

Homomorphic Relations and Goursat Lemma

Brice Réné Amougou Mbarga

Laboratory of Algebra, Geometry and Application, University of Yaoundé I, P.O.Box: 812, Yaoundé, Cameroon; e-mail: renebrice3@gmail.com

Abstract

Over the past years various authors have investigated the famous elementary result in group theory called Goursat's lemma for characterizing the subgroups of the direct product $A \times B$ of two groups A, B. Given a homomorphic relation $\rho = (R, A, B)$ where A and B are groups and R is a subgroup of $A \times B$. What can one say about the structure of ρ . In 1950 Riguet proved a theorem that allows us to obtain a characterization of ρ induces by examining the sections of the direct factors. The purpose of this paper is two-fold. A first and more concrete aim is to provide a containment relation property between homomorphic relation. Indeed if ρ, σ are homomorphic relations, we provide necessary and sufficient conditions for $\sigma \leq \rho$. A second and more abstract aim is to introduce a generalization of some notions in homological algebra. We define the concepts of θ -exact. We also obtain some interesting results. We use these results to find a generalization of Lambek Lemma.

1 Introduction

In 1889 Goursat proved that every subgroup of the direct product of two groups is determined by an isomorphism between factor groups of subgroups of the given groups. A like result is here shown for a general class of algebras, by a method due to Riguet [10]. Categories of algebras called Mal'cev varieties were investigated in [7], where it was pointed out that they should be suitable for developing some basic tools of homological algebra, thus serving as a non-additive generalization of the usual category of modules. A Mal'cev variety is a variety of algebras equipped with a ternary operation m(x, y, z)

2020 Mathematics Subject Classification: 20E07.

Received: May 30, 2021; Accepted: June 14, 2022

Keywords and phrases: Goursat, variety, relation, homomorphic, Mal'cev.

satisfying the equations m(x, x, z) = z and m(x, z, z) = x. A famous result by Mal'cev asserts that this syntactical condition is in fact equivalent to a semantical one, namely that in the category of algebras any two congruence relations permute. Equivalent conditions were contained in [10], asserting that every homomorphic relation is difunctional and that every reflexive homomorphic relation is already a congruence. Examples are modules, groups, and many more. To presented our notation, we briefly review some notions from the calculus of binary relations. A binary relation between two sets A and B is a triple $\rho = (R, A, B)$, where R is a subset of the Cartesian product $A \times B$, called the graph of ρ . One usually writes $x\rho y$ to mean $(x, y) \in R$. Relations of special interest are the identity relation 1_A on A, the converse $\rho^- = (R^-, B, A)$ of ρ and the relative product $\rho\sigma = (RS, A, C)$ of ρ and $\sigma = (S, B, C)$. These are defined by

$$\begin{array}{ll} x1_A x' & \Leftrightarrow & x = x' \\ y\rho^- x & \Leftrightarrow & x\rho y \\ x\rho\sigma z & \Leftrightarrow & x\rho y \text{ and } y\sigma z \text{ for some } y \in B. \end{array}$$

We write $\rho \leq \rho' = (R', A, B)$ if R is a subset of R'. If $\rho = (R, A, A)$, one says that ρ is symmetric if $\rho^- \leq \rho$, ρ is reflexive if $1_A \leq \rho$, and transitive if $\rho\rho \leq \rho$. An equivalence relation satisfies all of these three. A relation $\rho = (R, A, B)$ is diffunctional if $\rho\rho^-\rho = \rho$ and means that

$$(x\rho y \text{ and } x\rho y' \text{ and } x'\rho y') \Rightarrow x'\rho y$$

this implication is illustrated by the following diagram

We shall write $x\rho = \{y | x\rho y\}$; more generally, for any subset A' of A, $A'\rho = \rho A' = \{y \in B | x\rho y \text{ for some } x \in A'\}$ and $B\rho^- = \rho^- B = \{x | x\rho y \text{ for some } y \in B\}$. In particular, $A'\rho$ is the range of ρ , $B\rho^-$ is its domain. The following rules are well known

and will be used freely:

$$\rho(\sigma\tau) = (\rho\sigma)\tau$$

$$\rho 1_B = \rho = 1_A \rho$$

$$(\rho\sigma)^- = \sigma^- \rho^-$$

$$A'(\rho\sigma) = (A'\rho)\sigma$$

We often take advantage of the first and last of these to write without brackets $\rho\sigma\tau$ and $A'\rho\sigma$. Let A, B be groups the neutral element of each group A and B, with slight abuse of notation, will be written ' e'. To generalize the notion of a homomorphism of a group A into a group B, we call the binary relation $\rho = (R, A, B)$ homomorphic if and only if

- (i) $e\rho e$,
- (*ii*) if $x\rho y$, then $x^{-1}\rho y^{-1}$,

(*iii*) if
$$x\rho y$$
 and $z\rho t$, then $xz\rho yt$.

