Homomorphic Relations and Goursat Lemma

Brice Réné Amougou Mbarga
Laboratory of Algebra, Geometry and Application, University of Yaoundé I,
P.O.Box: 812, Yaoundé, Cameroon; e-mail: renebrice3 @ gmail.com

Abstract

Over the past years various authors have investigated the famous elementary result in group theory called Goursat's lemma for characterizing the subgroups of the direct product $A \times B$ of two groups A, B. Given a homomorphic relation $\rho=$ (R, A, B) where A and B are groups and R is a subgroup of $A \times B$. What can one say about the structure of ρ. In 1950 Riguet proved a theorem that allows us to obtain a characterization of ρ induces by examining the sections of the direct factors. The purpose of this paper is two-fold. A first and more concrete aim is to provide a containment relation property between homomorphic relation. Indeed if ρ, σ are homomorphic relations, we provide necessary and sufficient conditions for $\sigma \leq \rho$. A second and more abstract aim is to introduce a generalization of some notions in homological algebra. We define the concepts of θ-exact. We also obtain some interesting results. We use these results to find a generalization of Lambek Lemma.

1 Introduction

In 1889 Goursat proved that every subgroup of the direct product of two groups is determined by an isomorphism between factor groups of subgroups of the given groups. A like result is here shown for a general class of algebras, by a method due to Riguet [10]. Categories of algebras called Mal'cev varieties were investigated in [7], where it was pointed out that they should be suitable for developing some basic tools of homological algebra, thus serving as a non-additive generalization of the usual category of modules. A Mal'cev variety is a variety of algebras equipped with a ternary operation $m(x, y, z)$

[^0]satisfying the equations $m(x, x, z)=z$ and $m(x, z, z)=x$. A famous result by Mal'cev asserts that this syntactical condition is in fact equivalent to a semantical one, namely that in the category of algebras any two congruence relations permute. Equivalent conditions were contained in [10], asserting that every homomorphic relation is difunctional and that every reflexive homomorphic relation is already a congruence. Examples are modules, groups, and many more. To presented our notation, we briefly review some notions from the calculus of binary relations. A binary relation between two sets A and B is a triple $\rho=(R, A, B)$, where R is a subset of the Cartesian product $A \times B$, called the graph of ρ. One usually writes $x \rho y$ to mean $(x, y) \in R$. Relations of special interest are the identity relation 1_{A} on A, the converse $\rho^{-}=\left(R^{-}, B, A\right)$ of ρ and the relative product $\rho \sigma=(R S, A, C)$ of ρ and $\sigma=(S, B, C)$. These are defined by
\[

$$
\begin{aligned}
x 1_{A} x^{\prime} & \Leftrightarrow x=x^{\prime} \\
y \rho^{-} x & \Leftrightarrow x \rho y \\
x \rho \sigma z & \Leftrightarrow x \rho y \text { and } y \sigma z \text { for some } y \in B
\end{aligned}
$$
\]

We write $\rho \leq \rho^{\prime}=\left(R^{\prime}, A, B\right)$ if R is a subset of R^{\prime}. If $\rho=(R, A, A)$, one says that ρ is symmetric if $\rho^{-} \leq \rho, \rho$ is reflexive if $1_{A} \leq \rho$, and transitive if $\rho \rho \leq \rho$. An equivalence relation satisfies all of these three. A relation $\rho=(R, A, B)$ is difunctional if $\rho \rho^{-} \rho=\rho$ and means that

$$
\left(x \rho y \text { and } x \rho y^{\prime} \text { and } x^{\prime} \rho y^{\prime}\right) \Rightarrow x^{\prime} \rho y
$$

this implication is illustrated by the following diagram

We shall write $x \rho=\{y \mid x \rho y\}$; more generally, for any subset A^{\prime} of $A, A^{\prime} \rho=\rho A^{\prime}=$ $\left\{y \in B \mid x \rho y\right.$ for some $\left.x \in A^{\prime}\right\}$ and $B \rho^{-}=\rho^{-} B=\{x \mid x \rho y$ for some $y \in B\}$. In particular, $A^{\prime} \rho$ is the range of $\rho, B \rho^{-}$is its domain. The following rules are well known
and will be used freely:

$$
\begin{aligned}
\rho(\sigma \tau) & =(\rho \sigma) \tau \\
\rho 1_{B} & =\rho=1_{A} \rho \\
(\rho \sigma)^{-} & =\sigma^{-} \rho^{-} \\
A^{\prime}(\rho \sigma) & =\left(A^{\prime} \rho\right) \sigma
\end{aligned}
$$

