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Abstract 

This paper contains two directions of work. The first one gives material related to free 

action (an inner derivation) mappings on a group ring ℛ[�] which is a construction 

involving a group � and a ring ℛ and the dependent elements related to those mappings 

in ℛ[�]. The other direction deals with a generalization of the definition of dependent 

elements and free actions. We concentrate our study on dependent elements, free action 

mappings and those which satisfy ����	 = ��, � ∈ ℛ[�] and some fixed 	, � ∈ ℛ[�]. In 

the first part we work with one dependent element. In other words, there exists an 

element 	 ∈ ℛ[�] such that ����	 = 	�, � ∈ ℛ[�]. In second one, we characterize the 

two elements 	, � ∈ ℛ[�] which have the property ����	 = ��, � ∈ ℛ[�] and some 

fixed 	, � ∈ ℛ[�], when � is assumed to have additional properties like generalized a 

derivation mappings. 

1. Introduction  

A group ring was done by Mihalev and Zalesskii [1], denoted by ℛ[�], a construction 

involving a group � and a ring ℛ. Many references are given here, but the interested 

readers are invited to consult the book [1] or the surveys, [2, 3, 4]. Group rings have since 

found applications in many different branches of algebra, and there are naturally many 

open problems which are areas of active researches. 

For any � ∈ ℛ[�] has the form sums � = ∑ �ℊℊ∈� ℊ ��ℊ ∈  ℛ, ℊ ∈ ��, for which all 

but finitely many coefficients �ℊ = 0. Also, ℛ[�] with addition and multiplication 

occurred as follows: 
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� �ℊℊ∈� ℊ + � �ℊℊ∈� ℊ = ���ℊ + �ℊ�ℊ∈� ℊ 

and 

�� �ℊℊ∈� ℊ� �� ���∈� �� = � �ℊ��ℊ,�∈� ℊ�. 
The above definitions make ℛ[�] into an associative and unital ring. The multiplicative 

identity element is 1ℛ · 1�, where 1ℛ ∈ ℛ and 1� ∈ �, since 

1ℛ · 1� �� �ℊℊ∈� ℊ� = ��1ℛ�ℊ��1�ℊ�ℊ∈� =  � �ℊℊ∈� ℊ = ���ℊ1ℛ��ℊ1�� =  �� �ℊℊ∈� ℊ�ℊ∈� 1ℛ · 1� . 
The inverse of an element ∑ �ℊℊ∈� ℊ ∈ ℛ[�] has the form ∑ �ℊℊ∈� ℊ. Occasionally, ℛ[�] is not commutative. It is commutative iff together ℛ and � are commutative. We 

can also define an action of the ring ℛ on ℛ[�] by ��∑ �ℊℊ∈� ℊ� = ∑ ���ℊℊ∈� �ℊ  (� ∈ ℛ). 

Obviously, ℛ[�] is an extension of ℛ and a ring embedding ℛ ⟶ ℛ[�] given by � ⟶ � ⋅ 1�. If ℛ is a commutative, then the image of ℛ in ℛ[�] is contained in !�ℛ[�]� 

(!�ℛ[�]� center of ℛ[�]) such that: 

!�ℛ[�]� = "	 = � �ℊℊ∈� ℊ ∈ ℛ[�]: $ �� �ℊℊ∈� ℊ� $%& = � �$ℊ$'(
ℊ∈� ℊ for all $ ∈ �.  [5]. 

The mapping ℊ ⟶ 1ℛ ⋅ ℊ is a group embedding of � in ℛ[�]. Accordingly primness, ℛ[�] is prime iff ℛ is prime ring and � has no finite normal sub group. Also, ℛ[�] is a 

semiprime iff ℛ is semiprime ring and the order of each finite normal subgroup of � is 

regular in ℛ. In certain references (see [5, 6, 7]) were studied the properties of group 

rings. 