Clearly then, ρ is homomorphic if and only if its graph R is a subgroup of the direct product $A \times B$. It is easily verified that the identity relation, the converse of a homomorphic relation and the relative product of two homomorphic relations are all homomorphic. Our general approach to giving a characterization of containment of homomorphic relations and to provide applications of it is given.

2 Generalizing Some Theorems of Group Theory

Riguet has used homomorphic relations to proved a theorem which describes the subgroup structure of a direct product in terms of the sections of the factor groups. One also verifies for any homomorphic $\rho = (R, A, B)$ that if A' is a subgroup of A then $A'\rho$ is a subgroup of B. A homomorphic equivalence relation is usually called a congruence relation. We shall call subcongruence any homomorphic relation which is transitive and symmetric without necessarily being reflexive. If $\kappa = (K, A, A)$ is such a subcongruence on A, it induces a congruence relation $(K, A\kappa, A\kappa)$ on its range $A\kappa$. The factor group of $A\kappa$ modulo κ is usually written $A\kappa/\kappa$, we shall call it a subfactor of

A. We denote by Con(A) the set of congruence of A. We define $\bar{\kappa} = (\bar{K}, A, A\kappa/\kappa)$ by (2,1) $a\bar{\kappa}(a'\kappa)$ iff $a\kappa a'$, so that a $a\bar{\kappa} = a\kappa$. A simple calculation shows that (2,2) $\bar{\kappa}\bar{\kappa}^- = \kappa, \bar{\kappa}^-\bar{\kappa} = 1_{A\kappa/\kappa}$, whence (2.3) $\bar{\kappa}^-\kappa\bar{\kappa} = 1_{A\kappa/\kappa}$. Note that $\bar{\kappa}$ induces the well-known natural homomorphism $(\bar{K}, A\kappa, A\kappa/\kappa)$.

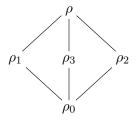
Theorem 2.1. (*Riguet*) If $\rho = (R, A_1, A_2)$ is a difunctional homomorphic relation (between two groups), then

- (i) $\kappa_1 = \rho \rho^-$ is a subcongruence of A_1 with range $A_2 \rho^-$,
- (*ii*) $\kappa_2 = \rho^- \rho$ is a subcongruence of A_2 with range $A_1 \rho$,
- (iii) ρ induces an isomorphism μ between subfactors $\frac{A_1\kappa_1}{\kappa_1}$ and $\frac{A_2\kappa_2}{\kappa_2}$ such that $(a\kappa_1) = \mu(b\kappa_2)$ if and only if $a\rho b$.

Conversely, every isomorphism between subfactors $A_1\kappa_1/\kappa_1$ and $A_2\kappa_2/\kappa_2$ of (groups) A_1 and A_2 respectively are isomorphic if there exists a difunctional homomorphic relation $\rho = (R, A_1, A_2)$ such that $\rho\rho^- = \kappa_1$ and $\rho^-\rho = \kappa_2$.

Theorem 2.1 give Goursat's characterization of the subgroups of the direct product of two groups, since all such subgroups are graphs of homomorphic relations between the groups.