We often take advantage of the first and last of these to write without brackets $\rho \sigma \tau$ and $A^{\prime} \rho \sigma$. Let A, B be groups the neutral element of each group A and B, with slight abuse of notation, will be written' e^{\prime}. To generalize the notion of a homomorphism of a group A into a group B, we call the binary relation $\rho=(R, A, B)$ homomorphic if and only if
(i) e ρe,
(ii) if $x \rho y$, then $x^{-1} \rho y^{-1}$,
(iii) if $x \rho y$ and $z \rho t$, then $x z \rho y t$.

Clearly then, ρ is homomorphic if and only if its graph R is a subgroup of the direct product $A \times B$. It is easily verified that the identity relation, the converse of a homomorphic relation and the relative product of two homomorphic relations are all homomorphic. Our general approach to giving a characterization of containment of homomorphic relations and to provide applications of it is given .

2 Generalizing Some Theorems of Group Theory

Riguet has used homomorphic relations to proved a theorem which describes the subgroup structure of a direct product in terms of the sections of the factor groups. One also verifies for any homomorphic $\rho=(R, A, B)$ that if A^{\prime} is a subgroup of A then $A^{\prime} \rho$ is a subgroup of B. A homomorphic equivalence relation is usually called a congruence relation. We shall call subcongruence any homomorphic relation which is transitive and symmetric without necessarily being reflexive. If $\kappa=(K, A, A)$ is such a subcongruence on A, it induces a congruence relation $(K, A \kappa, A \kappa)$ on its range $A \kappa$. The factor group of $A \kappa$ modulo κ is usually written $A \kappa / \kappa$, we shall call it a subfactor of
A. We denote by $\operatorname{Con}(A)$ the set of congruence of A. We define $\bar{\kappa}=(\bar{K}, A, A \kappa / \kappa)$ by $(2,1) a \bar{\kappa}\left(a^{\prime} \kappa\right)$ iff $a \kappa a^{\prime}$, so that a $a \bar{\kappa}=a \kappa$. A simple calculation shows that $(2,2) \bar{\kappa} \bar{\kappa}^{-}=\kappa, \bar{\kappa}^{-} \bar{\kappa}=1_{A \kappa / \kappa}$, whence (2.3) $\bar{\kappa}^{-} \kappa \bar{\kappa}=1_{A \kappa / \kappa}$. Note that $\bar{\kappa}$ induces the well-known natural homomorphism ($\bar{K}, A \kappa, A \kappa / \kappa$).

Theorem 2.1. (Riguet) If $\rho=\left(R, A_{1}, A_{2}\right)$ is a difunctional homomorphic relation (between two groups), then
(i) $\kappa_{1}=\rho \rho^{-}$is a subcongruence of A_{1} with range $A_{2} \rho^{-}$,
(ii) $\kappa_{2}=\rho^{-} \rho$ is a subcongruence of A_{2} with range $A_{1} \rho$,
(iii) ρ induces an isomorphism μ between subfactors $\frac{A_{1} \kappa_{1}}{\kappa_{1}}$ and $\frac{A_{2} \kappa_{2}}{\kappa_{2}}$ such that $\left(a \kappa_{1}\right)=\mu\left(b \kappa_{2}\right)$ if and only if $a \rho b$.

Conversely, every isomorphism between subfactors $A_{1} \kappa_{1} / \kappa_{1}$ and $A_{2} \kappa_{2} / \kappa_{2}$ of (groups) A_{1} and A_{2} respectively are isomorphic if there exists a difunctional homomorphic relation $\rho=\left(R, A_{1}, A_{2}\right)$ such that $\rho \rho^{-}=\kappa_{1}$ and $\rho^{-} \rho=\kappa_{2}$.

Theorem 2.1 give Goursat's characterization of the subgroups of the direct product of two groups, since all such subgroups are graphs of homomorphic relations between the groups.

