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Abstract

In this paper, we present a new family of multi-block boundary value

integration methods based on the Enright second derivative type-methods

for differential equations. We rigorously show that this class of multi-block

methods are generally Ak1,k2-stable for all block number by verifying through

employing the Wiener-Hopf factorization of a matrix polynomial to determine

the root distribution of the stability polynomial. Further more, the correct

implementation procedure is as well determine by Wiener-Hopf factorization.

Some numerical results are presented and a comparison is made with some

existing methods. The new methods which output multi-block of solutions

of the ordinary differential equations on application, and are unlike the

conventional linear multistep methods which output a solution at a point or

the conventional boundary value methods and multi-block methods which

output a block of solutions per step. The second derivative multi-block

boundary value integration methods are a new approach at obtaining very

large scale integration methods for the numerical solution of differential

equations.
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1 Introduction

Recently, the notion of obtaining multi-block of solution values at each step of

application rather than the block of solution values per step, or a single solution

per step is recently receiving great attention. The first author to introduce such

method is in [1], which take advantage of parallelism over the implementation of

the conventional linear multistep methods. An extension of [1] can be found in [2].

Although, the introduction of block methods for non-stiff initial value problems is

in [3,4]. The [5] considered parallel block method for initial value problems. The

use of parallel predictor-corrector was considered in [6]. Other authors on block

methods are in [7–12]. In accordance with [13], the conventional linear multistep

method (LMMs),

k∑
j=0

αjyn+j = h
k∑
j=0

βjfn+j , αk = 1, n = 0, 1, · · · , (1.1)

has order and stability limitation for the numerical solution of the stiff initial

value problems (IVPs)

y′ (x) = f (y(x)) , x ∈ (x0, X) , y (x0) = y0;

f : R×Rm → Rm; y, y0 ∈ Rm; x0, x ∈ R,
(1.2)

in ordinary differential equations (ODEs) see [14–17]. This limitation gives room

for new search for stiff solvers in LMM. However, the introduction of second

derivative function to overcome this limitation was considered in [18,19]. In [20],

the second derivative linear multistep method (SDLMM) is,

yn+k − yn+k = h

k∑
j=0

βjfn+j + h2γkf
′
n+k, n = 0, 1, · · · , (1.3)

with {y0, y1, · · · , yk−1} initial condition values. The first characteristics

polynomial ρ (r) = rk(r − 1) is choosen for zero-stability and the third

characteristics polynomial ω (r) = γkr
k is choosen for stability at infinity. The

method in (1.3) is of order p = k+1 and is A−stable for k = 1, 2 and A(α)− stable
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for k = 3(1)7, with instability setting in when k ≥ 8. Regardless the improved

order, the second derivative LMMs are limited with A-stability condition with

respect to their step number k. A new approach to circumvent the order and

stability barrier in LMM for all step number k can be found in [21–31], where

discretization of (1.2) is done by a boundary value method (BVM). This is a linear

multistep method coupled with boundary value conditions (instead of initial value

conditions). The next is a new result required to determine the formulation and

the implementation of the proposed methods.

1.1 The Wiener-Hopf factorization and its application

In this subsection, we aim at factoring a matrix polynomial into two products

of matrices, where the determinant of the first matrix contains all its roots in a

unit circle and the second contains its roots outside the unit circle [32–34]. The

Wiener-Hopf factorization can be defined for a matrix-valued function

C(R) =

∞∑
i=−∞

CiR
i; Ci ∈ Cm×m (1.4)

in the Wiener class Wm formed by all the functions C(R) such that

∞∑
i=−∞

| Ci |<∞ (1.5)

| F |= (| fi,j |), F = (ai,j) for C(R) ∈Wm, the Wiener-Hopf factorization exist

in the form

C(R) = F (R)diag(Rk1 , · · · , Rkm)U(R−1);

F (R) =

∞∑
i=0

FiR
i, U(R) =

∞∑
i=0

UiR
i,

det(C(R)) 6= 0 for | R |= 1

Here F (R), U(R) ∈ Wm and det(F (r)), det (U(r)) are non-zero in the open unit

disk. If the partial indices ki ∈ Z are zeros, the canonical factorization take the
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form

C(R) = F (R)U(R−1). (1.6)

Its matrix representation provides a block UL factorization of the infinite block

Toeplitz matrix TM(Cj−i).
C0 C1 · · · · · ·
C−1 C0 C1 · · ·

...
. . .

. . .
. . .

. . .
. . .

 =


F0 F1 · · · · · ·
0 F0 F1 · · ·

. . .
. . .

. . .

. . .
. . .




U0 0 · · · · · ·
U−1 U0 0 · · ·

...
. . .

. . .
. . .

. . .
. . .


(1.7)

Moreover, the condition det(F (r)), det(U(r)) 6= 0 for | r |≤ 1 provided the

existence of F (R)−1, U(R)−1 in Wm, imply that the two infinite matrices have

a block Toeplitz inverse which has bounded infinity norm. If the condition

det(F (r)), det(U(r)) 6= 0, | R |< 1, for instance, there may exist R̂ with | R̂ |= 1

such that det(F (r̂)) = 0 then, the canonical factorization is said to be weak

canonical factorization. In this case F (R) or U(R) may be not invertible in Wm

e.g F (R) = (1 − R)I has inverse F (R)−1 =
∑∞

i=0 IR
i which does not belong

to Wm, see [34]. An application of the Wiener-Hopf factorization to obtain

a second derivative multi-block boundary value method is illustrated in what

follows. Consider the stability matrix polynomial

ρ̂(R) = A1R+A0 − z(B0 +B1R+B2R
2)− z2D1R; z = λh, (1.8)

associated with a SDMB2VMs in section 3 (ahead). The matrix coefficients are

given as

A1 =

(
1 0

−1 1

)
; B0 =

(
− 353

120960
1219
4480

− 31
120960

29
4480

)
; B1 =

(
1081
2520

2123
7560

3733
7560

3733
7560

)
;

A0 =

(
0 −1

0 0

)
; B2 =

(
99

4480 − 43
40320

29
4480 − 31

120960

)
; D1 =

(
−277

672 − 289
2016

191
2016 − 191

2016

)
;

which correspond to a SDMB2VMs that is A1,1-stable. Here the case of z = −6
in (1.8) gives rise to the characteristics matrix polynomial ρ̂2(R) = F (R)U(R),
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which



A0 − zB0

A1 − zB1 − z2D1

A2 − zB2


=



19807
20160

3657
2240

− 20191
20160

2327
2240

14627
840

19771
2520

− 1129
2520

1079
320

297
2240

− 43
6720

87
2240

− 31
20160



=



f01 f02 0 0

f03 f04 0 0

1 0 f01 f02

0 1 f03 f04

0 0 1 0

0 0 0 1





u01 u02

u03 u04

u11 u12

u13 u14


.

(1.9)

Using Netwon-Raphson approach as in [32] to resolve this non-linear equation

in (1.9), the Mathematica 11.1 version gives eleven options. However, we have

chosen this

f01 = −7431.2, f02 = 25816.3, f03 = −2919.69, f04 = 9955.48,

u01 = 0.02556, u02 = −0.007578, u03 = 0.007395, u04 = −0.002118,

u11 = 0.132589, u12 = −0.00639881, u13 = 0.0388393, u14 = −0.0015377.

(1.10)

solution amongst the options. This leads to right hand canonical factorization

amongst other options.

F (R) =

(
−7431.2 25816.3

−2919.69 9955.48

)
+

(
1 0

0 1

)
R = F0 + F1R (1.11)

where the roots of the det (F (r)) gives two real outside the unit circle; r1 =

−1708.01 and r2 = −816.273. From (1.10),

U(R) =

(
0.02556 −0.007578

0.007395 −0.002118

)
+

(
0.132589 −0.006398

0.038839 −0.001537

)
R = U−1 +U0R

(1.12)

Similarly, the roots of the det (U(r)) gives two real roots inside the unit circle; r3 =

−0.36484 and r4 = −0.116696. The existence of the Wiener-Hopf factorization
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above gives the band structured block Toeplitz matrix

A =



A1 O O O · · · O

A0 A1 O O · · · O

O A0 A1 O · · · O
. . .

