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Abstract 

A necessary and sufficient condition in terms of lower cut sets is given for the insertion of 

a contra-α-continuous function between two comparable real-valued functions. 

1. Introduction  

The concept of a preopen set in a topological space was introduced by Corson and 

Michael in 1964 [4]. A subset A of a topological space ( )τ,X  is called preopen or 

locally dense or nearly open if ( )( ).AClIntA ⊆  A set A is called preclosed if its 

complement is preopen or equivalently if ( )( ) .AAIntCl ⊆  The term, preopen, was used 

for the first time by Mashhour et al. [20], while the concept of a locally dense set was 

introduced by Corson and Michael [4]. 

The concept of a semi-open set in a topological space was introduced by Levine in 

1963 [17]. A subset A of a topological space ( )τ,X  is called semi-open [10] if 

( )( ).AIntClA ⊆  A set A is called semi-closed if its complement is semi-open or 

equivalently if ( )( ) .AAClInt ⊆  
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Recall that a subset A of a topological space ( )τ,X  is called α-open if A is the 

difference of an open and a nowhere dense subset of X. A set A is called α-closed if its 

complement is α-open or equivalently if A is union of a closed and a nowhere dense set. 

A set is α-open if and only if it is semi-open and preopen. 

A generalized class of closed sets was considered by Maki in [19]. He investigated 

the sets that can be represented as union of closed sets and called them V-sets. 

Complements of V-sets, i.e., sets that are intersection of open sets are called Λ-sets [19]. 

Recall that a real-valued function f defined on a topological space X is called 

A-continuous [25] if the preimage of every open subset of R  belongs to A, where A is a 

collection of subsets of X. Most of the definitions of function used throughout this paper 

are consequences of the definition of A-continuity. However, for unknown concepts the 

reader may refer to [5, 11]. In the recent literature many topologists had focused their 

research in the direction of investigating different types of generalized continuity. 

Dontchev in [6] introduced a new class of mappings called contra-continuity. Jafari 

and Noiri in [12, 13] exhibited and studied among others a new weaker form of this class 

of mappings called contra-α-continuous. A good number of researchers have also 

initiated different types of contra-continuous like mappings in the papers [1, 3, 8, 9, 10, 

24]. 

Hence, a real-valued function f defined on a topological space X is called contra-α-

continuous (resp. contra-semi-continuous, contra-precontinuous) if the preimage of 

every open subset of R  is α-closed (resp. semi-closed, preclosed) in X [6]. 

Results of Katětov [14, 15] concerning binary relations and the concept of an 

indefinite lower cut set for a real-valued function, which is due to Brooks [2], are used in 

order to give a necessary and sufficient conditions for the insertion of a contra-α-

continuous function between two comparable real-valued functions. 

If g and f are real-valued functions defined on a space X, we write fg ≤  

( )fg <.resp  in case ( ) ( )xfxg ≤  ( ( ) ( ))xfxg <.resp  for all x in X. 

The following definitions are modifications of conditions considered in [16]. 

A property P defined relative to a real-valued function on a topological space is a 

cα-property provided that any constant function has property P and provided that the 
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sum of a function with property P and any contra-α-continuous function also has 

property P. If 1P  and 2P  are cα-property, the following terminology is used: (i) A space 

X has the weak cα-insertion property for ( )21, PP  if and only if for any functions g and f 

on X such that gfg ,≤  has property 1P  and f has property ,2P  then there exists a 

contra-α-continuous function h such that .fhg ≤≤  (ii) A space X has the cα-insertion 

property for ( )21, PP  if and only if for any functions g and f on X such that gfg ,<  

has property 1P  and f has property ,2P  then there exists a contra-α-continuous function 

h such that .fhg <<  (iii) A space X has the weakly cα-insertion property for ( )21, PP  

if and only if for any functions g and f on X such that gfg ,<  has property fP ,1  has 

property 2P  and gf −  has property ,2P  then there exists a contra-α-continuous 

function h such that .fhg <<  

In this paper, it is given a sufficient condition for the weak cα-insertion property. 

Also for a space with the weak cα-insertion property, we give a necessary and sufficient 

condition for the space to have the cα-insertion property. Several insertion theorems are 

obtained as corollaries of these results. 

2. The Main Result 

Before giving a sufficient condition for insertability of a contra-α-continuous 

function, the necessary definitions and terminology are stated.  