Derivations of group rings have been a topic for studies by Smith in [8], was one of 

the first to study the derivations in group rings. On the other hand, motivated by the 

works in [9, 10, 11, 12, 13, 14, 15] to see more results about derivation mappings on a 

group rings. 

In recent papers [16, 17, 18, 19, 20, 21, 22], properties of generalized derivations, 

central derivations and derivations of group rings over finite rings were studied. 
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In our study, we study generalized derivations of an ℛ[�], where � is a finite group 

over an integral domain ℛ with 1. As an application, we determine the characterizations 

of dependent elements of generalized derivations in ℛ[�] by taking a certain 

assumptions, we also show that for a derivations are free action associated with an 

automorphism and give some results about that. 

2. Main Results 

In this section ℛ[�] is a prime group ring, unless otherwise stated. Also, 0�ℛ[�]� 

denotes the set of all derivation mappings on ℛ[�] in our main results. 

Definition 2.1. An element 	 ∈ ℛ[�] is a dependent of � ∈ 012�ℛ[�]�, if ����	 =	�  ∀� ∈ ℛ[�]. The set of all dependent elements of � denotes 4���. If there exist no 

non-zero element 	 ∈ ℛ[�] which satisfies that if  ����	 = 	� for all � ∈ ℛ[�], then we 

say that � is a free action on ℛ[�], in other words, 4��� = 0. The set of all free action 

mappings on ℛ[�] denotes ℱ�ℛ[�]�. 

Example 2.2. Take ℛ be a field, � = {1� , ℊ, ℊ7 , . . ., ℊ8%&} (� cyclic group of 

order :) and the group ring ℛ[�]. Consider 	 ∈ ℛ[�]. We can define a mapping � ∶ℛ[�] ⟶ ℛ[�] by ���� = 	�	%&∀� ∈ ℛ[�] with a fixed 	. Then � ∈ 012�ℛ[�]� such 

that 	 ∈ 4��� (since ����	 = 	�	%&	 = 	�). 

Theorem 2.3. Let � ∈ 012�ℛ[�]�. Then 	 ∈ 4��� if and only if 	 ∈ !�ℛ[�]� and ��	� = 	. 
Proof. Let 	 ∈ 4���. Then, 

����	 = 	�  ∀� = � �ℊℊ∈� ℊ ∈ ℛ[�].                                    �1� 

Replacing � by �< in �1�, we get: 

���<�	 = 	�<  for all �, < ∈ ℛ[�].                                      �2� 

Multiplying �2� by > on the right, we get: 

 ����<	> = 	�<>  for all �, <, > ∈ ℛ[�].                                  �3� 

Replacing < by <> in �2�, we get: 

����<>	 = 	�<>  for all �, <, > ∈ ℛ[�].                               �4� 

Subtracting �4� from �3�, we get: 
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����<	> − ����<>	 = 0,   ∀�, <, > ∈ ℛ[�]. 

So, 

����<�	> − >	� = 0,   ∀�, <, > ∈ ℛ[�]. 
Replacing < by 	< and then: 

����	<[	 , >] = 0,   ∀�, <, > ∈ ℛ[�]. 
From �1�, implies that: 

	�<[	 , >] = 0,   ∀�, <, > ∈ ℛ[�]. 
By using semi-primeness of ℛ[�], we have: 

����	[	 , >] = 0,  ∀�, > ∈ ℛ[�]. 
That is, [	 , >] = 0, ∀�, > ∈ ℛ[�]. From semi-primeness of ℛ[�] again, we have 	[	 , >] = 0, ∀> = ∑ Bℊℊ∈� ℊ ∈ ℛ[�]. This implies that, 	 ∈ !�ℛ[�]�. 