O · · · O A0 A1 O

O · · · O O A0 A1


;

B =



B1 B2 O O · · · O

B0 B1 B2 O · · · O

O B0 B1 B2 · · · O
. . .

O · · · O B0 B1 B2

O O · · · O B0 B1


;

D =



D1 O O O · · · O

O D1 O O · · · O

O O D1 O · · · O
. . .

O · · · O O D1 O

O O · · · O O D1


,

(1.13)

The result is the 2-block, 2-point SDBVM

AY − hBF − h2DF ′ =
(
−A0Yn + hB0Fn, O, · · · , O, hB2Fn+N

)T
,

(1.14)

where Y , F , F ′ are defined in (3.15).

In this paper, a family of multi-block boundary value method based on the

Enright type-method through [1] with the purpose of improving the order and

stability properties will be introduced. The article is organized as follows: In

Section 2, a brief introduction of second derivative multi-block methods on initial

and boundary method is presented along their stability criteria. In Section 3,

derivation of multi-block generalized second derivative linear multistep methods
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based on the methods of [20] is presented. Section 4, contain the application of

second derivative MB2VMs on Amenable differential algebraic equations, while

Section 5, is on the implementation of the proposed methods and the conclusion

follows in Section 6.

2 Second Derivative Multi-block Boundary Value

Integration Methods

The extension of linear multi-block methods of [1] to second derivative is of the

form,

k∑
j=0

AjYn+j = h
k∑
j=0

BjFn+j + h2
k∑
j=0

DjF
′
n+j ; n = 0, 1, · · · : k ≥ 1. (2.1)

obtained from [2] when q = 2, µ = s, where

Aj =
[
a
(j)
i,l

]
i,l=1(1)s

, Bj =
[
b
(j)
i,l

]
i,l=1(1)s

,

Yn+j = (yn+s·j , yn+s·j+1, · · · , yn+s·j+s−1)T , j = 0(1)k

Fn+j = (fn+s·j , fn+s·j+1, · · · , fn+s·j+s−1)T

F ′n+j =
(
f ′n+s·j , f

′
n+s·j+1, · · · , f ′n+s·j+s−1

)T
.

(2.2)

The {Yn+j}j=0(1)k are the multi-block of non-overlapping solution values,

and {Fn+j}j=0(1)k and
{
F ′n+j

}
j=0(1)k

denote the corresponding multi-block of

non-overlapping function and derivative function values of (2.1) respectively. The

formula (2.1) is a k-block, s-point block second derivative formula. Here, the

block shift operator E is defined as EjYn = Yn+j . Here the first, second and third

characteristics matrix polynomial of (2.1) as

ρ̂(R) =

k∑
j=0

AjR
j , σ̂(R) =

k∑
j=0

BjR
j , ς̂(R) =

k∑
j=0

DjR
j (2.3)
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respectively. The first, second and third characteristic stability polynomial of

(2.1) are

ρ(r) = det (ρ̂(r)) = det

 k∑
j=0

Ajr
j

 , σ(r) = det

 k∑
j=0

Bjr
j

 , ς(r) = det

 k∑
j=0

Djr
j

 .

(2.4)

The stability matrix polynomial of (2.1) on application on the scalar test equation

y′ = λy; Re(λ) < 0 (2.5)

is ∏̂
(R, z) = ρ̂(R)− zσ̂(R)− z2ς̂(R); z = λh (2.6)

The corresponding stability polynomial associated with (2.1) is thus,

∏
(r, z) = det

(∏̂
(r, z)

)
= det

(
ρ̂(r)− zσ̂(r)− z2ς̂(r)

)
;

r = ejθ, 0 < θ ≤ 2π, z = λh, Re(z) < 0

. (2.7)

Due to the A-stability limitation of multi-block in [1] and Daniel-Moore conjecture

in [16], we consider the approach in [23, 26] on second derivative of [1] with the

condition in subsection 1 holds. The second derivative multi-block boundary value

methods (SDMB2VMs) to be considered are a large scale of integration methods

for numerical approximation of differential equations based on the conventional

initial value multi-block methods in [1, 2]. However, The multi-block boundary

value methods (MB2VMs) is first introduced in [35]. Herein, the SDMB2VMs is

described by,

k2∑
j=−k1

Aj+k1Yn+j = h

k2∑
j=−k1

Bj+k1
Fn+j + h2

k2∑
j=−k1

Dj+k1
F ′n+j ;

n = 0(1)(N − k)

k > 1, k = k1 + k2

Y0, · · · , Yk1−1︸ ︷︷ ︸
(a)

Yk1
, · · · , YN−k2︸ ︷︷ ︸

multi-block of solution values to be generated by the SDMB2VMs

YN−k2+1, · · · , YN︸ ︷︷ ︸
(b)

(2.8)

as the main block formula while the initial multi-block solution values (a) and
final multi-block solution values (b) in (2.8) are to be provided or replaced by
multi-block second derivative multistep formulas. The SDMB2VMs in (2.8) is
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a k-block, s-point SDBVM. The coefficients {Aj , Bj , Dj} are determined by

imposing a O
(
h4s·k+1

)
truncation error. Here q1 = s · k1 is the number of

roots lying inside the unit circle and q2 = s · k2 is the number of roots lying
outside the unit circle of the stability polynomial in (2.7) of the main methods in
(2.8). Implementing (2.8) as a SDMB2VMs, we shall have the discrete problem
generated by a SDMB2VMs (2.8) with (k1, k2)-block boundary conditions is
written in the compact form

AY − hBF − h2DF ′ = −



∑k1−1
j=0

(
AjYn+j − hBjFn+j − h2DjF

′
n+j

)
...

A0Yn+k1−1 − hB0Fn+k1−1 − h2D0F ′n+k1−1

O

...

O

AkYn+N−k2+1 − hBkFn+N−k2+1 − h2DkF
′
n+N−k2+1

...∑k2
j=1 Ak1+jYn+N−k2+j − hBk1+jFn+N−k2+j − h2Dk1+jF

′
n+N−k2+j


(2.9)

where

Y = (Yn+k1 , · · · , Yn+N−k2)T , F = (Fn+k1 , · · · , Fn+N−k2)T

F ′ =
(
F ′n+k1 , · · · , F

′
n+N−k2

)T (2.10)

as the multi-block solution, function and derivative vectors of (2.9) respectively.
The A, B and D are the multi-block Toeplitz matrices obtained from the main
formula (2.8) without the initial multi-block second derivative formulas and final
multi-block second derivative formulas. The arising SDMB2VMs in (2.8) is thus
Ak1,k2-stable. The multi-block Toeplitz matrix A is of the form

A =



Ak1
Ak1+1 · · · Ak O O · · · · · · O

...
. . .

...

A1

. . .
...

A0

.

..

O
. . .

. . .
...

O
. . .

. . . Ak

...
. . .

. . .
...

..

.
. . .

. . . Ak1+1

O · · · · · · O O A0 A1 · · · Ak1


(N−k)s×(N−k)s

; k1 + k2 = k (2.11)
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where B and D is of a similar form, but with the B′js and D′js respectively, instead

of the A′js. The coefficient block matrices are Toeplitz-block matrices having lower

band k1 (equal to the number of block initial conditions) and upper band k2 (equal

to the number of block final conditions). The continuous problem in (1.2) gives

only the initial value y0, whereas the remaining k − 1 blocks additional solution

values in (2.8) are not known. However, the k1 extra initial blocks Y0, · · · , Yk1−1
(n = 0), of solution values in (2.9) can be provided by the initial block second

derivative formulas,

k∑
j=0

A
(i)
j Yj = h

k∑
j=0

B
(i)
j Fj + h2

k∑
j=0

D
(i)
j F ′j ; i = 0(1)k1 − 1, (2.12)

and the k2 extra final blocks YN , · · · , YN+k2−1 of solution values are provided by

the final block second derivative formulas,

k∑
j=0

A
(i)
N−k+jYN−k+j = h

k∑
j=0

B
(i)
N−k+jFN−k+j + h2

k∑
j=0

D
(i)
N−k+jF

′
N−k+j ;

i = (N − k2 + 1)(1)N.