Example 2.2. Let $\rho = (R, S_2, S_2)$ homomorphic relations. We want to describe all relation of ρ . It suffices to determine all subgroups of $S_2 \times S_2$. First, the subgroups of S_2 are $\langle (1) \rangle, \langle (12) \rangle$. Consider the subnormal quotient groups A/B where $B \leq A \subseteq S_2$. If |A/B| = 1, one has $\langle (1) \rangle / \langle (1) \rangle$; $\langle (12) \rangle / \langle (12) \rangle$. It has only the identity maps between the 2 different quotients; so there are 4 different isomorphisms $\theta : A/B \rightarrow C/D$ yielding the 4 different subproducts $\langle (1) \rangle \times \langle (1) \rangle, V_1 = \langle (1) \rangle \times S_2, V_2 = S_2 \times \langle (1) \rangle$ and $S_2 \times S_2$. If |A/B| = 2, one has $\langle (12) \rangle / \langle (1) \rangle$; therefore the isomorphism $\langle (12) \rangle / \langle (1) \rangle \rightarrow \langle (12) \rangle / \langle (1) \rangle$; gives the subgroup $V_3 = \{((1), (1)), ((12), (12))\}$. Let $\rho_0 = (\{1, 1\}, S_2, S_2), \rho_1 = (V_1, S_2, S_2), \rho_2 = (V_2, S_2, S_2), \rho_3 = (V_3, S_2, S_2), \rho = (S_2 \times S_2, S_2, S_2)$.



Hasse diagram of ρ

Definition 2.3. Given homomorphic relation $\rho = (R, A_1, A_2)$, we say that the corresponding $Q(\rho) = (A_1\kappa_1, \kappa_1, A_2\kappa_2, \kappa_2, \mu)$ of Theorem 2.1 is the Goursat quintuple for ρ .

Let V be a group. We call $\rho = (\theta : A_1 \kappa_1 / \kappa_1 \to A_2 \kappa_2 / \kappa_2)$ a V-relation of ρ if V is its Goursat type, i.e., if $A_i \kappa_i / \kappa_i \cong V, i = 1, 2$ and we denote by $S_{\rho}(V)$ the set of all V-relation of ρ and M_V the set of all isomorphis $\theta_i : A_i \kappa_i / \kappa_i \to V$. Given morphisms $\theta_i : A_i \kappa_i / \kappa_i \to V$ in $M_V, i = 1, 2$, composition yields an isomorphism $\theta = \theta_1 \theta_2^{-1} : A_1 \kappa_1 / \kappa_1 \to A_2 \kappa_2 / \kappa_2$. Hence there is a map $\Pi : M_V \times M_V \to S_{\rho}(V)$ defined by

$$\Pi(\theta_1, \theta_2) = \theta_1 \theta_2^{-1}.$$

Let V, V' be groups. We now describe and analyze the partial order of relation of $\rho = (L, A_1, A_2)$ in terms of pairs of morphisms.

Proposition 2.4. Let $(\theta_i : A_i \kappa_i / \kappa_i \to V) \in M_V$ and $(\theta'_i : A_i \kappa'_i / \kappa'_i \to V') \in M_{V'}$, i = 1, 2, be morphisms, let $\theta = \Pi(\theta_1, \theta_2), \theta' = \Pi(\theta'_1, \theta'_2)$ with corresponding relation $\rho = (L, A_1, A_2), \rho' = (L', A_1, A_2)$. Then $\rho' \leq \rho$ if and only if

- (i) $(A_i \kappa'_i, \kappa'_i) \leq (A_i \kappa_i, \kappa_i)$ and
- (ii) $\lambda_1 = \lambda_2$ where $\lambda_i = \theta_i \varphi_i(\theta'_i)^{-1}$, and $\varphi_i : A_i \kappa'_i / \kappa'_i \to A_i \kappa_i / \kappa_i$ is the homomorphism defined by $(a\kappa'_i)^{\varphi_i} = a\kappa_i$, for $a \in A_i \kappa'_i$, i = 1, 2.

$$\begin{array}{c|c} A_1\kappa_1/\kappa_1 \xrightarrow{\theta_1} V & V \xleftarrow{\theta_2} A_2\kappa_2/\kappa_2 \\ & \varphi_1 & & & & & & & \\ \varphi_1 & & & & & & & \\ A_1\kappa_1'/\kappa_1' \xrightarrow{\theta_1'} V' & V' \xleftarrow{\theta_2'} A_2\kappa_2'/\kappa_2' \end{array}$$

Proof. We define ρ' and ρ as follows

$$a_1'\rho'a_2' \Leftrightarrow \theta_1'(a_1'\kappa_1') = \theta_2'(a_2'\kappa_2'),$$

and

$$a_1\rho a_2 \Leftrightarrow \theta_1(a_1\kappa_1) = \theta_2(a_2\kappa_2).$$

Then $\rho' \leq \rho$ if and only if $(A_i \kappa'_i, \kappa'_i) \leq (A_i \kappa_i, \kappa_i)$, i = 1, 2, and, for $a_1 \rho' a_2$ we have $\theta_1(a_1 \kappa_1) = \theta_2(a_2 \kappa_2)$. But if $a_1 \rho' a_2$, then

$$\theta_i(a_i\kappa_i) = \theta_i(\varphi_i(a_i\kappa_i')) = \lambda_i(\theta_i'(a_i\kappa_i')).$$

So $\theta_1(a_1\kappa_1) = \theta_2(a_2\kappa_2)$ if and only if $\lambda_1 = \lambda_2$.