Let ( )τ,X  be a topological space. Then the family of all α-open, α-closed, semi-

open, semi-closed, preopen and preclosed will be denoted by ( ),, τα XO  ( ),, τα XC  

( ),, τXsO  ( ),, τXsC  ( )τ,XpO  and ( ),, τXpC  respectively. 

Definition 2.1. Let A be a subset of a topological space ( )., τX  We define the 

subsets Λ
A  and V

A  as follows: 

( ){ }τ∈⊇=Λ
,,: XOAOOA ∩     and    { ( )}.,,: τ∈⊆= XFAFFA

cV
∪  

In [7, 18, 23], Λ
A  is called the kernel of A. 

We define the subsets ( ) ( ) ( ) ( ) ( )ΛΛΛ αα AsApApAA
VV

,,,,  and ( )V
As  as 

follows: 
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( ) ( ){ },,,: τα∈⊇=α Λ
XOOAOOA ∩  

( ) ( ){ },,,: τα∈⊆=α XCFAFFA
V

∪   

( ) ( ){ },,,: τ∈⊇=Λ
XpOOAOOAp ∩  

( ) ( ){ },,,: τ∈⊆= XpCFAFFAp
V

∪  

( ) ( ){ }τ∈⊇=Λ
,,: XsOOAOOAs ∩   

and 

( ) ( ){ }.,,: τ∈⊆= XsCFAFFAs
V

∪  

( )Λα A  ( ( ) ( ))ΛΛ
AsAp ,.resp  is called the α-kernel (resp. prekernel, semi-kernel) of A. 

The following first two definitions are modifications of conditions considered in [14, 

15]. 

Definition 2.2. If ρ is a binary relation in a set S, then ρ  is defined as follows: 

yx ρ  if and only if vy ρ  implies vx ρ  and xu ρ  implies yu ρ  for any u and v in S. 

Definition 2.3. A binary relation ρ in the power set ( )XP  of a topological space X is 

called a strong binary relation in ( )XP  in case ρ satisfies each of the following 

conditions: 

(1) If ji BA ρ  for any { }mi ...,,1∈  and for any { },...,,1 nj ∈  then there exists a 

set C in ( )XP  such that CAi ρ  and jBC ρ  for any { }mi ...,,1∈  and any 

{ }....,,1 nj ∈  

(2) If ,BA ⊆  then .BA ρ   

(3) If ,BA ρ  then ( ) BA ⊆α Λ  and ( ).V
BA α⊆  

The concept of a lower indefinite cut set for a real-valued function was defined by 

Brooks [2] as follows: 

Definition 2.4. If f is a real-valued function defined on a space X and if 

( ){ } ( ) ( ){ }ℓℓℓ ≤∈⊆⊆<∈ xfXxfAxfXx :,:  for a real number ,ℓ  then ( )ℓ,fA  

is called a lower indefinite cut set in the domain of f at the level .ℓ  
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We now give the following main result: 

Theorem 2.1. Let g and f be real-valued functions on the topological space X, in 

which α-kernel sets are α-open, with .fg ≤  If there exists a strong binary relation ρ on 

the power set of X and if there exist lower indefinite cut sets ( )tfA ,  and ( )tgA ,  in the 

domain of f and g at the level t for each rational number t such that if ,21 tt <  then 

( ) ( ),,, 21 tgAtfA ρ  then there exists a contra-α-continuous function h defined on X 

such that .fhg ≤≤  

Proof. Theorem 2.1 in [22]. 

Theorem 2.2. Let 1P  and 2P  be cα-property and X be a space that satisfies the weak 

cα-insertion property for ( )., 21 PP  Also assume that g and f are functions on X such that 

gfg ,<  has property 1P  and f has property .2P  The space X has the cα-insertion 

property for ( )21, PP  if and only if there exist lower cut sets ( )1
3,

+−− n
gfA  and there 

exists a decreasing sequence { }nD  of subsets of X with empty intersection and such that 

for each n, nDX \  and ( )1
3,

+−− n
gfA  are completely separated by contra-α-

continuous functions. 

Proof. Theorem 2.1 in [21]. 

3. Applications 

The abbreviations ,ccα  cpc  and csc are used for contra-α-continuous, contra-

precontinuous and contra-semi-continuous, respectively. 

Before stating the consequences of Theorems 2.1, 2.2, we suppose that X is a 

topological space whose α-kernel sets are α-open. 