Now, 	 = ∑ Cℊℊ∈� ℊ ∈ !�ℛ[�]�, we have ∑ C$ℊ$'(ℊ∈� ℊ = ∑ Cℊℊ∈� ℊ for all > ∈ ℛ[�]. This implies that: 

�∑ Cℊℊ∈� ℊ��∑ �$$∈� $� = ∑ �ℊℊ∈�,$∈� Cℊ'($ℊ. 

Thus, ��	<� = ��<	� for all < ∈ ℛ[�] and hence, ��	<� = ��<	� = 	<. This 

implies that:  

��	�< = ��<�	 = 	< = ���	� − 	�< = 0. 

Thus, ��	� = 	. 

Conversely, let ��	� = 	 and 	 = ∑ �ℊℊ∈� ℊ ∈ !�ℛ[�]�. Therefore,  

$�∑ �ℊℊ∈� ℊ�$%& = ∑ �$ℊ$'(ℊ∈� ℊ  for all $ ∈ �. 

Since � ∈ 012�ℛ[�]�,  

��	� = ��$�∑ �ℊℊ∈� ℊ�$%&� = ��∑ �$ℊ$'(ℊ∈� ℊ�. 

That is, 

���	� = ����	 = 	� = ��	�� = ��	�� = 	� for all � ∈ ℛ[�]. 
This implies that 	 ∈ 4���.  
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Theorem 2.4. Let � ∈ 012�ℛ[�]�, (� ≠ E, E an identity derivation). Then � ∈ℱ�ℛ[�]�.   

Proof. Let γ ∈ 4���. Then, ���γ� = γ�  for all � ∈ ℛ[�]. By using Theorem 2.3, it 

follows that, 	 ∈ !�ℛ[�]� and ��	� = 	. Then, ����	 = 	�  for all � ∈ ℛ[�]. 
That is, ����� − ��	 = 0, ∀� ∈ ℛ[�]. Since 	 ∈ !�ℛ[�]�, we get ����� − ��>	 =0, ∀> ∈ ℛ[�]. Since � ∈ 012�ℛ[�]� with the condition above, and from primeness of ℛ[�], so 	 = 0. So, � ∈ ℱ�ℛ[�]�.  

Theorem 2.5. Let � ∈ 012�ℛ[�]�, �be an injective. Then � + E ∈ ℱ�ℛ[�]�.  

Proof. It is clear that � + E ∈ 012�ℛ[�]�. Let γ ∈ 4�� + E�. By using Theorem 

2.3, it follows that 	 ∈ !�ℛ[�]� and �� + E��	� = 	. So, ��	� + 	 = 	 and hence ��	� = 0. Consequently, 	 ∈ GH2���. Since � be an injective, we have GH2��� = 0 and 

hence 	 = 0. This implies that � + E ∈ ℱ�ℛ[�]�. 

Theorem 2.6. Let � ∈ 012�ℛ[�]�. If I ∈ 012�ℛ[�]� defined by I��� =[����, �], ∀� ∈ ℛ[�], then I ∈ ℱ�ℛ[�]�. 

Proof. Let γ ∈ 4���. Then,  

I��	� = [����, �]	 = 	�  for all � = ∑ �ℊℊ∈� ℊ ∈ ℛ[�].                 �1� 

Since I ∈ 012�ℛ[�]� and replacing � by � + < and from properties of the commutators, 

we have: 

I�� + <� = [��� + <�, � + <]	 = [����, <]	 + [��<�, �]	 = 0, ∀� , < ∈ ℛ[�].  �2� 

Now, replacing < by � in �2� and from properties of the commutators again, implies 

that: 

0 = [����, �]	 + [����, �]	 = 2[����, �]	,  ∀� ∈ ℛ[�].                 �3� 

Replacing < by �< in�2�, we have: 

0 = [����, �<]	 + [���<�, �]	 

