.
Proof. This follows from the uniqueness of the intermediate subgroups in Theorem 3.4.

4 Subgroups of a Direct Product

The goal of this section is to give another type of characterization of containment of subgroups in a product of groups. This is accomplished in Theorem4.1

Theorem 4.1. Let $\Lambda, \Omega \leq M_{1} \times M_{2} \times M_{3}$ be 2-factor injective subdirect products and the tuples of the form $\kappa(\Lambda)=\left(D_{1}, D_{2}, D_{3}, E_{1}, E_{2}, E_{3}, \beta_{1}, \beta_{2}, \beta_{3}\right)$ with $Z_{i}=D_{i} \cap E_{i}$, and $\kappa(\Omega)=\left(A_{1}, A_{2}, A_{3}, B_{1}, B_{2}, B_{3}, \gamma_{1}, \gamma_{2}, \gamma_{3}\right), Y_{i}=A_{i} \cap B_{i}$ with the assumptions of Theorem 2.5 Then $\Omega \leq \Lambda$ if and only if
(1) $A_{i} \leq D_{i}, B_{i} \leq E_{i}$,
(2) $\left(\frac{B_{i} Z_{i}}{Z_{i}}\right)^{\beta_{i}}=\frac{A_{i+1} Z_{i+1}}{Z_{i+1}}$,
(3) $\left(\frac{B_{i} \cap Z_{i}}{Y_{i}}\right)^{\gamma_{i}}=\frac{A_{i+1} \cap Z_{i+1}}{Y_{i+1}}$,
(4) $\left(B_{i}\right)^{\beta_{i}}=A_{i+1}$,
(5) $\theta_{i} \circ \widetilde{\beta}_{i}=\widetilde{\gamma}_{i} \circ \alpha_{i}$ where $\widetilde{\beta}_{i}$ and $\widetilde{\gamma}_{i}$ are restrictions of β_{i} and γ_{i} respectively.

An equivalent statement for (5) is that the following diagram is a commutative diagram.

Proof. (\Rightarrow) Assume that $\Omega \leq \Lambda$. It is clearly that $A_{i} \leq D_{i}, B_{i} \leq E_{i},\left(\frac{B_{i} Z_{i}}{Z_{i}}\right)^{\beta_{i}}=$ $\frac{A_{i+1} Z_{i+1}}{Z_{i+1}},\left(\frac{B_{i} \cap Z_{i}}{Y_{i}}\right)^{\gamma_{i}}=\frac{A_{i+1} \cap Z_{i+1}}{Y_{i+1}}$. The diagram below is a commutative diagram.

$$
\begin{gathered}
\left(\frac{B_{i}}{Y_{i}}\right) /\left(\frac{B_{i} \cap Z_{i}}{Y_{i}}\right) \xrightarrow{\widehat{\gamma_{i}}}\left(\frac{A_{i+1}}{Y_{i+1}}\right) /\left(\frac{A_{i+1} \cap Z_{i+1}}{Y_{i+1}}\right) \\
\varepsilon_{i} \mid \\
\downarrow \\
\frac{B_{i}}{B_{i} \cap Z_{i}} \xrightarrow{\rho_{i}} \xrightarrow{\rho_{i}} \xrightarrow{\widetilde{\gamma}_{i}} \xrightarrow[A_{i+1} \cap Z_{i+1}]{l}
\end{gathered}
$$

Where ε_{i} and ρ_{i} are isomorphisms and $\widetilde{\gamma}_{i}=\rho_{i} \widehat{\gamma}_{i} \varepsilon_{i}^{-1}$. Therefore, it suffices to demonstrate that the diagram commutes. More explicitly that $\theta_{i} \circ \widetilde{\beta}_{i}=\widetilde{\gamma}_{i} \circ \alpha_{i}$. Let $\left(m_{1}, m_{2}, m_{3}\right) \in \Omega$ such that $m_{i}=a_{i} b_{i}^{-1}$ for $b_{i} \in B_{i}, a_{i} \in A_{i}, a_{i+1} Y_{i+1}=\gamma_{i}\left(b_{i} Y_{i}\right)$. Since $\Omega \leq \Lambda$ we know $a_{i+1} Z_{i+1}=\beta_{i}\left(b_{i} Z_{i}\right)$ and $\widetilde{\beta}_{i}$ is a restriction of β. Then $\left(\left(b_{i} Z_{i}\right)^{\widetilde{\beta}_{i}}\right)^{\theta_{i}}=\left(a_{i+1} Z_{i+1}\right)^{\theta_{i}}=a_{i+1}\left(A_{i+1} \cap Z_{i+1}\right)$. On the other side, we obtain

$$
\left(\left(b_{i} Z_{i}\right)^{\alpha_{i}}\right)^{\widetilde{\gamma_{i}}}=\left(b_{i}\left(B_{i} \cap Z_{i}\right)\right)^{\widetilde{\gamma_{i}}}=a_{i+1}\left(A_{i+1} \cap Z_{i+1}\right) .
$$