Corollary 3.1. If for each pair of disjoint preopen (resp. semi-open) sets 21, GG  of 

X, there exist α-closed sets 1F  and 2F  of X such that ,11 FG ⊆  22 FG ⊆  and 

,21 ∅=FF ∩  then X has the weak cα-insertion property for ( )cpccpc,  

( )( ).,. csccscresp  

Proof. Corollary 3.1 in [22]. 
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Corollary 3.2. If for each pair of disjoint preopen (resp. semi-open) sets ,, 21 GG  

there exist α-closed sets 1F  and 2F  such that 2211 , FGFG ⊆⊆  and ,21 ∅=FF ∩  

then every contra-precontinuous (resp. contra-semi-continuous) function is contra-α-

continuous. 

Proof. Corollary 3.2 in [22]. 

Corollary 3.3. If for each pair of disjoint preopen (resp. semi-open) sets 21, GG  of 

X, there exist α-closed sets 1F  and 2F  of X such that 2211 , FGFG ⊆⊆  and 

,21 ∅=FF ∩  then X has the cα-insertion property for ( )cpccpc,  ( )( ).,. csccscresp   

Proof. Let g and f  be real-valued functions defined on the X, such that f and g are 

cpc (resp. csc), and .fg <  Set ( ) ,2gfh +=  thus ,fhg <<  and by Corollary 3.2, 

since g and f are contra-α-continuous functions hence h is a contra-α-continuous 

function. 

Corollary 3.4. If for each pair of disjoint subsets 21, GG  of X, such that 1G  is 

preopen and 2G  is semi-open, there exist α-closed subsets 1F  and 2F  of X such that 

2211 , FGFG ⊆⊆  and ,21 ∅=FF ∩  then X have the weak cα-insertion property for 

( )csccpc,  and ( )., cpccsc  

Proof. Corollary 3.4 in [22]. 

Before stating consequences of Theorem 2.2, we state and prove the necessary 

lemmas. 

Lemma 3.1. The following conditions on the space X are equivalent: 

(i) For each pair of disjoint subsets 21, GG  of X, such that 1G  is preopen and 2G  is 

semi-open, there exist α-closed subsets 21, FF  of X such that 2211 , FGFG ⊆⊆  and 

.21 ∅=FF ∩  

(ii) If G is a semi-open (resp. preopen) subset of X which is contained in a preclosed 

(resp. semi-closed) subset F of X, then there exists an α-closed subset H of X such that 

( ) .FHHG ⊆α⊆⊆ Λ  

Proof. Lemma 3.1 in [22]. 
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Lemma 3.2. Suppose that X is a topological space. If each pair of disjoint subsets 

21, GG  of X, where 1G  is preopen and 2G  is semi-open, can be separated by α-closed 

subsets of X, then there exists a contra-α-continuous function [ ]1,0: →Xh  such that 

( ) { }02 =Gh  and ( ) { }.11 =Gh  

Proof. Lemma 3.2 in [22]. 

Lemma 3.3. Suppose that X is a topological space such that every two disjoint semi-

open and preopen subsets of X can be separated by α-closed subsets of X. The following 

conditions are equivalent: 

(i) Every countable covering of semi-closed (resp. preclosed) subsets of X has a 

refinement consisting of preclosed (resp. semi-closed) subsets of X such that for every 

,Xx ∈  there exists an α-closed subset of X containing x such that it intersects only 

finitely many members of the refinement. 

(ii) Corresponding to every decreasing sequence { }nG  of semi-open (resp. preopen) 

subsets of X with empty intersection there exists a decreasing sequence { }nF  of 

preclosed (resp. semi-closed) subsets of X such that ∩
∞

= ∅=
1n nF  and for every 

., nn FGn ⊆∈ N  

Proof. (i) ⇒ (ii) Suppose that { }nG  is a decreasing sequence of semi-open (resp. 

preopen) subsets of X with empty intersection. Then { }N∈nG
c
n :  is a countable 

covering of semi-closed (resp. preclosed) subsets of X. By hypothesis (i) and Lemma 3.1, 

this covering has a refinement { }N∈nVn :  such that every nV  is an α-closed subset of 

X and ( ) .
c
nn GV ⊆α Λ  By setting (( ) ),

c
nn VF
Λα=  we obtain a decreasing sequence of 

α-closed subsets of X with the required properties. 