(2.13)

The composite matrix scheme, (2.8), (2.12) and (2.13) which is a SDMB2VMs is

of uniform order p. Thus the composition is written in higher dimensional space

as,

ANY − hBNF − h2DNF
′ = O, O = (O, · · · ,O)T (2.14)

Here the multi-block of solutions and functions are given as

Y = (Yn, · · · , Yn+k1−1, Yn+k, · · · , Yn+N−k2 , Yn+N−k2+1, · · · , Yn+N )T ,

F = (Fn, · · · , Fn+k1−1, Fn+k, · · · , Fn+N−k2 , Fn+N−k2+1, · · · , Fn+N )T ,

F ′ =
(
F ′n, · · · , F ′n+k1−1, F

′
n+k, · · · , F ′n+N−k2 , F

′
n+N−k2+1, · · · , F ′n+N

)T (2.15)
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and AN =
[
a | ĀN

]
∈ RNs×(N+1)s is

AN =



A
(1)
0 A

(1)
1 · · · A

(1)
k

...
...

. . .
...

A
(k1−1)
0 A

(k1−1)
1 · · · A

(k1−1)
k

A0 A1 · · · Ak

A0 A1 · · · Ak
. . .

. . . · · · . . .

A0 A1 · · · Ak

A
(N−k2+1)
0 A

(N−k2+1)
1 · · · A

(N−k2+1)
k

...
... · · ·

...

A
(N)
0 A

(N)
1 · · · A

(N)
k



,

(2.16)

and BN =
[
b | B̄N

]
, DN =

[
d | D̄N

]
∈ RNs×(N+1)s is of similar form, but with

B′js and D′js instead of A′js. The matrix AN − hBN − h2DN , has a multi-block

quasi-Toeplitz structure [36–38] as a result of the additional multi-block second

derivative formulas from (2.12, 2.13). The (2.14) is equivalent to the one-block

method

ĀN Ȳn+1 + Ā0Ȳn = h
(
B̄N F̄n+1 + B̄0F̄n

)
+ h2

(
D̄N F̄

′
n+1 + D̄0F̄

′
n

)
(2.17)

in higher dimensional block with multi-block of solution output. Here the

multi-block of solution, function and derivative function values are given as

Ȳn+1 = (Yn+1, · · · , Yn+k1−1, Yn+k, · · · , Yn+N−k2
, Yn+N−k2+1, · · · , Yn+N )

T
,

F̄n+1 = (Fn+1, · · · , Fn+k1−1, Fn+k, · · · , Fn+N−k2
, Fn+N−k2+1, · · · , Fn+N )

T

F̄ ′n+1 =
(
F ′n+1, · · · , F ′n+k1−1, F

′
n+k, · · · , F ′n+N−k2

, F ′n+N−k2+1, · · · , F ′n+N

)T (2.18)
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Ā0 = [ā | a] =



A
(1)
0
...

A
(k1−1)
0

A0

O(N−1)s×Ns O
...

O


; B̄0 =

[
b̄ | b

]
=



B
(1)
0
...

B
(k1−1)
0

B0

O(N−1)s×Ns O
...

O


(2.19)

D̄0 =
[
d̄ | d

]
=



D
(1)
0
...

D
(k1−1)
0

D0

O(N−1)s×Ns O
...

O


(2.20)

We define the following definitions.

Definition 2.1. The SDMB2VMs (2.9) is pre-consistent if ‖ (ĀN )−1a ‖∞= 1

holds.

Definition 2.2. A matrix polynomial ρ̂(R) of degree k = k1 + k2 in (2.3) is an

Sk1,k2-matrix polynomial, if the roots {rj}qj=1 of the polynomial ρ(r) are such that

| r1 |≤ · · · ≤| rq1 |< 1 <| rq1+1 |≤ · · · | rq |, q1 + q2 = q = s · k. (2.21)

Definition 2.3. A matrix polynomial ρ̂(R) of degree k = k1 + k2 in (2.3) is an

Nk1,k2-matrix polynomial, if the roots {rj}qj=1 of the polynomial ρ(r) in (2.4) are

such that

| r1 |≤ · · · ≤| rq1 |≤ 1 <| rq1+1 |≤ · · · | rq |, q1 + q2 = q = s · k. (2.22)

http://www.earthlinepublishers.com



High Order Multi-block Boundary-value Integration Methods for Stiff ODEs 137

Definition 2.4. The SDMB2VM (2.9) with (k1, k2)-block boundary conditions

where k = k1 + k2 is ;

(a) Ok1,k2-stable if the corresponding first characteristics matrix polynomial

ρ̂(R) in (2.3) is a Nk1,k2- matrix polynomial with q1 = s · k1 and q2 = s · k2.

(b) (k1, k2)-absolutely stable for a given z ∈ C, if the corresponding matrix

polynomial
∏̂

(R, z) in (2.6) is a Sk1,k2- matrix polynomial.

(c) The region Dk1,k2 = {z ∈ C :
∏̂

(R, z) in (2.6) is a Sk1,k2-matrix polynomial}
is said to be the region of (k1, k2)-absolute stability.

(d) Ak1,k2-stable if C̄ ⊆ Dk1,k2 .

The Ak1,k2-stability define the stability of the SDMB2VMs in terms of the block

number k which is the degree of the stability matrix polynomial (2.6). It can as

well be referred to as Ak1,k2-block stability.

Definition 2.5. A SDMB2VMs in (2.17) is called a minimum multi-block

boundary value methods if the dimension N · s is equal to the block number k. In

fact from (2.16), we have

Â ≡ [a|A] =


A

(1)
0 A

(1)
1 · · · A

(1)
k

...
...

...

A
(k)
0 A

(k)
1 · · · A

(k)
k

 , B̂ ≡ [b|B] =


B

(1)
0 B

(1)
1 · · · B

(1)
k

...
...

...

B
(k)
0 B

(k)
1 · · · B

(k)
k


(2.23)

D̂ ≡ [d|D] =


D

(1)
0 D

(1)
1 · · · D

(1)
k

...
...

...

D
(k)
0 D

(k)
1 · · · D

(k)
k

 (2.24)

Note in particular, the definition (2.5) shows that the maximum order of the

k-block methods in (2.8) defining the minimum SDMB2VMs in (2.17), see [12].

The next theorem shows the existence of the solution of SDMB2VMs in (2.8).
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Theorem 2.1. Suppose that the matrix roots of the characteristics matrix

polynomial

ρ̂(R) =
k∑
j=0

AjR
j (2.25)

associated with

k∑
j=0

AjYn+j = 0; n = 0, 1, · · · ; Y0, Y1, · · · , Yk−1, YN−k1+1, · · · , YN︸ ︷︷ ︸
initial and final multi-block of solution values to be provided

(2.26)

are such that,

‖ Lk1−1 ‖∞<‖ Lk1 ‖∞<‖ Lk1+1 ‖∞, ‖ Lk1 ‖∞≤ 1. (2.27)

Then the multi-block solution of the boundary value finite difference equation

associated with (2.26) having k1 number of initial block conditions and k2 number

of final block conditions in

Y0 = Cη0G, Y1 = Cη1G, · · · , Yk1−1 = Cηk1−1G,

YN−k2+1 = CηN−k2+1G, · · · , YN = CηNG.
(2.28)

has a solution for n and N − n sufficiently large. In fact, the multi-block solution

of (2.26) subject to (2.28) behaves asymptotically as

Yn = Rnk1

(
α+O (ln1 ) +O

(
lN−n1 +

)
+O

(
l−N3

))
+O

(
lN−n3

)
; n = 0, 1, · · · ,

(2.29)

where the vector α depends on Y0, Y1, · · · , Yk1−1 (n = 0) and

l1 =‖ L−1k1 Lk1−1 ‖∞< 1, k1 + k2 = k

l3 = min {| rs·k1+1 |, | rs·k1+2 |, · · · , | rs·k1+s |} > 1,

l2 =‖ L−1k1+1Lk1 ‖∞< 1, l4 =‖ Lk1−1 ‖∞< 1,

Lj+1 = diag (rs·j+1, rs·j+2, · · · , rs·j+s) , j = 0(1)k − 1

‖ Lk1 ‖∞= max{| rs(k1−1)+1 |, | rs(k1−1)+2 |, · · · , | rs·k1 |} ≤ 1;

| rs·k1 |= 1, 1 <| rs·k1+r |, r = 1(1)s

. (2.30)
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Proof. The proof is in [35], where Rnk1 is the generating matrix root (solvent).