= �[����, <]	 + [����, �]<	 + [����< + ���<�, �]	 
 = �[����, <]	 + [����, �]<	 + ����[<, �]	 + [����, �]<	 + �[��<�, �]	, 

for all �, < ∈ ℛ[�]. That is,  

0 = ��[����, <]	 + [��<�, �]	� + 2[����, �]<	 + ����[<, �]	, ∀� , < ∈ ℛ[�]. �4� 
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Consequently, from �2� and �4�, we have: 

2[����, �]<	 + ����[< , �]	 = 0 for all �, < ∈ ℛ[�].                     �5� 

Replacing < by <	 in �5�, we have: 

0 = 2[����, �]<	7 + ����[<	 , �]	 = 2[����, �]<	7 + ����[< , �]	7 + ����<[	 , �]	7 

for all � , < ∈ ℛ[�]. 
That is  

�2[����, �]<	 + ����[< , �]	�	 + ����<[	 , �]	7 = 0 for all �, < ∈ ℛ[�].   �6� 

From �5� and �6�, we have  ����<[	 , �]	 = 0 for all �, < ∈ ℛ[�].                                 �7� 

Replacing < by �< in �7�, we have 

 �����<[	 , �]	 = 0 for all �, < ∈ ℛ[�].                                 �8� 

Multiplying �7� by �, we have 

�����<[	 , �]	 = 0 for all � , < ∈ ℛ[�].                                 �9� 

Subtracting �9� from �8�, we obtain  

[���� , �]<[	 , �]	 = 0∀� , < ∈ ℛ[�].                                   �10� 

Replacing < by 	< and from �1� and �10�, we have: 

	�<[	 , �]	 = 0 for all �, < ∈ ℛ[�].                                  �11� 

Replacing < by 	7< in�11�, we have: 

	�	7<[	 , �]	 = 0 for all � , < ∈ ℛ[�].                               �12� 

Multiplying �11� by 	 and replacing < by 	<, we have: 

	7�	<[	 , �]	 = 0 for all � , < ∈ ℛ[�].                                 �13� 

Subtracting �12� from �13�, we have: 

	�	� − �	�	<[	 , �]	 = 0 for all � , < ∈ ℛ[�].                            �14� 

Replacing < by <	 in �14�, we have: 	[	, �]	<	[	 , �]	 = 0 for all � , < ∈ ℛ[�]. 
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From semi-primeness of ℛ[�], it implies that 	[	 , �]	 = 0 for all � ∈ ℛ[�], but 	[��	�, 	]	 = 0. From �1�, it implies that 	N = 0, hence 	 = 0. Consequently, 4��� =0, so I ∈ ℱ�ℛ[�]�. 

Theorem 2.7. If 	ℛ[�] ⊆ ℛ[�]	 for some 	 ∈ ℛ[�]. Then there exists � ∈012�ℛ[�]� such that 	 ∈ 4���. 

Proof. Let γ = ∑ �ℊℊ∈� ℊ ∈ ℛ[�]. Given any � = ∑ �$$∈� $ ∈ ℛ[�]. Then, there 

exists < = ∑ �ℓℓ∈� ℓ ∈ ℛ[�] such that  

∑ ∑ �ℊℊ∈�,$∈� �ℊ'($ℊ∈�,$∈� ℊ = ∑ ∑ �ℓℊ∈�,$∈�ℓ∈�,ℊ∈� �ℓ'($ℓ. 

Define, � ∶ ℛ[�] ⟶ ℛ[�] by ���� = <, ∀� = ∑ �$$∈� $ ∈ ℛ[�]. Then � ∈012�ℛ[�]� with 	 ∈ 4���, since γ(����	 = <	 = 	�).  

Definition 2.8. Let � ∈ 012�ℛ[�]�. An element 	 ∈ ℛ[�] is said to be associated 

with an element Q ∈ ℛ[�], if ����	 = Q� for all � ∈ ℛ[�]. We shall denote R��� ={�	 , Q� ∶ ����	 = Q� for all � ∈ ℛ[�]} the set associated pairs of �.  