Corollary 2.5. With the notation of Proposition 2.4, $\rho \leq \rho'$ if and only if

- (i) $(A_i \kappa'_i, \kappa'_i) \leq (A_i \kappa_i, \kappa_i),$
- (*ii*) $\varphi_1 \theta = \theta' \varphi_2$.

3 Generalization to Other Algebraic Systems

By an *n*-ary operation f_n on a set A is understood a mapping which assigns to each *n*-tuple of elements of A a single element of A, n being some finite non-negative integer. In particular, a 0-ary operation is a constant. Let F be a set of operation symbols with prescribed subscripts. An algebra, in the sense of Birkhoff ([7]), is a representation of such a set of symbols as *n*-ary operations on a set A, and may be denoted by A. If A' is a subset of A closed under all the operations in F, the induced representation A' is called a subalgebra of A. The Cartesian product $A \times B$ of two similar algebras is turned into another algebra of the same kind, called the direct product of A and B. For all algebra variety, the following statements are equivalent: [7]:

- (M1) there exists ternary operation m(x, y, z) satisfying the equation : m(x, y, y) = xand m(y, y, z) = z.
- (M2) If R and S are congruence relations on any algebra, then RS = RS.
- (M3) If ρ is any homomorphic relation between two algebras : $\rho\rho^-\rho = \rho$.

An algebraic category satisfying any of these equivalent conditions is called a Mal'cev variety.

Example 3.1. *i*) Groups are Mal'cev variety with $m(x, y, z) = xy^{-1}z$.

- ii) Rings, Modules and Boolean algebras are Mal'cev varieties.
- iii) Heyting algebras are Mal'cev variety where m can be given by:

$$m(x, y, z) = ((z \to y) \to x) \land ((x \to y) \to z)$$

The isomorphism theorem due to J. Lambek may be stated as follows:

Theorem 3.2. [11](Goursat's lemma)

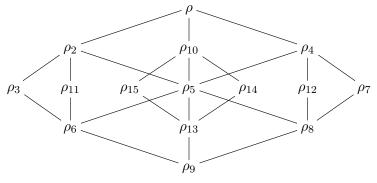
Every homomorphic relation $\rho = (R, A_1, A_2)$ between two algebra in a Mal'cev variety gives rise to an isomorphism between factors of subalgebras of A_1 and A_2 as follows:

$$\frac{A_1\rho}{\rho^-\rho} \cong \frac{A_2\rho^-}{\rho\rho^-}$$

as every isomorphism $\mu : A'_1/\theta \cong A'_2/\theta'$ where θ and θ' are congruence relations on subalgebra A'_1 of A_1 and A'_2 of A_2 respectively, gives rise to homomorphic relation ρ from A_1 to A_2 where we put $a\rho b$ if and only if $\theta(a) = \mu \theta'(b)$ and $\theta(a), \theta(b)$ are equivalence classes.

Example 3.3. A ring is an algebra $R = \langle R, +, ., -, 0 \rangle$ where + and . are binary, - is unary and 0 is nullary operations. Consider ring $R = \mathbb{Z}_4 \times \mathbb{Z}_4$ we want to determine all subrings of R. It suffices to determine all subgroups of $\mathbb{Z}_4 \times \mathbb{Z}_4$. First, the subgroups of $\mathbb{Z}_4 \times \mathbb{Z}_4$ are $\langle 0 \rangle, \langle 2 \rangle$ and \mathbb{Z}_4 . Consider the subnormal quotient groups A/B where $B \leq A \subseteq \mathbb{Z}_4$. If |A/B| = 1, one has $\langle 0 \rangle / \langle 0 \rangle, \langle 2 \rangle / \langle 2 \rangle, \mathbb{Z}_4 / \mathbb{Z}_4$. It has only the identity maps between the 3 different quotients; so there are 9 different isomorphisms $\theta : A/B \to$