Theorem 2.2. Given the stability polynomial
∏

(r, z) in (2.7), we have
∏

(r, z) =

0 which defines a map between the complex r-plane and the complex z plane,

z(r) = det(ρ̂(r)− zσ̂(r)− z2ς̂(r)) (2.31)

where r ∈ C is a root of the stability polynomial
∏

(r, z) such that z = z(r).

The following holds.

The set

τ =
{
z ∈ C : z = z(eiθ), 0 ≤ θ < 2π

}
(2.32)

Here, the set τ is the set associating to the roots on the boundary of the unit

circle and is known as the boundary locus, see the similar case of linear multistep

formula in section 4.7.1 in [23].

3 Multi-block Generalized Second Derivative LMF

based on Method’s of Enright.

Consider an initial multi-block generalized second derivative linear multistep

method based on the Enright type-method (MBGEMs),

AkYn+k +Ak−1Yn+k−1 = h

k∑
j=0

BjFn+j + h2Dk,aF
′
n+k;

k ≥ 1; a = 1, 2

n = 0, 1, · · · ,

Y0, Y1, · · · , Yk−1︸ ︷︷ ︸
(block solution values to be provided)

(3.1)
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in order to get Yk, Yk+1, Yk+2, · · · ; in a step by step fashion, with

Ak =



1 0 0 · · · 0 0

−1 1 0
. . . 0 0

0 −1 1
. . .

... 0

0 0 −1
. . . 0 0

...
...

. . . 1 0

0 0 0
. . . −1 1


s×s

, Ak−1 =



0 0 0 · · · 0 −1

0 0 0 · · · 0 0

0 0 0 · · ·
... 0

0 0 0 · · · 0 0
...

. . . 0 0

0 0 0 · · · 0 0


s×s

,

(3.2)

and

Dk,a =

{
Dk,1; diagonal matrix, a = 1

Dk,2; dense matrix, a = 2
(3.3)

Here, the coefficient matrices Bj , Dk,a are strictly determined to have maximum

order p = s(k + 2). The MBGEM in (3.1) of order p = 3s is A-stable for fixed

block number k = 1 and increasing block size s = 2(1)5, Dk,2 and A(α)-stable

for s = 6 and instability set in from s ≥ 7. The method in (3.1) is also of order

p = 2(k+ 2) and is A−stable for k = 1, Dk,2 and A(α)− stable for k = 2(1)7, and

become unstable at k ≥ 8. To overcome the order and stability barrier in (3.1),

we transform (3.1) to

AuYn+u +Au−1Yn+u−1 = h

k∑
j=0

BjFn+j + h2Du,aF
′
n+u u 6= k, k ≥ 1; n = 0, 1, · · · ,

Y0, Y2, · · · , Yu−1︸ ︷︷ ︸
(a1)

Yu, · · · , YN−k+u︸ ︷︷ ︸
solution values to be generated by the SDMB2VM

YN−k+u+1, · · · , YN︸ ︷︷ ︸
(a2)

(3.4)

as the main formula in a second derivative multi-block boundary value method

implementation. The coefficient matrices Au ≡ Ak and Au−1 ≡ Ak−1 in (3.2). The

multi-block solution values (a1) and (a2) in (3.4) are to be provided or replaced by

second derivative block linear multistep formulae. Considering (3.4) as a second

derivative multi-block boundary value methods (SDMB2VMs) with u 6= k, we

gain the freedom of choosing the appropriate values of u that provide methods

having the best stability properties for all block number k ≥ 1. Here, u is define
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as

u =

{
k+1
2 ; k odd

k
2 ; k even

; k = 1, 2, 3, · · · ; (3.5)

Here, the first characteristics polynomial ρ(r) for a method in (3.4) is of degree

sk with s(k − u) number of roots at infinity, such that

αsk = αsk−1 = · · · = αs(u+1) = 0; u ≥ 1.

Thus for u = k, the (3.4) is the conventional second derivative methods in

(3.1). The k + 2 matrix coefficients {Bj}kj=0 and Du allow the construction

of methods from (3.4) of maximal order p = s(k + 2). However, Du can be

choosen as diagonal matrix or full matrix. The proposed methods shall be

referred to as multi-block generalized second derivative linear multistep methods

of Enright (MBGSDLMME). The corresponding local truncation error operator

for the MBGSDLMME is,

L [Yn(xn);h] = AuYn+1(xn) +Au−1Yn(xn)

= h
k∑
j=0

Bj(µ)F (Yn+j(xn))− h2F ′(Yn+v(xn));
(3.6)

where

Yn+j(xn) = (y (xn+js) , y (xn+js+1) , y (xn+js+2) , · · · , y (xn+js+s−1))
T

F (l−1) (Yn+j(xn)) =

(
f (l−1) (xn+js, y (xn+js)) , f

(l−1) (xn+js+1, y (xn+js+1)) ,

f (l−1) (xn+js+2, y (xn+js+2)) , · · · , f (l−1) (xn+js+s−1, y (xn+js+s−1))

)T
l = 1, 2.

The Taylor series about xn in (3.6) gives

L [Yn(xn);h] =

∞∑
j=0

Cjh
j

j!
Y

(j)
n+1(xn); Y (j)

n (xn) =
(
y(j)(xn), y(j)(xn), · · · , y(j)(xn)

)T
︸ ︷︷ ︸

s

.

(3.7)

The next theorem holds for the MBGSDLMME.
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Theorem 3.1.

Given e = (1, · · · , 1)T , the coefficients {Cx}x=0 in (3.7) are given by

Cx =



e−Au(s)e−Au−1(s)e; x = 0

c−Au(s)(c+ sje)−Au−1(s)(c+ sje)−
∑k

j=0Bj(s)e; x = 1

c2 −Au(s)(c+ sje)2 −Au−1(s)(c+ sje)2 − 2
∑k

j=0Bj(s)(c+ sje)

−Dv(s)e; x = 2

c3 −Au(s)(c+ sje)3 −Au−1(s)(c+ sje)3

−x
∑k

j=0Bj(s)(c+ sje)2 − (x− 1)Dv(s)(c+ sve); x = 3
...

cx −Au(s)(c+ sje)x −Au−1(s)(c+ sje)x

−x
∑k

j=0Bj(s)(c+ sje)x−1 − (x− 1)Dv(s)(c+ sve)x−2; x = 4, 5, · · ·

,

(3.8)

where c = (c1, c2, · · · , cs)T .

The vector powers are component-wise power. The MBGSDLMME in (3.4)

is pre-consistent if C0 = 0 and consistent if it is of order at least p > 1, where

C0 = 0 and C1 = 0. See page 249 in [35]. The l.t.e is given as C̄p+1 =
Cp+1

(p+1)!