Example 2.2. Let $\rho=\left(R, S_{2}, S_{2}\right)$ homomorphic relations. We want to describe all relation of ρ. It suffices to determine all subgroups of $S_{2} \times S_{2}$. First, the subgroups of S_{2} are $\langle(1)\rangle,\langle(12)\rangle$. Consider the subnormal quotient groups A / B where $B \unlhd A \subseteq$ S_{2}. If $|A / B|=1$, one has $\langle(1)\rangle /\langle(1)\rangle ;\langle(12)\rangle /\langle(12)\rangle$. It has only the identity maps between the 2 different quotients; so there are 4 different isomorphisms $\theta: A / B \rightarrow$ C / D yielding the 4 different subproducts $\langle(1)\rangle \times\langle(1)\rangle, V_{1}=\langle(1)\rangle \times S_{2}, V_{2}=S_{2} \times$ $\langle(1)\rangle$ and $S_{2} \times S_{2}$. If $|A / B|=2$, one has $\langle(12)\rangle /\langle(1)\rangle$; therefore the isomorphism $\langle(12)\rangle /\langle(1)\rangle \rightarrow\langle(12)\rangle /\langle(1)\rangle$; gives the subgroup $V_{3}=\{((1),(1)),((12),(12))\}$. Let $\rho_{0}=\left(\{1,1\}, S_{2}, S_{2}\right), \rho_{1}=\left(V_{1}, S_{2}, S_{2}\right), \rho_{2}=\left(V_{2}, S_{2}, S_{2}\right), \rho_{3}=\left(V_{3}, S_{2}, S_{2}\right), \rho=$ $\left(S_{2} \times S_{2}, S_{2}, S_{2}\right)$.

Hasse diagram of ρ

Definition 2.3. Given homomorphic relation $\rho=\left(R, A_{1}, A_{2}\right)$, we say that the corresponding $Q(\rho)=\left(A_{1} \kappa_{1}, \kappa_{1}, A_{2} \kappa_{2}, \kappa_{2}, \mu\right)$ of Theorem 2.1 is the Goursat quintuple for ρ.

Let V be a group. We call $\rho=\left(\theta: A_{1} \kappa_{1} / \kappa_{1} \rightarrow A_{2} \kappa_{2} / \kappa_{2}\right)$ a V-relation of ρ if V is its Goursat type, i.e., if $A_{i} \kappa_{i} / \kappa_{i} \cong V, i=1,2$ and we denote by $S_{\rho}(V)$ the set of all V-relation of ρ and M_{V} the set of all isomorphis $\theta_{i}: A_{i} \kappa_{i} / \kappa_{i} \rightarrow V$. Given morphisms $\theta_{i}: A_{i} \kappa_{i} / \kappa_{i} \rightarrow V$ in $M_{V}, i=1,2$, composition yields an isomorphism $\theta=\theta_{1} \theta_{2}^{-1}: A_{1} \kappa_{1} / \kappa_{1} \rightarrow A_{2} \kappa_{2} / \kappa_{2}$. Hence there is a map $\Pi: M_{V} \times M_{V} \rightarrow S_{\rho}(V)$ defined by

$$
\Pi\left(\theta_{1}, \theta_{2}\right)=\theta_{1} \theta_{2}^{-1}
$$

Let V, V^{\prime} be groups. We now describe and analyze the partial order of relation of $\rho=$ (L, A_{1}, A_{2}) in terms of pairs of morphisms.

Proposition 2.4. Let $\left(\theta_{i}: A_{i} \kappa_{i} / \kappa_{i} \rightarrow V\right) \in M_{V}$ and $\left(\theta_{i}^{\prime}: A_{i} \kappa_{i}^{\prime} / \kappa_{i}^{\prime} \rightarrow V^{\prime}\right) \in M_{V^{\prime}}, i=$ 1,2 , be morphisms, let $\theta=\Pi\left(\theta_{1}, \theta_{2}\right), \theta^{\prime}=\Pi\left(\theta_{1}^{\prime}, \theta_{2}^{\prime}\right)$ with corresponding relation $\rho=$ $\left(L, A_{1}, A_{2}\right), \rho^{\prime}=\left(L^{\prime}, A_{1}, A_{2}\right)$. Then $\rho^{\prime} \leqslant \rho$ if and only if
(i) $\left(A_{i} \kappa_{i}^{\prime}, \kappa_{i}^{\prime}\right) \leqslant\left(A_{i} \kappa_{i}, \kappa_{i}\right)$ and
(ii) $\lambda_{1}=\lambda_{2}$ where $\lambda_{i}=\theta_{i} \varphi_{i}\left(\theta_{i}^{\prime}\right)^{-1}$, and $\varphi_{i}: A_{i} \kappa_{i}^{\prime} / \kappa_{i}^{\prime} \rightarrow A_{i} \kappa_{i} / \kappa_{i}$ is the homomorphism defined by $\left(a \kappa_{i}^{\prime}\right)^{\varphi_{i}}=a \kappa_{i}$, for $a \in A_{i} \kappa_{i}^{\prime}, i=1,2$.