C/D yielding the 9 different subproducts such that $H_1 = \mathbb{Z}_4 \times \mathbb{Z}_4$, with $\theta_1 : \mathbb{Z}_4/\mathbb{Z}_4 \to \mathbb{Z}_4$ $\mathbb{Z}_4/\mathbb{Z}_4, [0, 1, 2, 3] \mapsto [0, 1, 2, 3]$ similarly we have $H_2 = \{(0,0), (1,0), (2,0), (0,2), (1,2), (2,2), (3,0), (3,2)\},\$ $H_3 = \{(0,0), (1,0), (2,0), (3,0)\},\$ $H_4 = \{(0,0), (0,1), (2,0), (2,1), (0,2), (2,2), (0,3), (2,3)\},\$ $H_5 = \{(0,0), (2,0), (0,2), (2,2)\},\$ $H_6 = \{(0,0), (2,0)\},\$ $H_7 = \{(0,0), (0,1), (0,2), (0,3)\},\$ $H_8 = \{(0,0), (0,2)\},\$ $H_9 = \{(0,0)\}.$ If |A/B| = 2, one has $\langle 2 \rangle / \langle 0 \rangle$, $\mathbb{Z}_4 / \langle 2 \rangle$, there are 4 different subproducts such that $H_{10} = \{(0,0), (2,0), (0,2), (2,2), (1,1), (1,3), (3,1), (3,3)\},\$ $H_{11} = \{(0,0), (0,2), (2,1), (2,3)\},\$ $H_{12} = \{(0,0), (0,2), (2,1), (2,3)\},\$ $H_{13} = \{(0,0), (2,2)\}.$ If |A/B| = 4, one has $\mathbb{Z}_4/\langle 0 \rangle$, there are 2 different subproducts such that $H_{14} = \{(0,0), (1,1), (2,2), (3,3)\},\$ $H_{15} = \{(0,0), (1,3), (2,2), (3,1)\}.$ The number of subring of R is $N^{(s)}(2^2, 2^2) = 12$ (see [13] for instant) and (0,3) = $(2,1)(2,3) \notin H_{11}, (3,3) = (1,3)(3,1) \notin H_{15}, (0,3) = (2,1)(2,3) \notin H_{12}.$ This allows us to determine all subring of $\mathbb{Z}_4 \times \mathbb{Z}_4$ it is $(H_i)_{1 \le i \le 14}$ with $i \ne 11, 12, 15$. One has $(H_i)_{1 \le i \le 9}$, H_{13} ideals of R and H_1, H_{10}, H_{14} are unitary subrings. Let $\rho_i =$ $(H_i, \mathbb{Z}_4, \mathbb{Z}_4).$



Hasse diagram of ρ

Now we shall recall a generalization of Lambek Lemma for module theory due to B. Davvaz [8].

Lemma 3.4. (A Generalization of Lambek Lemma). Let

$$\begin{array}{ccc} A' \xrightarrow{\alpha_1} & A \xrightarrow{\alpha_2} & A'' \\ \downarrow \psi & & \downarrow \varphi & & \downarrow \theta \\ B' \xrightarrow{\beta_1} & B \xrightarrow{\beta_2} & B'' \end{array}$$

be a commutative diagram such that the first row is U-exact $(Im\alpha_1 = \alpha_2^{-1}(U))$ and the second row is U'-exact $(Im\beta_1 = \beta_2^{-1}(U'))$. Then φ induces an isomorphism

$$\frac{Im\varphi\cap Im\beta_1}{Im\varphi\alpha_1} \cong \frac{(\theta\alpha_2)^{-1}(U')}{\alpha_2^{-1}(U) + \varphi^{-1}(0)}$$

Definition 3.5. A sequence of algebras and homomorphisms

$$A \xrightarrow{\lambda} B \xrightarrow{\mu} C$$

is said to be θ -exact (where $\theta \in Con(C)$) at B if $Im\lambda = \ker_{\theta} \mu = \mu^{-}\theta\mu$.