To determine the stability matrix polynomial of the method in (3.4), on

application of Dahlquist test problem in (2.5) on (3.4), here RjYn = Yn+j ,

RuYn = Yn+u and u is given in (3.5) to give,

∏̄
(R, z) = AuR

u +Au−1R
u−1 − z

k∑
j=0

BjR
j − z2Du,aR

u. (3.9)

The stability polynomial associated with MBGSDLMME in (3.4)is given as

∏
(r, z) = det

Auru +Au−1r
u−1 − z

k∑
j=0

Bjr
j − z2Du,ar

u


=

q1∑
j=1

ajr
j − z

q∑
j=0

bjr
j − z2b2ur2u,

(3.10)

and the methods from (3.4) are found to be Au,k−u-stable and can be used with

(u, k−u)-block boundary conditions. The first characteristics stability polynomial
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possesses a unique structure of the form,

ρ(r) = det
(
Aur

u +Au−1r
u−1) = rq1−1(r − 1), (3.11)

second characteristics stability polynomial is,

σ(r) = det

 k∑
j=0

Bjr
j

 =

q∑
j=0

bjr
j , q = s · k (3.12)

and third characteristics polynomials associated with (3.4).

γ(r) = det (Du,ar
u) = b2ur

2u (3.13)

The stability region of the MBGSDLMME in (3.4) are the unbounded region of

the exterior of the closed curves for all k ≥ 2 as shown in the boundary loci in

Fig. 2 and 3 for k = 2(1)13. One can see, the sigma set of the proposed methods

in (3.4) grows as the block number k (even) increases. Therefore MBGSDLMME

in (3.4) are Au,k−u−stable since, C− is contained in the (u, k − u)− absolutely

stability region of (3.4). In fact, when Du is strictly diagonal matrix or full

matrix, the method in (3.4) is Au,k−u−stable for fixed s, along with increasing

block number k see, Fig. 1. However, for a fixed block number k and increasing

blocksize s, the (3.4) is found to be Au,k−u−stable when Du is strictly diagonal

and A(α)u,k−u-stable when DU contains dense matrix. By introducing the block

Toeplitz matrices (BT-matrices) s (N − k)× s (N − k)

A =



Au O · · · O
...

. . .
. . .

A0
. . .

. . .

. . .
. . . O

. . .
. . .

...
. . .

. . . O

A0 · · · Au
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B =



Bu · · · Bk

...
. . .

. . .

B0
. . .

. . .

. . .
. . . Bk

. . .
. . .

...

B0 · · · Bu


, D =



Du,a O

O
. . . O
. . .

. . .
. . .

... O Du,a

. . .
. . . O

O O Du,a


the discrete problem generated by a k−block SDMB2VMs in (3.4) with (u, k−u)−
block boundary conditions can be written in the compact form

AY − hBF − h2DF ′ =



−Au−1Yu−1 + h
u−1∑
j=0

BjFj

h

u−2∑
j=0

BjFj

...

hB0Fu−1

O

...

O

hBkFN−j+1

...

h

k−u∑
j=1

Bu+jFN



(3.14)

This is a set of nonlinear system of matrix equations, where

Y = (Yu, · · · , YN−k+1)
T , F = (Fu, · · · , FN−k+1)

T , F ′ =
(
F ′u, · · · , F ′N−k+1

)T
(3.15)

are multi-block solution, multi-block function and multi-block derivative vectors.

The A and B are the multi-block Toeplitz matrices obtained from the main
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formula (3.4) without the initial multi-block formulas and final multi-block

formulas. The arising SDMB2VMs in (3.4) is thus Au,k−u-stable. The continuous

problem (1.1) provides only the initial value y0, whereas the u− extra initial

multi-block solution values Y0, Y1, · · · , Yu−1 of (3.4) can be given by the initial

formulas

A
(i)
i Yi +A

(i)
i−1Yi−1 = h

k∑
j=0

B
(i)
j Fj + h2D(i)

u F ′u; i = 1(1)u− 1, i = 0(1)u− 1,

(3.16)

or

A
(i)
i Yi +A

(i)
i−1Yi−1 = h

k∑
j=0

B
(i)
j Fj + h2D

(i)
i,aF

′
i ; i = 1(1)u− 1, i = 0(1)u− 1,

(3.17)

and k − u extra final blocks YN−k+u+1, · · · , YN , of multi-block solution values in

(3.4) are given by the final block formula

A
(i)
i YN+i +A

(i)
i−1YN+i−1 = h

k∑
j=0

B
(i)
j FN+j + h2D(i)

u,aF
′
N+u; i = 0(1)k − u− 1.

(3.18)

or

A
(i)
i YN+i+A

(i)
i−1YN+i−1 = h

k∑
j=0

B
(i)
j FN+j+h

2D
(i)
i,aF

′
N+i; i = 0(1)k−u−1. (3.19)

Here A
(i)
i ≡ Au and A

(i)
i−1 ≡ Au−1. The composition in (3.4), (3.18) or (3.19),

(3.18) or (3.19) is written in higher dimensional space of one block method (2.17)

as

ĀN Ȳn+1 + Ā0Ȳn = h
(
B̄N F̄n+1 + B̄0F̄n

)
+ h2

(
D̄N F̄

′
n+1 + D̄0F̄

′
n

)
(3.20)

where

Ȳn+1 = (Yn+1, · · · , Yn+k1−1, Yn+k, · · · , Yn+N−k2
, Yn+N−k2+1, · · · , Yn+N )

T
,

F̄n+1 = (Fn+1, · · · , Fn+k1−1, Fn+k, · · · , Fn+N−k2
, Fn+N−k2+1, · · · , Fn+N )

T
;

F̄ ′n+1 =
(
F ′n+1, · · · , F ′n+k1−1, F

′
n+k, · · · , F ′n+N−k2

, F ′n+N−k2+1, · · · , Fn+N ′
)T

;

(3.21)
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The following condition holds for the convergence of the second derivative

MB2VMs in (3.20)

Lemma 3.1. Suppose that the sequence {ei+1} satisfies the condition of the

difference inequality

ei+1 ≤ (1 + αhi+1) ei +mi+1hi+1; i = 0, 1 (3.22)

with the sequences {ei+1}, {di+1}, {hi+1} and α are positive integer, then

ei+1 ≤

e0 +
i∑

j=0

mjhj

 exp

(
α

i∑
r=0

hr

)
(3.23)

Theorem 3.2. Suppose the effect of round-off error is insignificant and the (1.2)

satisfies the following Lipschitz condition

‖ F (t, x)− F (t, x̂) ‖∞≤ L ‖ x− x̂ ‖∞ (3.24)

for all t ∈ [t0, T ] and x, x̂, ∈ C. The methods in (3.4) with (k1, k2)-block boundary

condition is convergent of order p = s(k + 2), if is consistent and the definition

2.1 holds.

Proof.

When the composite methods in (3.20) is used to approximate the solution of the

ODEs in (1.2) with the initial multi-block solution values Y0, Y1, · · · , Yk1 and final

multi-block solution values YN−k1+1, · · · , yN . Then,

Ŷn+1 = (Yn+1, · · · , Yn+k1−1, Yn+k, · · · , Yn+N−k2
, Yn+N−k2+1, · · · , Yn+N )

T
,

F̂n+1 = (Fn+1, · · · , Fn+k1−1, Fn+k, · · · , Fn+N−k2
, Fn+N−k2+1, · · · , Fn+N )

T

F̂ ′n+1 =
(
F ′n+1, · · · , F ′n+k1−1, F

′
n+k, · · · , F ′n+N−k2

, Fn+N−k2+1, · · · , F ′n+N

)T
;

(3.25)

is the mult-block of solution and function values and the local truncation error

is given as

τn+1(h) = ĀN Ŷn+1 − hB̄N F̂n+1 − h2D̄N F̂
′
n+1 + Ā0Ŷn − hB̄0F̂n − h2D̄0F̂

′
n (3.26)
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subtracting (3.20) from (3.26) gives the global truncation error

εn+1 = Ŷn+1 − Ȳn+1 = (ĀN )−1τn+1(h)− (ĀN )−1A0(Ŷn − Ȳn)

+h(ĀN )−1B̄N (F̂n+1 − F̄n+1) + h(ĀN )−1B̄0(F̂n − F̄n)

+h2(ĀN )−1D̄N (F̂ ′n+1 − F̄ ′n+1) + h2(ĀN )−1D̄0(F̂
′
n − F̄ ′n)

(3.27)

for easy notation, let ‖ (ĀN )−1B̄N ‖∞= ϕ, ‖ (ĀN )−1B̄0 ‖∞= ϑ, ‖
(ĀN )−1D̄N ‖∞= Ψ, ‖ (ĀN )−1D̄0 ‖∞= β, e0 = 0, en+1 = max0≤j≤n ‖ εn+1 ‖∞,

n = 0(1)Wt.