Therefore, $\theta_{i} \circ \widetilde{\beta}_{i}=\widetilde{\gamma}_{i} \circ \alpha_{i}$, and the diagram commutes.
(\Leftarrow) Conversely, suppose the containments hold and the diagram commutes. Our goal is to show $\Omega \leq \Lambda$. Let $\left(m_{1}, m_{2}, m_{3}\right) \in \Omega$. Then $\gamma_{i}\left(b_{i} Y_{i}\right)=a_{i+1} Y_{i+1}$. We have

$$
\begin{aligned}
\left(b_{i} Z_{i}\right)^{\widetilde{\beta_{i}}} & =\left(b_{i} Z_{i}\right)^{\alpha_{i} \widetilde{\gamma}_{i} \theta_{i}^{-1}} \\
& =\left(b_{i}\left(B_{i} \cap Z_{i}\right)\right)^{\widetilde{\gamma}_{i} \theta_{i}^{-1}} \\
& =\left(a_{i+1}\left(A_{i+1} \cap Z_{i+1}\right)\right)^{\theta_{i}^{-1}} \\
& =a_{i+1} Z_{i+1} .
\end{aligned}
$$

And $\left.\beta_{i}\right|_{B_{i}}=\gamma_{i}$. We conclude that $\left(m_{1}, m_{2}, m_{3}\right) \in \Lambda$, and $\Omega \leq \Lambda$.

Corollary 4.2. Let $\Lambda, \Omega \leq M_{1} \times M_{2} \times M_{3}$ be degenerate subdirect products and the tuples of the form $\kappa(\Lambda)=\left(P_{1}, P_{2}, P_{3}, D_{1}, D_{2}, D_{3}, E_{1}, E_{2}, E_{3}, \beta_{1}, \beta_{2}, \beta_{3}\right)$ and $\kappa(\Omega)=$ $\left(Q_{1}, Q_{2}, Q_{3}, B_{1}, B_{2}, B_{3}, A_{1}, A_{2}, A_{3}, \gamma_{1}, \gamma_{2}, \gamma_{3}\right)$ with the assumptions of Proposition 2.4 Then $\Omega \leq \Lambda$ if and only if
(a) $A_{i} \leq E_{i}, B_{i} \leq D_{i}, M_{i} / Q_{i} \leq M_{i} / P_{i}$,
(b) $\left(\frac{\left(M_{i} / Q_{i}\right) E_{i}}{E_{i}}\right)^{\beta_{i}}=\frac{\left(M_{i+1} / Q_{i+1}\right) D_{i+1}}{D_{i+1}}$,
(c) $\left(\frac{\left(M_{i} / Q_{i}\right) \cap E_{i}}{A_{i}}\right)^{\gamma_{i}}=\frac{\left(M_{i+1} / Q_{i+1}\right) \cap D_{i+1}}{B_{i+1}}$,
(d) the following diagram is a commutative diagram

Proof. The proof of this corollary come immediately from Theorem 4.1 and Proposition 2.4

5 Application

The next application, that of determining the cyclic subgroups of $M_{1} \times M_{2} \times M_{3}$ will involve more substantial use of Theorem 2.3. Cyclic subgroups are not closed under products. We shall henceforth use additive notation since M_{1}, M_{2}, M_{3} will be abelian.

Theorem 5.1. Let Λ be a degenerate 2-factor injective subdirect products of $M_{1} \times M_{2} \times$ M_{3} with the assumptions of Theorem 2.3 and tuples of the form

$$
\kappa(\Lambda)=\left(D_{1}, D_{2}, D_{3}, E_{1}, E_{2}, E_{3}, \beta_{1}, \beta_{2}, \beta_{3}\right)
$$

(a) The subgroup Λ is finite cyclic if and only if M_{1}, M_{2}, M_{3} are finite cyclic and each of the pairs of integers $\left(\left|D_{2}\right|,\left|E_{1}\right|\right),\left(\left|D_{1}\right|,\left|E_{3}\right|\right),\left(\left|D_{3}\right|,\left|E_{2}\right|\right)$ is coprime. In this case one also has

$$
|\Lambda|=\operatorname{lcm}\left(\left|M_{1}\right|,\left|M_{2}\right|,\left|M_{3}\right|\right)
$$

(b) The subgroup Λ is infinite cyclic if and only if one of the following three cases (up to obvious permutation of indices) occur:
(i) $M_{1} \approx \mathbb{Z}, M_{2}$ and M_{3} are finite cyclic, $D_{2}=E_{3}=\{0\}$, and $\left(\left|D_{3}\right|,\left|E_{2}\right|\right)$ are coprime.
(ii) $M_{1} \approx M_{2} \approx \mathbb{Z}, M_{3}$ finite cyclic, and $D_{2}=E_{1}=E_{3}=D_{3}=\{0\}$.
(iii) $M_{i} \approx \mathbb{Z}$ and $D_{i}=E_{i}=\{0\}$ for $i=1,2,3$.

Proof. This is an immediate consequence of Theorem 4.5 in [18].