Proof. We define ρ^{\prime} and ρ as follows

$$
a_{1}^{\prime} \rho^{\prime} a_{2}^{\prime} \Leftrightarrow \theta_{1}^{\prime}\left(a_{1}^{\prime} \kappa_{1}^{\prime}\right)=\theta_{2}^{\prime}\left(a_{2}^{\prime} \kappa_{2}^{\prime}\right)
$$

and

$$
a_{1} \rho a_{2} \Leftrightarrow \theta_{1}\left(a_{1} \kappa_{1}\right)=\theta_{2}\left(a_{2} \kappa_{2}\right) .
$$

Then $\rho^{\prime} \leq \rho$ if and only if $\left(A_{i} \kappa_{i}^{\prime}, \kappa_{i}^{\prime}\right) \leqslant\left(A_{i} \kappa_{i}, \kappa_{i}\right), i=1,2$, and, for $a_{1} \rho^{\prime} a_{2}$ we have $\theta_{1}\left(a_{1} \kappa_{1}\right)=\theta_{2}\left(a_{2} \kappa_{2}\right)$. But if $a_{1} \rho^{\prime} a_{2}$, then

$$
\theta_{i}\left(a_{i} \kappa_{i}\right)=\theta_{i}\left(\varphi_{i}\left(a_{i} \kappa_{i}^{\prime}\right)\right)=\lambda_{i}\left(\theta_{i}^{\prime}\left(a_{i} \kappa_{i}^{\prime}\right)\right)
$$

So $\theta_{1}\left(a_{1} \kappa_{1}\right)=\theta_{2}\left(a_{2} \kappa_{2}\right)$ if and only if $\lambda_{1}=\lambda_{2}$.

Corollary 2.5. With the notation of Proposition 2.4. $\rho \leqslant \rho^{\prime}$ if and only if
(i) $\left(A_{i} \kappa_{i}^{\prime}, \kappa_{i}^{\prime}\right) \leqslant\left(A_{i} \kappa_{i}, \kappa_{i}\right)$,
(ii) $\varphi_{1} \theta=\theta^{\prime} \varphi_{2}$.

3 Generalization to Other Algebraic Systems

By an n-ary operation f_{n} on a set A is understood a mapping which assigns to each n-tuple of elements of A a single element of A, n being some finite non-negative integer. In particular, a 0 -ary operation is a constant. Let F be a set of operation symbols with prescribed subscripts. An algebra, in the sense of Birkhoff ([7]), is a representation of such a set of symbols as n-ary operations on a set A, and may be denoted by A. If A^{\prime} is a subset of A closed under all the operations in F, the induced representation A^{\prime} is called a subalgebra of A. The Cartesian product $A \times B$ of two similar algebras is turned into another algebra of the same kind, called the direct product of A and B. For all algebra variety, the following statements are equivalent: [7]:
(M1) there exists ternary operation $m(x, y, z)$ satisfying the equation: $m(x, y, y)=x$ and $m(y, y, z)=z$.
(M2) If R and S are congruence relations on any algebra, then $R S=R S$.
(M3) If ρ is any homomorphic relation between two algebras : $\rho \rho^{-} \rho=\rho$.
An algebraic category satisfying any of these equivalent conditions is called a Mal'cev variety.