Example 2.9. Take ℛ = ℤ and � = TU = {� , V ∶  ord��� = 8, ord�V� = 2 , V�V =�%&}, that is, ℛ[�] has the form the dihedral group ring of order 8. Consider  

elements 	 , Q ∈ ℛ[�]. Consider � ∶ ℛ[�] ⟶ ℛ[�] as a mapping defined by ���� =Q�	%& for all � ∈ ℛ[�]. Then �	, Q� ∈ R���. 

Theorem 2.10. Let � ∈ 012�ℛ[�]�. Then 4��� leads to R���. 

Proof. According to Definition 2.8, and we put 	 = Q it is trivial to see that any 	 ∈ 4��� leads to 	 ∈ R���. 

Remark 3.11. R��� does not lead to 4���, see Example 2.9.  

Theorem 3.12. Let � ∈ 012�ℛ[�]�. If �	 , Q � ∈ R���, then �	8 , Q8� ∈ R��8� for 

every : ∈ ℕ. 

Proof. We need to prove that �8���	8 = Q8� for all � = ∑ �ℓℓ∈� ℓ ∈ ℛ[�] and for 

every : ∈ ℕ. Using the induction principal: For : = 1, we already have ����	 = Q�. 

For : = 2, �7���	7 = ������	�	 = Q����	 = Q7�. Now, if �Y���	Y = QY�, then �YZ&���	YZ& = ���Y���	Y�	 = ��QY��	 = QYZ&�. 

Definition 2.13. Let �, [ ∈ 012�ℛ[�]� and 	 = ∑ �ℊℊ∈� ℊ ∈ ℛ[�]. Then, � and [ is 

said to be dependently equivalent, if ����	 = [���	 for all � ∈ ℛ[�].  
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Recall that, ℛ[�] is a simple iff ℛ is simple ring and � is finite with |�| is invertible 

in ℛ, [6]. 

Example 2.14. For the same ℛ[�] data in Example 2.2 and � ∈ 012�ℛ[�]�, where ����	 = 	� for all � ∈ ℛ[�] with a fixed 	. Therefore, � and [ are dependently 

equivalent for any [ ∈ 012�ℛ[�]� such that [��� = 	�Q for some Q ∈ ℛ[�].  
 That is, if  	 = 0, then ����	 = 0 = 	� and hence ����	 = [���	 = 0. If  	 ≠ 0, 

from simpleness of ℛ, we obtain ℛ[�] = ℛ[�]	ℛ[�].  
 Now, since <	� ∈ ℛ[�]����	 ⊆ ℛ[�]	, we have that ℛ[�]	 = ℛ[�]. Then, there 

exists Q ∈ ℛ[�] such that Q	 = 1. Then [��� = 	�Q. So, [���	 = �	�Q�	 = 	�, but ����� − [����	 = 	� − 	� = 0. Therefore, � and [ are dependently equivalent. 

Remark 2.15. It might not be true that ���� = [��� for all � = ∑ �$$∈� $ ∈ ℛ[�], 
but then at least ����� − [����	 = 0, see Example 2.9.  

Theorem 2.16. Let � ∈ 012�ℛ[�]�. If �	, Q� ∈ R���, then 	 ∈ !�ℛ[�]�. 

Proof. Suppose that �	, Q� ∈ R���. Then we have 

 ����	 = Q� for all � ∈ ℛ[�].                                              �1� 

Replacing � by �< in �1�, where < ∈ ℛ[�], we get 

 ���<�	 = ����<	 = Q�<.                                              �2� 

Right multiplication of �2� by > ∈ ℛ[�], we get 

 ���<�	> = ����<	> = Q�<>.                                          �3� 

Replacing < by <> in �2�, we get  ����<>	 = Q�<>.                                                       �4� 

Subtracting �4� from �3�, we get  ����<[	, >] = 0 for all �, <, > ∈ ℛ[�].                                   �5� 

From primeness of ℛ[�], � ≠ Θ and �5� gives [	, >] = 0 and this means 	 ∈ !�ℛ[�]�.  