References

[1] B.R. Amougou Mbarga, Some remarks on Goursat lemma, Algebraic Structures and Their Applications 8(2) (2021), 119-129.
https://doi.org/10.29252/as.2021.2022
[2] B.R. Amougou Mbarga, Triangular scheme revisited in the light of n-permutable categories, Earthline Journal of Mathematical Sciences 6(1) (2021), 105-116. https://doi.org/10.34198/ejms.6121.105116.
[3] B.R. Amougou Mbarga, Anticommutativity and n-schemes, Earthline Journal of Mathematical Sciences 6(1) (2021), 175-186.
https://doi.org/10.34198/ejms.6121.175186
[4] D.D. Anderson and V. Camillo, Subgroups of direct products of groups, ideals and subrings of direct products of rings, and Goursat's lemma, Rings, modules and representations, 1-12, Contemp. Math., 480, Amer. Math. Soc., Providence, RI, 2009.
https://doi.org/10.2307/2004580
[5] Brendan Masterson and G. Pfeiffer, On the table of marks of a direct product of finite groups, Journal of Algebra 499 (2018), 610-644.
https://doi.org/10.1016/j.jalgebra.2017.12.019
[6] Brendan Masterson and G. Pfeiffer, On the Table of Marks of a Direct Product of Finite Groups, PhD, 2016.
[7] A. Carboni, J. Lambek and M.C. Pedicchio, Diagram chasing in Mal'cev categories, Journal of Pure and Applied Algebra 69 (1991), 271-284.
https://doi.org/10.1016/0022-4049(91)90022-T
[8] Daniel Neuen and P. Schweitzer, Subgroups of 3-factor direct products, Tatra Mountains Mathematical Publications 73 (2019), 19-38.
https://doi.org/10.2478/tmmp-2019-0003
[9] R.M. Foote and David S. Dummit, Abstract Algebra, 2nd Edition, Wiley-India, Daryaganj, New Delhi, 1999.
[10] M. Gran and D. Rodelo, A new characterisation of Goursat categories, Appl. Categor. Struct. 20 (2012), 229-238. https://doi.org/10.1007/s10485-010-9236-x
[11] M. Gran and D. Rodelo, Beck-Chevalley condition and Goursat categories, Journal of Pure and Applied Algebra 221 (2017), 2445-2457.
https://doi.org/10.1016/j.jpaa.2016.12.031
[12] E. Goursat, Sur les substitutions orthogonales et les divisions régulières de l'espace, Ann. Sci. École Norm. Sup. (3) 6 (1889), 9-102.
https://doi.org/10.24033/asens.317
[13] J. Lambek, Goursat's theorem and the Zassenhaus lemma, Canad. J. Math. 10 (1958), 45-56. https://doi.org/10.4153/CJM-1958-005-6
[14] J. Lambek, On the ubiquity of Malâcev operations, Contemp. Math. 131 (1992), 135-146.
[15] S. Lang, Algebra, 3rd ed., Addison-Wesley, Reading, MA, 1966.
[16] D. Lewis, Containment of Subgroups in a Direct Product of Groups, Doctoral Dissertation, Binghamton University, 2011.
[17] O. Oluwafunmilayo and M. EniOluwafe, On counting subgroups for a class of finite nonabelian p-groups and related problems, IMHOTEP - Math. Proc. 4 (2017), 34-43. https://doi.org/13.1007/s00009-003-0000
[18] D. Sen, K. Bauer and P. Zvengrowski, A generalized Goursat lemma, Tatra Mt. Math. Publ. 64 (2015), 1-19.
[19] J.J. O’Connor and E.F. Robertson, Edouard Jean-Baptiste Goursat, MacTutor, 2006. https://mathshistory.st-andrews.ac.uk/Biographies/Goursat/
[20] J.J. Rotman, An Introduction to the Theory of Groups, 4th ed., Graduate Texts in Mathematics, Vol. 148, Springer-Verlag, New York, 1995.
[21] L. Tóth, Subgroups of finite abelian groups having rank two via Goursat's lemma, Tatra Mt. Math. Publ. 59 (2014), 93-103.https://doi.org/10.2478/tmmp-2014-0021
[22] M. Tărnăuceanu, Counting subgroups for a class of fnite nonabelian p-groups, Analele Universitaătii de Vest din Timisoara. Seria Matematică-informatică XLVI(1) (2008), 147-152.
[23] M. Tărnăuceanu, An arithmetic method of counting the subgroups of a fnite abelian group, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 53(101)(4) (2010), 373-386.
[24] M. Tărnăuceanu, Groups Determined by Posets of Subgroups, Matrix Rom, Bucharest, 2006.
[25] V.M. Usenko, Subgroups of semidirect products, Ukrain. Mat. Zh. 43(7-8) (1991), 1048-1055.

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted, use, distribution and reproduction in any medium, or format for any purpose, even commercially provided the work is properly cited.

[^0]: Received: May 30, 2021; Accepted: June 14, 2022
 2020 Mathematics Subject Classification: 20E07, 20E34.
 Keywords and phrases: 3 -factor, Goursat lemma, order, injective.