Example 3.1. i) Groups are Mal'cev variety with $m(x, y, z)=x y^{-1} z$.
ii) Rings, Modules and Boolean algebras are Mal'cev varieties.
iii) Heyting algebras are Mal'cev variety where m can be given by:

$$
m(x, y, z)=((z \rightarrow y) \rightarrow x) \wedge((x \rightarrow y) \rightarrow z)
$$

The isomorphism theorem due to J. Lambek may be stated as follows:
Theorem 3.2. [11](Goursat's lemma)
Every homomorphic relation $\rho=\left(R, A_{1}, A_{2}\right)$ between two algebra in a Mal'cev variety gives rise to an isomorphism between factors of subalgebras of A_{1} and A_{2} as follows:

$$
\frac{A_{1} \rho}{\rho^{-} \rho} \cong \frac{A_{2} \rho^{-}}{\rho \rho^{-}}
$$

as every isomorphism $\mu: A_{1}^{\prime} / \theta \cong A_{2}^{\prime} / \theta^{\prime}$ where θ and θ^{\prime} are congruence relations on subalgebra A_{1}^{\prime} of A_{1} and A_{2}^{\prime} of A_{2} respectively, gives rise to homomorphic relation ρ from A_{1} to A_{2} where we put a ρ b if and only if $\theta(a)=\mu \theta^{\prime}(b)$ and $\theta(a), \theta(b)$ are equivalence classes.

Example 3.3. A ring is an algebra $R=\langle R,+, .,-, 0\rangle$ where + and . are binary, - is unary and 0 is nullary operations. Consider ring $R=\mathbb{Z}_{4} \times \mathbb{Z}_{4}$ we want to determine all subrings of R. It suffices to determine all subgroups of $\mathbb{Z}_{4} \times \mathbb{Z}_{4}$. First, the subgroups of $\mathbb{Z}_{4} \times \mathbb{Z}_{4}$ are $\langle 0\rangle,\langle 2\rangle$ and \mathbb{Z}_{4}. Consider the subnormal quotient groups A / B where $B \unlhd A \subseteq \mathbb{Z}_{4}$. If $|A / B|=1$, one has $\langle 0\rangle /\langle 0\rangle,\langle 2\rangle /\langle 2\rangle, \mathbb{Z}_{4} / \mathbb{Z}_{4}$. It has only the identity maps between the 3 different quotients;so there are 9 different isomorphisms $\theta: A / B \rightarrow$
C / D yielding the 9 different subproducts such that $H_{1}=\mathbb{Z}_{4} \times \mathbb{Z}_{4}$, with $\theta_{1}: \mathbb{Z}_{4} / \mathbb{Z}_{4} \rightarrow$ $\mathbb{Z}_{4} / \mathbb{Z}_{4},[0,1,2,3] \mapsto[0,1,2,3]$ similarly we have
$H_{2}=\{(0,0),(1,0),(2,0),(0,2),(1,2),(2,2),(3,0),(3,2)\}$,
$H_{3}=\{(0,0),(1,0),(2,0),(3,0)\}$,
$H_{4}=\{(0,0),(0,1),(2,0),(2,1),(0,2),(2,2),(0,3),(2,3)\}$,
$H_{5}=\{(0,0),(2,0),(0,2),(2,2)\}$,
$H_{6}=\{(0,0),(2,0)\}$,
$H_{7}=\{(0,0),(0,1),(0,2),(0,3)\}$,
$H_{8}=\{(0,0),(0,2)\}$,
$H_{9}=\{(0,0)\}$.
If $|A / B|=2$, one has $\langle 2\rangle /\langle 0\rangle, \mathbb{Z}_{4} /\langle 2\rangle$, there are 4 different subproducts such that
$H_{10}=\{(0,0),(2,0),(0,2),(2,2),(1,1),(1,3),(3,1),(3,3)\}$,
$H_{11}=\{(0,0),(0,2),(2,1),(2,3)\}$,
$H_{12}=\{(0,0),(0,2),(2,1),(2,3)\}$,
$H_{13}=\{(0,0),(2,2)\}$.
If $|A / B|=4$, one has $\mathbb{Z}_{4} /\langle 0\rangle$, there are 2 different subproducts such that
$H_{14}=\{(0,0),(1,1),(2,2),(3,3)\}$,
$H_{15}=\{(0,0),(1,3),(2,2),(3,1)\}$.
The number of subring of R is $N^{(s)}\left(2^{2}, 2^{2}\right)=12$ (see [13] for instant) and $(0,3)=$ $(2,1)(2,3) \notin H_{11},(3,3)=(1,3)(3,1) \notin H_{15},(0,3)=(2,1)(2,3) \notin H_{12}$. This allows us to determine all subring of $\mathbb{Z}_{4} \times \mathbb{Z}_{4}$ it is $\left(H_{i}\right)_{1 \leq i \leq 14}$ with $i \neq 11,12,15$. One has $\left(H_{i}\right)_{1 \leq i \leq 9}, H_{13}$ ideals of R and H_{1}, H_{10}, H_{14} are unitary subrings. Let $\rho_{i}=$ $\left(H_{i}, \mathbb{Z}_{4}, \mathbb{Z}_{4}\right)$.