Corollary 2.17. Let � ∈ 012�ℛ[�]�. If  �	, Q� ∈ R���, then 	 ∈ !�ℛ[�]�. 

Proof. The result is obtained according to Theorem 2.16. 

For the next theorem we need the following well known, a mapping � ∶ ℛ[�] ⟶ℛ[�] is a �^, _�-derivation, if ���<� = ����^�<� + _�����<� for all �, < ∈ ℛ[�], 
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where ^ and _ are two an automorphisms on ℛ[�]. The set of all �^, _�-derivation 

mappings on a ℛ[�] will be denoted by 0�`,a��ℛ[�]�, [22].  

Theorem 2.18. Let � ∈ 0�`,a��ℛ[�]�. Then � ∈ ℱ�ℛ[�]�. 

Proof. Easily we get,  ^ + � ∈ 0�`,a��ℛ[�]� and ^ + � has dependent element 	 ∈ ℛ[�] that gives the facts, �^ + �����	 = ^���	 + ����	 = 	� for all � ∈ ℛ[�]. 
From dependentness of 	, we have ^���	 = 0, ∀� =∈ ℛ[�]. Consequently, ^�b� =0, ∀� ∈ ℛ[�]. Thus, 	�	 = 0 and hence 	 = 0 and so � ∈ ℱ�ℛ[�]�. 

Theorem 2.19. Let �, _ ∈ 0�`��ℛ[�]� such that ���� = ^��� + _���, ∀� ∈ ℛ[�]. 
If �	, Q� ∈ R���, then �	, Q� ∈ R�_� or  	Q = Q	. 

Proof. Assume that �	, Q� ∈ R���, then we have ����	 = Q� for all � ∈ ℛ[�]. This 

gives: 

����	 = ^���	 + _���	 = Q� for all � ∈ ℛ[�].                         �1� 

Replacing � by �< in �1�, we have ���<�	 = ^���<	 + _���<	 + �_�<�	 = Q�<. 

So we have: 

^���<	 + _���^�<�	 + _���_�<�	 = Q�< for all �, < ∈ ℛ[�]. 
That is, 

^���<	 + _����^�<� + _�<��	 = ^���<	 + _�����<�	 

= ^���<	 + _���Q� = Q�< 

for all �, < ∈ ℛ[�]. 
^���<	 + _���Q� − Q�< = 0,  ∀�, < ∈ ℛ[�].                                �2� 

Replacing < by 	< in �2� and from �1� using _���	 = Q� − ^���	, we get 

Q�<	 − ^���	<	 + ^���Q	< − Q�	< = 0 for all �, < ∈ ℛ[�]               �3� 

In �3�, replace < by <Q to get 

Q�<Q	 − ^���	<Q	 + ^���Q	<Q − Q�	<Q = 0 for all �, < ∈ ℛ[�].        �4� 

Right multiplication of �3� by Q, we get 

Q�<	Q − ^���	<	Q + ^���Q	<Q − Q�	<Q = 0, ∀�, < ∈ ℛ[�]            �5� 

Subtracting �4� from �5�, we get 
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Q�<[	, Q] − ^���	<[	, Q] = 0,  ∀�, < ∈ ℛ[�].                              �6� 

That is �Q� − ^���	�<[	, Q] = 0,  ∀�, < ∈ ℛ[�].                                     �7� 

From primeness of ℛ[�], we get ^���	 = Q� or [	, Q] = 0 for all � ∈ ℛ[�]. 
3. Conclusion 

In this paper, we presented the concept of dependent elements of a derivation 

mappings on a prime group rings and the concept of free action mappings. We chose the 

center of a prime group ring as a tool to obtain the necessary and sufficient condition of 

dependent elements and study of the special characteristics of its approved elements and 

a statement.      
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