The SDMB2VMs in (3.20) is pre-consistent, see definition 2.1. Hence, the

SDMB2VMs in (3.20) is consistent for order p = s(k + 2). Then from (3.24), we

have

‖ εn+1 ‖∞=‖ εn ‖∞ +L((hϕ+ h2Ψ) ‖ εn+1 ‖∞ +(hϑ+ h2β) ‖ εn ‖)

+ ‖ (ĀN )−1 ‖∞‖ τn+1(h) ‖∞
≤ ei + L((hϕ+ h2Ψ)ei+1 + (hϑ+ h2β)ei) + d ‖ (ĀN )−1 ‖∞ h2sk+1

(3.28)

here d > 0 is independent of h and n = 0(1)Wt. Suppose there exist a non-negative

h0, and L(ϕh0 −Ψh2) < 1 such that

en+1 ≤
(

1− L(ϕ(h0 − h) + Ψ(h20 − h2)− ϑh− βh2)
1− L(ϕh0 + Ψh20)

)
en +

Jhs(k+2)+2

1− L(ϕh0 + Ψh20)
(3.29)

0 < h ≤ h0, then from lemma (3.1), we have

en+1 ≤
JT

s(1− L(ϕh0 + Ψh20))
exp

[
L(ϕ+ ϑ+ (Ψ + β)h0)

s(1− L(ϕh0 + Ψh20))

]
hs(k+2)+1 (3.30)

where J = d ‖ (ĀN )−1 ‖∞, T = Wtĥ = WtNs · h.

Hence,

max
1≤n≤Wt

‖ εn+1 ‖∞≡ O(hs(k+2)+1) (3.31)
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For example, the matrix coefficients of eight order MBGSDLMME in (3.4)

with u = 1, and s = 2, are given as

A1Yn+1 +A0Yn = h(B0Fn +B1Fn+1 +B2Fn+2) + h2D1,2F
′
n+1 (3.32)

A0 =

(
0 −1

0 0

)
;A1 =

(
1 0

−1 1

)
;B1 =

(
1081
2520

2123
7560

3733
7560

3733
7560

)
; C̄9 =

(
1759)

25401600
289

25401600

)

B0 =

(
− 353

120960
1219
4480

− 31
120960

29
4480

)
;B2 =

(
99

4480 − 43
40320

29
4480 − 31

120960

)
;D1 =

(
−277

672 − 289
2016

191
2016 − 191

2016

)
;

(3.33)

it is A1,1-stable and can be used with one initial second derivative linear multistep

formula (SDLMF)

y1 − y0 = h

(
10667f0
40320

+
7869f1
4480

+
11573f2

7560
− 5849f3

2520
− 1091f4

4480
+

1537f5
120960

)
+h2

(
4447f ′1
2016

+
907f ′2
672

)
; C9 = − 26591

25401600

(3.34)

and one final additional block equation given by

A
(N)
0 =

(
0 −1

0 0

)
;A

(N)
1 =

(
1 0

−1 1

)
;

D
(N)
1 =

(
289
2016

277
672

−907
672 −4447

2016

)
; C̄9 =

(
1759

25401600

− 26591
25401600

)
;

B
(N)
0 =

(
− 43

40320
99

4480
1537

120960 −1091
4480

)
;B

(N)
1 =

(
2123
7560

1081
2520

−5849
2520

11573
7560

)
;

B
(N)
2 =

(
1219
4480 − 353

120960
7869
4480

10667
40320

)
;

(3.35)
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Thus is conveniently written in one-block form in conformality with (3.20) as,

ĀN =



A1 0 0 · · · · · · 0 0

A0 A1 0 0 0 0 0

0 A0 A1 0 0 0 0
...

. . .
. . .

. . .
. . . 0 0

... 0 0 A0 A1 0

0 · · · 0 0 0 A
(N)
1 A

(N)
2



B̄N =



B1 B2 0 · · · · · · 0 0

B0 B1 B2 0 0 0 0

0 B0 B1 B2 0 0 0

0 0
. . .

. . .
. . .

. . .
. . .

... 0 0 B0 B1 B2

0 · · · 0 0 B
(N)
0 B

(N)
1 B

(N)
2


,

(3.36)

D̄N =



D1 O O · · · · · · O O

O D1 O O O O O

O O D1 O O O O

O O
. . .

. . .
. . .

. . .
. . .

... O O O D1 O

O · · · O O O D
(N)
1 O


(3.37)

Ā0 =



| A0

0(N−1)s×Ns | 0

| 0

|
...

| 0

 , B̄0 =



| B0

0(N−1)s×Ns | 0

| 0

|
...

| 0

 (3.38)

of dimension Ns×Ns respectively. An example of seventh order MBGSDLMME

in (3.4) with u = 1, and s = 2, (here Bu contain diagonal matrix), is

A1Yn+1 +A0Yn = h(B0Fn +B1Fn+1 +B2Fn+2) + h2D1F
′
n+1 (3.39)
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A0 =

(
0 −1

0 0

)
;A1 =

(
1 0

−1 1

)
;B1 =

(
586
945

113
1260

463
1260

586
945

)
; C̄8 =

(
− 289

846720
191

846720

)

B0 =

(
− 107

20160
97
315

1
756 − 347

20160

)
;B2 =

(
− 277

20160
1

756
19
630 − 37

20160

)
;D1 =

(
− 271

1008 0

0 − 191
1008

)
;

(3.40)

it is A1,1-stable and can be used with one initial SDLMF

y1 − y0 = h

(
1139f0
3780

+
24293f1
20160

− 1777f2
1260

+
586f3
945

+
97f4
315

− 97f5
4032

)
−h2 863f ′2

1008
; C8 =

4447

846720

(3.41)

and one final additional block equation given by

A
(N)
0 =

(
0 −1

0 0

)
;A

(N)
1 =

(
1 0

−1 1

)
;

D
(N)
1 =

(
− 271

1008 0

0 − 863
1008

)
; C̄8 =

(
277

282240

− 907
282240

)
;

B
(N)
0 =

(
13

2240 − 17
210

− 37
3780

631
6720

)
;B

(N)
1 =

(
−254

945
137
140

− 73
140 −254

945

)
;

B
(N)
2 =

(
2521
6720 − 37

3780
149
105

643
2240

)
;

(3.42)

Example for k = 2, s = 3, one obtains the matrix coefficients of a tenth order

MBGSDLMME in (3.4),

A1Yn+1 +A0Yn = h(B0Fn +B1Fn+1 +B2Fn+2 +D2,1Gn+2 (3.43)
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where,

A1 =

 1 0 0

−1 1 0

0 −1 1

 ;A0 =

 0 0 −1

0 0 0

0 0 0

 ; C̄11 =

 −
69823

2395008000
263

14968800

− 40321
2395008000

 ;

B1 =


10908767
18144000

83423
725760 − 25559

907200
640307
1814400

13903
22680

101741
1814400

− 5557
181440

57517
145152

10965089
18144000

 ;B2 =


6151

907200 − 4127
3628800

3391
36288000

− 1241
145152

2129
1814400 − 2497

29030400
6163

226800 − 1069
453600

41
290304

 ;