Now we shall recall a generalization of Lambek Lemma for module theory due to B. Davvaz [8].

Lemma 3.4. (A Generalization of Lambek Lemma). Let

be a commutative diagram such that the first row is U-exact $\left(\operatorname{Im} \alpha_{1}=\alpha_{2}^{-1}(U)\right)$ and the second row is U^{\prime}-exact $\left(\operatorname{Im} \beta_{1}=\beta_{2}^{-1}\left(U^{\prime}\right)\right)$. Then φ induces an isomorphism

$$
\frac{\operatorname{Im} \varphi \cap \operatorname{Im} \beta_{1}}{\operatorname{Im} \varphi \alpha_{1}} \cong \frac{\left(\theta \alpha_{2}\right)^{-1}\left(U^{\prime}\right)}{\alpha_{2}^{-1}(U)+\varphi^{-1}(0)}
$$

Definition 3.5. A sequence of algebras and homomorphisms

$$
A \xrightarrow{\lambda} B \xrightarrow{\mu} C
$$

is said to be θ-exact (where $\theta \in C o n(C)$) at B if $\operatorname{Im} \lambda=\operatorname{ker}_{\theta} \mu=\mu^{-} \theta \mu$.
Let us consider the following diagram

or if we prefer:

and assume that $\beta\left[\lambda_{1}, \lambda_{2}\right]=\lambda\left[\alpha_{1}, \alpha_{2}\right]$ (that is, $\left.\beta \lambda_{i}=\lambda \alpha_{i}, i=1,2\right)$ and $<\gamma_{1}, \gamma_{2}>$ $\mu=<\mu_{1}, \mu_{2}>\beta$, (that is, $\gamma_{i} \mu=\mu_{i} \beta, i=1,2$). Then

$$
\operatorname{Im}\left(\lambda_{1}-\lambda_{2}\right)=\operatorname{ker}_{\theta} \mu, \quad \operatorname{Im} \lambda=\operatorname{ker}_{\theta^{\prime}}\left(\mu_{1}-\mu_{2}\right)
$$

Here

$$
\operatorname{Im} \lambda=\{\lambda d \mid d \in D\}
$$

is the usual image of λ and $\operatorname{ker}_{\theta} \mu=\mu^{-} \theta \mu ; \mu \mu^{-}=1$, with the graph

$$
\left\{\left(b_{1}, b_{2}\right) \in B \times B \mid\left(\mu b_{1}, \mu b_{2}\right) \in \theta\right\}
$$

and $\operatorname{ker}_{\theta^{\prime}}\left(\mu_{1}-\mu_{2}\right)=\left\{e \in E \mid\left(\mu_{1} e, \mu_{2} e\right) \in \theta^{\prime}\right\}$ we also write $\operatorname{Im}\left(\lambda_{1}-\lambda_{2}\right)=\lambda_{1} \lambda_{2}^{-}$for the relation B with graph

$$
\left\{\left(\lambda_{1} a, \lambda_{2} a\right) \mid a \in A\right\}
$$

Proposition 3.6. In the diagram as above, if the first row is θ-exact and the second row is θ^{\prime}-exact, in malcev variety. Let $\mu \mu^{-}=1$, then

$$
\frac{\operatorname{Im}(B \rightarrow E) \cap \operatorname{Im}(D \rightarrow E)}{\operatorname{Im}(A \rightrightarrows E)} \cong \frac{\operatorname{ker}_{\theta^{\prime}}(B \rightarrow F)}{\operatorname{Ker}_{\theta}(B \rightarrow C) \vee \operatorname{Ker}(B \rightarrow E)}
$$

where the congruence relation in the denominator of right hand side is assumed to be restricted to algebra in the numerator.
Here \vee denotes the join in lattice of congruence relation on B.
Proof. We consider the homomorphic relation ρ from B to E defined as follows:

$$
e \rho b \Leftrightarrow \exists b^{\prime} \in B\left(e=\beta b^{\prime} \wedge\left(\mu b^{\prime}, \mu b\right) \in \theta \wedge\left(\mu_{1} e, \mu_{2} e\right) \in \theta^{\prime}\right)
$$