(ii) ⇒ (i) Now if { }N∈nHn :  is a countable covering of semi-closed (resp. 

preclosed) subsets of X, we set for .,
1

c
n

i in HGn 






=∈ =∪N  Then { }nG  is a decreasing 

sequence of semi-open (resp. preopen) subsets of X with empty intersection. By (ii) there 

exists a decreasing sequence { }nF  consisting of preclosed (resp. semi-closed) subsets of 

X such that ∩
∞

= ∅=
1n nF  and for every ., nn FGn ⊆∈ N  Now we define the subsets 
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nW  of X in the following manner: 

1W  is an α-closed subset of X such that 11 WF
c ⊆  and ( ) .11 ∅=α Λ

GW ∩  

2W  is an α-closed subset of X such that ( ) 221 WFW
c ⊆α Λ

∪  and ( ) 22 GW ∩
Λα  

,∅=  and so on. (By Lemma 3.1, nW  exists). 

Then since { }N∈nF
c
n :  is a covering for X, hence { }N∈nWn :  is a covering for X 

consisting of α-closed sets. Moreover, we have  

  (i) ( ) .1+
Λ ⊆α nn WW  

 (ii) .n
c
n WF ⊆  

(iii) ∪
n

i in HW
1

.=⊆  

Now setting 11 WS =  and for ,2≥n  we set ( ).\ 11
Λ
−+ α= nnn WWS  

Then since ( ) nn WW ⊆α Λ
−1  and ,\1 nnn WWS +⊇  it follows that { }N∈nSn :  

consists of α-closed sets and covers X. Furthermore, ∅≠ji SS ∩  if and only if 

.1≤− ji  Finally, consider the following sets: 

,11 HS ∩  21 HS ∩  

,12 HS ∩  ,22 HS ∩  32 HS ∩  

,13 HS ∩  ,23 HS ∩  ,33 HS ∩  43 HS ∩  

⋮  

,1HSi ∩  ,2HSi ∩  ,3HSi ∩  ...,,4HSi ∩  1+ii HS ∩  

⋮  

These sets are α-closed sets, cover X and refine { }.: N∈nHn  In addition, ji HS ∩  can 

intersect at most the sets in its row, immediately above, or immediately below row. 

Hence if Xx ∈  and ,mn HSx ∩∈  then mn HS ∩  is an α-closed set containing x 

that intersects at most finitely many of sets .ji HS ∩  Consequently, { ,: N∈iHS ji ∩  
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}1...,,1 += ij  refines { }N∈nHn :  such that its elements are α-closed sets, and for 

every point in X we can find an α-closed set containing the point that intersects only 

finitely many elements of that refinement. 

Corollary 3.5. If every two disjoint semi-open and preopen subsets of X can be 

separated by α-closed subsets of X, and in addition, every countable  covering of semi-

closed (resp. preclosed) subsets of X has a refinement that consists of preclosed (resp. 

semi-closed) subsets of X such that for every point of X we can find an α-closed subset 

containing that point such that it intersects only a finite number of refining members, 

then X has the weakly cα-insertion property for (cpc, csc) (resp. (csc, cpc)).  

Proof. Since every two disjoint semi-open and preopen sets can be separated by 

α-closed subsets of X, therefore by Corollary 3.4, X has the weak cα-insertion property 

for ( )csccpc,  and ( )., cpccsc  Now suppose that f and g are real-valued functions on X 

with ,fg <  such that g is cpc (resp. csc), f is csc (resp. cpc) and gf −  is csc (resp. 

cpc). For every ,N∈n  set 

( ) { ( ) ( ) }.3:3,
11 +−+− ≤−∈=− nn

xgfXxgfA  

Since gf −  is csc (resp. cpc), hence ( )13, +−− n
gfA  is a semi-open (resp. preopen) 

subset of X. Consequently, { ( )}1
3,

+−− n
gfA  is a decreasing sequence of semi-open 

(resp. preopen) subsets of X and furthermore since ,0 gf −<  it follows that 

( )∩
∞

=
+− ∅=−

1

1 .3,
n

n
gfA  Now by Lemma 3.3, there exists a decreasing sequence 

{ }nD  of preclosed (resp. semi-closed) subsets of X such that ( ) n
n

DgfA ⊆− +− 13,  and 

∩
∞

= ∅=
1

.
n nD  But by Lemma 3.2, the pair ( )1

3,
+−− n

gfA  and nDX \  of semi-open 

(resp. preopen) and preopen (resp. semi-open) subsets of X can be completely separated 

by contra-α-continuous functions. Hence by Theorem 2.2, there exists a contra-α-

continuous function h defined on X such that ,fhg <<  i.e., X has the weakly 

cα-insertion property for (cpc, csc) (resp. (csc, cpc)). 
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