Let us consider the following diagram

$$A \xrightarrow[\alpha_{2}]{\lambda_{2}} B \xrightarrow{\mu} C$$

$$\alpha_{2} \bigvee_{\alpha_{1}} \bigvee_{\beta} \bigvee_{\beta} \gamma_{2} \bigvee_{\gamma_{1}} \gamma_{1}$$

$$D \xrightarrow{\lambda} E \xrightarrow{\mu_{1}} F$$

or if we prefer:

and assume that $\beta[\lambda_1, \lambda_2] = \lambda[\alpha_1, \alpha_2]$ (that is, $\beta\lambda_i = \lambda\alpha_i, i = 1, 2$) and $\langle \gamma_1, \gamma_2 \rangle = \mu = \langle \mu_1, \mu_2 \rangle \beta$, (that is, $\gamma_i \mu = \mu_i \beta, i = 1, 2$). Then

$$Im(\lambda_1 - \lambda_2) = \ker_{\theta} \mu, \ Im\lambda = \ker_{\theta'}(\mu_1 - \mu_2).$$

Here

$$Im\lambda = \{\lambda d | d \in D\}$$

is the usual image of λ and ker $_{\theta} \mu = \mu^{-} \theta \mu$; $\mu \mu^{-} = 1$, with the graph

 $\{(b_1, b_2) \in B \times B | (\mu b_1, \mu b_2) \in \theta\}$

and $\ker_{\theta'}(\mu_1 - \mu_2) = \{e \in E | (\mu_1 e, \mu_2 e) \in \theta'\}$ we also write $Im(\lambda_1 - \lambda_2) = \lambda_1 \lambda_2^-$ for the relation B with graph

$$\{(\lambda_1 a, \lambda_2 a) | a \in A\}.$$

Proposition 3.6. In the diagram as above, if the first row is θ -exact and the second row is θ' -exact, in malcev variety. Let $\mu\mu^- = 1$, then

$$\frac{Im(B \to E) \cap Im(D \to E)}{Im(A \rightrightarrows E)} \cong \frac{\ker_{\theta'}(B \to F)}{Ker_{\theta}(B \to C) \vee Ker(B \to E)}$$

where the congruence relation in the denominator of right hand side is assumed to be restricted to algebra in the numerator.

Here \lor *denotes the join in lattice of congruence relation on B.*

Proof. We consider the homomorphic relation ρ from B to E defined as follows:

$$e\rho b \Leftrightarrow \exists b' \in B(e = \beta b' \land (\mu b', \mu b) \in \theta \land (\mu_1 e, \mu_2 e) \in \theta').$$

Note that equation $(\mu_1 e, \mu_2 e) \in \theta'$ on the right can be replaced by $(\mu_1 \beta b, \mu_2 \beta b) \in \theta'$, since

$$\mu_i e = \mu_i \beta b' = \gamma_i \mu b' = \gamma_i \mu b = \mu_i \beta b, (i = 1, 2).$$

We now calculate:

$$e \in \rho\rho^{-}E = \rho B \iff \exists b, b' \in B(e = \beta b' \land (\mu b', \mu b) \in \theta \land (\mu_{1}e, \mu_{2}e) \in \theta')$$

$$\Leftrightarrow \exists b' \in B(e = \beta b' \land e \in \ker_{\theta'}(\mu_{1} - \mu_{2}))$$

$$\Leftrightarrow e \in Im\beta \land e \in Im\lambda;$$

$$e\rho\rho^{-}e' \iff e\beta\mu^{-}\theta\mu\mu^{-}\theta\mu\beta^{-}e' \land (\mu_{1}e, \mu_{2}e) \in \theta' \land (\mu_{1}e', \mu_{2}e') \in \theta'$$

$$\Leftrightarrow e\beta\mu^{-}\theta\mu\beta^{-}e' \land e, e' \in \ker_{\theta'}(\mu_{1} - \mu_{2}) \text{ since } \mu\mu^{-} = 1$$

$$\Leftrightarrow e\beta Im(\lambda_{1} - \lambda_{2})\beta^{-}e' \land e, e' \in Im\lambda$$

$$\Leftrightarrow eIm(\beta\lambda_{1} - \beta\lambda_{2})e'.$$

Note that

$$\beta Im(\lambda_1 - \lambda_2)\beta^- = \beta \lambda_2 \lambda_2^- \beta^-$$

= $Im(\beta \lambda_1 - \beta \lambda_2)$
= $Im(\lambda \alpha_1 - \lambda \alpha_2)$
= $\lambda \alpha_1 \alpha_2^- \lambda^-$

so that the condition $e, e' \in Im\lambda$ is automatically fulfilled.