Note that equation $\left(\mu_{1} e, \mu_{2} e\right) \in \theta^{\prime}$ on the right can be replaced by $\left(\mu_{1} \beta b, \mu_{2} \beta b\right) \in \theta^{\prime}$, since

$$
\mu_{i} e=\mu_{i} \beta b^{\prime}=\gamma_{i} \mu b^{\prime}=\gamma_{i} \mu b=\mu_{i} \beta b,(i=1,2)
$$

We now calculate:

$$
\begin{aligned}
e \in \rho \rho^{-} E=\rho B & \Leftrightarrow \exists b, b^{\prime} \in B\left(e=\beta b^{\prime} \wedge\left(\mu b^{\prime}, \mu b\right) \in \theta \wedge\left(\mu_{1} e, \mu_{2} e\right) \in \theta^{\prime}\right) \\
& \Leftrightarrow \exists b^{\prime} \in B\left(e=\beta b^{\prime} \wedge e \in \operatorname{ker}_{\theta^{\prime}}\left(\mu_{1}-\mu_{2}\right)\right) \\
& \Leftrightarrow e \in \operatorname{Im} \beta \wedge e \in \operatorname{Im} \lambda \\
e \rho \rho^{-} e^{\prime} & \Leftrightarrow e \beta \mu^{-} \theta \mu \mu^{-} \theta \mu \beta^{-} e^{\prime} \wedge\left(\mu_{1} e, \mu_{2} e\right) \in \theta^{\prime} \wedge\left(\mu_{1} e^{\prime}, \mu_{2} e^{\prime}\right) \in \theta^{\prime} \\
& \Leftrightarrow e \beta \mu^{-} \theta \mu \beta^{-} e^{\prime} \wedge e, e^{\prime} \in \operatorname{ker}_{\theta^{\prime}}\left(\mu_{1}-\mu_{2}\right) \quad \text { since } \mu \mu^{-}=1 \\
& \Leftrightarrow e \beta \operatorname{Im}\left(\lambda_{1}-\lambda_{2}\right) \beta^{-} e^{\prime} \wedge e, e^{\prime} \in \operatorname{Im} \lambda \\
& \Leftrightarrow e \operatorname{Im}\left(\beta \lambda_{1}-\beta \lambda_{2}\right) e^{\prime} .
\end{aligned}
$$

Note that

$$
\begin{aligned}
\beta \operatorname{Im}\left(\lambda_{1}-\lambda_{2}\right) \beta^{-} & =\beta \lambda_{2} \lambda_{2}^{-} \beta^{-} \\
& =\operatorname{Im}\left(\beta \lambda_{1}-\beta \lambda_{2}\right) \\
& =\operatorname{Im}\left(\lambda \alpha_{1}-\lambda \alpha_{2}\right) \\
& =\lambda \alpha_{1} \alpha_{2}^{-} \lambda^{-}
\end{aligned}
$$

so that the condition $e, e^{\prime} \in \operatorname{Im} \lambda$ is automatically fulfilled.