B0 =


2687

7257600 − 3523
453600

71137
226800

− 3391
29030400

643
362880 − 58703

3628800
2497

36288000 − 3233
3628800

5353
907200

 ;D1,1 =

 −
441
1600 0 0

0 − 2497
11520 0

0 0 − 2497
14400

 ;

Since it is A1,1-stable, it can be implemented with one additional initial and final

block equations from (3.16) and (3.18) respectively. Further example for k = 2,

s = 4, one obtains the matrix coefficients of a twelfth order MBGSDLMME in

(3.4),

A1Yn+1 +A0Yn = h(B0Fn +B1Fn+1 +B2Fn+2 +D2,1F
′
n+2 (3.44)

where,

A1 =


1 0 0 0

−1 1 0 0

0 −1 1 0

0 0 −1 1

 ;A0 =


0 0 0 −1

0 0 0 0

0 0 0 0

0 0 0 0

 ; C̄13 =


− 4010257

1387736064000
4522787

2719962685440

− 92427157
67999067136000
106034111

67999067136000

 ;

B0 =


− 360233

10762752000
914845571

1307674368000 − 79953451
8717829120

9199123573
29059430400

25797689
2179457280000 − 61321669

290594304000
523498609

261534873600 − 113923639
7264857600

− 133787
20432412000

231294521
2179457280000 − 16646251

19372953600
425662331

87178291200
5512813

1017080064000 − 53896501
653837184000

264566299
435891456000 − 171220639

58118860800

 ;
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B1 =


450855749083
762810048000

193289207
1482624000 − 103627613

2594592000
119702819
8717829120

1005044731
2905943040

294593723
486486000

261825097
3459456000 − 119892569

7264857600

− 7382527
290594304

3912369061
10378368000

294593723
486486000

215857459
4843238400

485715409
43589145600 − 104898883

2594592000
610887817
1482624000

454827967333
762810048000

 ;

B2 =


− 2891921

717516800
128312183

145297152000 − 81674251
653837184000

25797689
3051240192000

345704453
87178291200 − 27037529

34871316480
74011757

726485760000 − 133787
20432412000

− 49253033
7264857600

11344999
10461394944 − 110821937

871782912000
5512813

726485760000
249792089
9686476800 − 37865123

14529715200
326587901

1307674368000 − 11591303
871782912000

 ;

D1 =


−184329877

660441600 0 0 0

0 −109551893
471744000 0 0

0 0 − 92427157
471744000 0

0 0 0 −109551893
660441600


It is A1,1-stable and can be implemented with one additional initial and final block

equations from (3.16) and (3.18) respectively.

4 Application of Second Derivative MB2VMs on

Amenable Differential Algebraic Equations

One of the advantages of second derivative MB2VMs in (3.20) is that, they can

easily be extended to the solution of differential algebraic equations. In fact,

different form of DAEs can be expressed in the form

M
dt

dx
= f(x, t) (4.1)

where,

M =



1 0 · · · 0 0

0 1 0 0
...

. . .
. . . 0 0

0 · · · 0 1 0

0 · · · 0 · · · 0


(4.2)
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Figure 1: Boundary loci of the MBGSDLMME in (3.4) of order p = s(k + 1) for

k = 2, s = 2(1)9; Du,1.
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Figure 2: Boundary loci of the MBGSDLMME in (3.4) of order p = s(k + 1) for

s = 2, k = 2(1)13; Du,1.
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Figure 3: Boundary loci of the MBGSDLMME in (3.4) of order p = s(k + 1) for

s = 2, k = 2(1)13; Du,2.
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is singular. Many special classes of problems are naturally represented in DAEs

forms such as mechanical systems and systems of rigid bodies (Hairer and Wanner

1996, p. 463; Brenan et al. 1989, p. 130), electric networks (Brenan et al. 1989,

p. 170), multibody and constrained Hamiltonian systems (Hairer and Wanner

1996,p. 530). The DAE in (4.1) can be converted to ODEs in (1.2) through

repeated analytic differentiation.This leads to the following definition.

Definition 4.1. cf: [16] The non-linear DAEs

f
(
t′(x), t(x), x

)
= 0, (4.3)

has index µ, if µ is the minimal number of differentiation,

f
(
t′(x), t(x), x

)
= 0,

df (t′(x), t(x), x)

dx
= 0, · · · , d

µf (t′(x), t(x), x)

dxµ
= 0, (4.4)

where (4.4) gives room to extract an explicit system of ordinary differential

equations g′(x) = ϕ(t(x), x).

The following DAEs,

(a) t′ = f(x, t) (b) t′ = f(x, t) (c) t′ = f(x, t, z) (d) x′ = f(x, t, z)

0 = g(x, t) 0 = g(x, t, z) 0 = g(x, t, z) 0 = g(x, t)

(4.5)

are amenable to be solved by second derivative MB2VM. The (a) does not contain

algebraic variables in both the differential equation and algebraic equation part

and (b) does not contain algebraic variables in the differential equation part.

However, the (c) in (4.5) is solvable by SDMB2VM, if it is feasible to make the

algebraic variables z the subject of relation in the algebraic equation part. While

the DAE of the form in (d) is not amenable to be solved by second derivative

MB2VMs in general. Note that, there are algebraic variables z in the differential

part, but absent in the algebraic constraint. In fact, the first derivative of the

algebraic variables z can not be obtained from the differential part. On account

of this, (d) is not amenable to be solved by second derivative methods except an
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explicit z′ is provided, see, [23] pp.336 and [35] for example of (d). By applying

the MBGSDLMME in (3.20) on (a) in (4.5) gives

ĀN Ȳn+1 + Ā0Ȳn = h
(
B̄N F̄ (Yn+1, Zn+1) + B̄0F̄ (Yn, Zn)

)
+ h2

(
D̄N F̄

′(Yn+1, Zn+1) + D̄0F̄
′(Yn, Zn)

) (4.6)

O = IN Ḡ(Yn+k, Zn+k); IN = (Is, Is, · · · , Is)T (4.7)

The algebraic in (4.7) can also be replaced by

O =


B̄N∗Ḡ(Yn+1, Zn+1) + B̄0∗Ḡ(Yn, Zn) or

Ḡ(Yn+k, Zn+k) + hD̄∗N Ḡ
′(Yn+k, Zn+k)

(4.8)

The option 4.7 was consider in the numerical experiment. Here IN , B̄N∗,
B̄0∗ and D̄N∗ are coefficients from a method of the same order as (4.6) to avoid

degradation in order of convergences.

5 Numerical Experiment

In this section we present the results of some numerical experiments on some Stiff

ODEs, DAEs to illustrate the performance of the MBGSDLMME in (3.4). The

MBGSDLMME in (3.32) for k = 2, p = 8, (i.e MBGSDLMME-8) is implemented

as main method in one-block formalism in (3.20) along with two initial block

formulas and one final block formula in (3.9) and (3.10) respectively, induced

by eight order MBGSDLMME .The iteration scheme we have adopted to use in

resolving the implicitness in (3.20) is the Newton-Raphson technique. Thus the

multi-block solution Ȳn+1 = Ȳ
[q]
n+1, in (3.21) is iteratively obtained from,

Ȳ
[i+1]
n+1 = Ȳ

[i]
n+1 −

(
∂M(Y

[i]
n+1)

∂Yn+1

)−1
M(Y

[i]
n+1); i = 0(1)q q > 1, (5.1)
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where

∂F (Yn+1)

∂Yn+1
=
∂ (fn+1, · · · , fn+N ·s)
∂ (yn+1, · · · , yn+N ·s)

=



∂fn+1

∂yn+1

∂fn+1

∂yn+2
· · · ∂fn+1

∂yn+N·s

∂fn+2

∂yn+1

δfn+2

∂yn+2
· · · ∂fn+2

∂yn+N·s

...
∂fn+s

∂yn+1

∂fn+s

∂yn+2
· · · ∂fn+N·s

∂yn+N·s


. (5.2)

and
∂F ′(Yn+1)

∂Yn+1
=
∂
(
f ′n+1, · · · , f ′n+N ·s

)
∂ (yn+1, · · · , yn+N ·s)

(5.3)

M(Yn+1) = ĀN Ȳn+1 + Ā0Ȳn − hB̄0F̄n − hB̄N F̄n+1 − h2D̄0F̄
′
n − h2D̄N F̄

′
n+1 = 0.