$$b \in \rho^{-}\rho B = \rho^{-}E \quad \Leftrightarrow \quad \exists e \in E, \exists b' \in B(e = \beta b' \land (\mu b', \mu b) \in \theta \land (\mu_{1}\beta b, \mu_{2}\beta b) \in \theta')$$
$$\Leftrightarrow \quad (\mu_{1}\beta b, \mu_{2}\beta b) \in \theta'$$
$$\Leftrightarrow \quad b \in \ker_{\theta'}(\mu_{1}\beta - \mu_{2}\beta)$$

$$b\rho^{-}\rho b' \iff b\mu^{-}\theta\mu\beta^{-}\beta\mu^{-}\theta\mu b' \wedge (\mu_{1}\beta b, \mu_{2}\beta) \in \theta' \wedge (\mu_{1}\beta b', \mu_{2}\beta b') \in \theta'$$
$$\Leftrightarrow b(\ker_{\theta}\mu \vee \ker\beta)b' \wedge b, b' \in \ker_{\theta'}(\mu_{1}\beta - \mu_{2}\beta).$$

The last step in the proof uses the fact that the congruence relation $\mu^-\theta\mu$ and $\beta^-\beta$ on B commute and that their relative product is their join in the lattice of congruence relations on B.

If Im1 and ker 2 denote the two sides of the isomorphism in Proposition 3.6, we have $Im1 \cong \ker 2$, use Theorem 3.2.

References

- B. R. Amougou Mbarga, Anticommutativity and n-schemes, Earthline Journal of Mathematical Sciences 6(1) (2021), 175-186. https://doi.org/10.34198/ejms.6121.175186
- B. R. Amougou Mbarga, Geometrical methods in Goursat categories, *Earthline Journal of Mathematical Sciences* 6(2) (2021), 397-426. https://doi.org/10.34198/ejms.6221.397426
- [3] B. R. Amougou Mbarga, Triangular scheme revisited in the light of *n*-permutable categories, *Earthline Journal of Mathematical Sciences* 6(1) (2021), 105-116. https://doi.org/10.34198/ejms.6121.105116
- [4] B. R. Amougou Mbarga, Some remarks on Goursat lemma, *Algebraic Structures and Their Applications* 8(2) (2021), 119-129. https://doi.org/10.29252/as.2021.2022
- [5] B. R. Amougou Mbarga, Decomposition of Goursat matrices and subgroups of Z_m × Z_n, *Earthline Journal of Mathematical Sciences* 6(2) (2021), 439-454. https://doi.org/10.34198/ejms.6221.439454
- [6] D. D. Anderson and V. Camillo, Subgroups of direct products of groups, ideals and subrings of direct products of rings, and Goursat's lemma, *Rings, modules and representations*, 1-12, Contemp. Math., 480, *Amer. Math. Soc., Providence, RI*, 2009. https://doi.org/10.2307/2004580
- [7] S. Burris and H.P. Sankappanavar, A course in universal algebra, Graduate Texts in Mathematics, 78, *Springer-Verlag, New York-Berlin*, 1981.
- [8] B. Davvaz and H. Shabani-Solt, A generalization of homological algebra, J. Korean Math. Soc. 39(6) (2002), 881-898.
- [9] E. Goursat, Sur les substitutions orthogonales et les divisions régulières de l'espace, Ann. Sci. École Norm. Sup. (3) 6 (1889), 9-102. https://doi.org/10.24033/asens.317
- [10] J. Lambek, Goursat's theorem and the Zassenhaus lemma, Canad. J. Math. 10 (1958), 45-56. https://doi.org/10.4153/CJM-1958-005-6
- [11] J. Lambek, On the ubiquity of Malâcev operations, Contemp. Math. 131 (1992), 135-146.

- [12] D. Lewis, Containment of Subgroups in a Direct Product of Groups, Doctoral dissertation, Binghamton University, 2011.
- [13] L. Tóth, Counting subgrings of the ring $\mathbb{Z}_n \times \mathbb{Z}_m$, 2018. arXiv:1801.07120v1,22
- [14] L. Tóth, Subgroups of finite abelian groups having rank two via Goursat's lemma, *Tatra Mt. Math. Publ.* 59 (2014), 93-103. https://doi.org/10.2478/tmmp-2014-0021

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted, use, distribution and reproduction in any medium, or format for any purpose, even commercially provided the work is properly cited.