$$
\begin{aligned}
& b \in \rho^{-} \rho B=\rho^{-} E \Leftrightarrow \exists e \in E, \exists b^{\prime} \in B\left(e=\beta b^{\prime} \wedge\left(\mu b^{\prime}, \mu b\right) \in \theta \wedge\right. \\
&\left.\left(\mu_{1} \beta b, \mu_{2} \beta b\right) \in \theta^{\prime}\right) \\
& \Leftrightarrow\left(\mu_{1} \beta b, \mu_{2} \beta b\right) \in \theta^{\prime} \\
& \Leftrightarrow b \in \operatorname{ker}_{\theta^{\prime}}\left(\mu_{1} \beta-\mu_{2} \beta\right) \\
& b \rho^{-} \rho b^{\prime} \Leftrightarrow b \mu^{-} \theta \mu \beta^{-} \beta \mu^{-} \theta \mu b^{\prime} \wedge\left(\mu_{1} \beta b, \mu_{2} \beta\right) \in \theta^{\prime} \wedge\left(\mu_{1} \beta b^{\prime}, \mu_{2} \beta b^{\prime}\right) \in \theta^{\prime} \\
& \Leftrightarrow b\left(\operatorname{ker}_{\theta} \mu \vee \operatorname{ker} \beta\right) b^{\prime} \wedge b, b^{\prime} \in \operatorname{ker}_{\theta^{\prime}}\left(\mu_{1} \beta-\mu_{2} \beta\right) .
\end{aligned}
$$

The last step in the proof uses the fact that the congruence relation $\mu^{-} \theta \mu$ and $\beta^{-} \beta$ on B commute and that their relative product is their join in the lattice of congruence relations on B.

If $\operatorname{Im} 1$ and ker 2 denote the two sides of the isomorphism in Proposition 3.6, we have $\operatorname{Im} 1 \cong$ ker 2 , use Theorem 3.2 .

References

[1] B. R. Amougou Mbarga, Anticommutativity and n-schemes, Earthline Journal of Mathematical Sciences 6(1) (2021), 175-186.
https://doi.org/10.34198/ejms.6121.175186
[2] B. R. Amougou Mbarga, Geometrical methods in Goursat categories, Earthline Journal of Mathematical Sciences 6(2) (2021), 397-426. https://doi.org/10.34198/ejms.6221.397426
[3] B. R. Amougou Mbarga, Triangular scheme revisited in the light of n-permutable categories, Earthline Journal of Mathematical Sciences 6(1) (2021), 105-116.
https://doi.org/10.34198/ejms.6121.105116
[4] B. R. Amougou Mbarga, Some remarks on Goursat lemma, Algebraic Structures and Their Applications 8(2) (2021), 119-129. https://doi.org/10.29252/as.2021.2022
[5] B. R. Amougou Mbarga, Decomposition of Goursat matrices and subgroups of $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$, Earthline Journal of Mathematical Sciences 6(2) (2021), 439-454.
https://doi.org/10.34198/ejms.6221.439454
[6] D. D. Anderson and V. Camillo, Subgroups of direct products of groups, ideals and subrings of direct products of rings, and Goursat's lemma, Rings, modules and representations, 1-12, Contemp. Math., 480, Amer. Math. Soc., Providence, RI, 2009.
https://doi.org/10.2307/2004580
[7] S. Burris and H.P. Sankappanavar, A course in universal algebra, Graduate Texts in Mathematics, 78, Springer-Verlag, New York-Berlin, 1981.
[8] B. Davvaz and H. Shabani-Solt, A generalization of homological algebra, J. Korean Math. Soc. 39(6) (2002), 881-898.
[9] E. Goursat, Sur les substitutions orthogonales et les divisions régulières de l'espace, Ann. Sci. École Norm. Sup. (3) 6 (1889), 9-102.
https://doi.org/10.24033/asens.317
[10] J. Lambek, Goursat's theorem and the Zassenhaus lemma, Canad. J. Math. 10 (1958), 45-56. https://doi.org/10.4153/CJM-1958-005-6
[11] J. Lambek, On the ubiquity of Malâcev operations, Contemp. Math. 131 (1992), 135-146.
[12] D. Lewis, Containment of Subgroups in a Direct Product of Groups, Doctoral dissertation, Binghamton University, 2011.
[13] L. Tóth, Counting subgrings of the ring $\mathbb{Z}_{n} \times \mathbb{Z}_{m}$, 2018. arXiv:1801.07120v1,22
[14] L. Tóth, Subgroups of finite abelian groups having rank two via Goursat's lemma, Tatra Mt. Math. Publ. 59 (2014), 93-103. https://doi.org/10.2478/tmmp-2014-0021

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted, use, distribution and reproduction in any medium, or format for any purpose, even commercially provided the work is properly cited.

[^0]: Received: May 30, 2021; Accepted: June 14, 2022
 2020 Mathematics Subject Classification: 20E07.
 Keywords and phrases: Goursat, variety, relation, homomorphic, Mal'cev.