(5.4)

A modified Newton-Raphson method which uses a fixed Jacobian J = ∂M
∂Y from

the ODEs in (1.2) and (4.1) when available can also be employed. The method

in (3.20) are implemented with minimum block size using the Newton-Raphson

method in (5.1).

Problem 1: Consider the linear problem in [23]

y′ =

 −21 19 −20

19 −21 20

40 −40 −40

 y, y(0) =

 1

0

−1

 ; (5.5)

y(x) =
1

2

 e−2x + e−40x (cos(40x) + sin(40x))

e−2x − e−40x (cos(40x) + sin(40x))

2e−40x (cos(40x)− sin(40x))

 .

This system of ODEs is stiff with the stiffness ratio S = 28.5 and the eigenvalues

of the Jacobian matrix are λ1 = −2 and λ2,3 = −40 + 40i. Table 1 contains

the maximum relative error max
1<i<3

| yi(x) − yi,h | /(1+ | yi,h |) in the interval

0 < x ≤ 1 using MBGSDLMME-8. The performance compares with generalized

backward differentiation formulas (GBDFs) of order p = 8, Extended Trapeziodal

http://www.earthlinepublishers.com



High Order Multi-block Boundary-value Integration Methods for Stiff ODEs 159

rule of first kind (ETR) of order p = 8 and Extended Trapeziodal rule of second

kind (ETR2s) of order p = 8 in [23]. It is observed that the MBGSDLMME-8

perform better than the GBDFs, ETR and ETR2s, where rate is the numerical

order of convergence given in bracket and is computed from

rate = log2

(
T1
T2

)
; i = 1(1)m, m = 3, 0 < x ≤ 1

T1 = max
1<i<3

| yi(x)− yi,h | /(1+ | yi,h |)

T2 = max
1<i<3

| yi(x)− yi,h
2
| /(1+ | yi,h

2
|)

(5.6)

This rate in Table 1 is obtained from applying the MBGSDLMME-8 with two

different step sizes h and h
2 . From which the rate is computed from the log of

the absolute value of the ratio of two errors at the output point x. Here yi(x) is

the exact solution at x since it is available for the ordinary differential equations

in Problem 1. The numerical order of convergence conform with the theoretical

order.

Problem 2: Consider the Lorenz system

y′1(x) = b(y2(t)− y1(t)) y1(0) = 1

y′2(x) = −y1y3 + ay1 − y2(t) y2(0) = 5

y′3(x) = y1(t)y2(t)− cy3(t) y3(0) = 10

(5.7)

The plot is given in Figures 4, 5 and 6 for values of a = 28, b = 10, c = 8
3 .

In Figure 4, is the time series plot of individual y1(t), y2(t), y3(t) against time

t. The portrait of y2(t) against y1(t), y3(t) against y2(t) and y3(t) against y1(t) is

given in Figure 5, while the three-dimensional space plot is shown in Figure 6.

Problem 3: The problem consider is chemical rection kinetics of index 1 in [16]

y′1 = −0.04y1 + 104y2y3, y′2 = 0.04y1 − 104y2y3 − 3× 107y22,

0 = y1 + y2 + y3 − 1; y1(0) = 1, y2(0) = 0, y3(0) = 0.
(5.8)

From definition (4.1), the DAE of index one in problem 3 can be written in ODEs

in (1.2) as,
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Problem 4: Robertson’s equation, [16]

y′1 = −0.04y1 + 104y2y3, y′2 = 0.04y1 − 104y2y3 − 3× 107y22,

y′3 = 3× 107y22; y1(0) = 1, y2(0) = 0, y3(0) = 0.
(5.9)

The problem considered in (5.8) aand (5.9). Table 2, contains the absolute error

which is given as the modulus of the ODE15s in MATLAB minus the numerical

solution of the MBGSDLMME.

Problem 5: The next problem is of index one, [23,40]

 1 −x x2

0 1 −x
0 0 0

 y′ +

 1 −(x+ 1) x+ x2

0 −1 x− 1

0 0 1

 y =

 0

0

sin(x)

 (5.10)

with boundary condition y1(0) = 1 and y2(1)− y3(1) = e. The theoretical result

is

y1 = e−x + xex, y2 = ex + xsin(x), y3 = sin(x)

suppose y′3 is written as εy′3, then the DAE in (5.10) transforms to

y′ +


1 −2x− 1 x2 + (x− 1)x+ x

0 −1 x
ε + x− 1

0 0 1
ε

 y =


0

xsin(x)
ε

sin(x)
ε

 (5.11)

this problem (5.11) is excessively stiff and sensitive to the solution from the third

component due to the parameter ε → 0. This readily explains why ODE15s is

unable to give a solution of reasonable accuracy compared to the exact solution

and the solution from MBGSDLMME-8. However, ODE15s is considered as a

reference solution.
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Table 1: Numerical solution of problem 1 in the interval 0 < x ≤ 1 with Ns =

(N · s)∗ = 4.

MBGSDLMME-8 GBDF-8 ETR-8 ETR2-8s

(N · s)∗ 4 8 8 8

steps error error error error

(rate) (rate) (rate) (rate)

50 3.32e− 5 7.32e− 2 1.47e− 3 1.30e− 3

(−) (−) (−) (−)

100 1.63e− 7 4.49e− 4 7.81e− 6 6.72e− 6

(7.50) (7.31) (7.56) (7.60)

200 1.05e− 9 2.68e− 6 4.88e− 8 4.20e− 8

(7.30) (7.39) (7.32) (7.32)

400 4.76e− 12 1.54e− 8 1.84e− 10 1.54e− 10

(7.99) (7.45) (7.59) (8.09)

The maximum relative error from Ode15s at x = 1 is 3.660087954199254e− 5

Table 2: Comparison of results from problem 3, 4 using Erryi =| yi (3.20) −
ODE15s(yi) |, i = 1(1)3, h = 0.0001.

Problem 3 problem 4

x Erry1 Erry2 Erry3 Erry1 Erry2 Erry3

1 5.18e− 6 −7.89e− 10 5.18e− 6 −4.42e− 7 −7.04e− 11 4.4e− 7

5 1.03e− 5 1.19e− 9 1.03e− 5 −4.19e− 6 8.50e− 10 4.19e− 6

10 6.28e− 5 5.09e− 9 6.28e− 5 2.05e− 5 2.21e− 9 2.05e− 5
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Table 3: Numerical solution of problem 5 with Ns = (N · s)∗ = 4, h = 0.01.

x Exact MBGSDLMME-8 ODE15s

solution (y1, y2, y3)
T solution (y1, y2, y3)

T solution(y1, y2, y3)
T

3.035898818647817 3.03706392172143 2.662759915698755

1 3.518900191163779 3.51905149198082 3.201941362146939

0.836025978600521 0.836025978600521 0.788432436870595

217854.9150401765 217796.8076402711 221498.6357290881

10 21801.94812091745 21796.29119316302 22143.5041602270

−0.535603334614296 −0.535603334614296 −0.5440211109

9.809460533275866e+ 18 9.804702611996597e+ 18 8.239333037971687e+ 18

40 2.449915218100874e+ 17 2.449674714825473e+ 17 2.06761180705137e+ 19

0.717846740396360 0.717846740396360 0.0

0 50 100 150
−20

−10

0

10

20

t

y
1

(t
)

0 50 100 150
−40

−20

0

20

40

t

y
2

(t
)

0 50 100 150
0

20

40

60

t

y
3

(t
)

Figure 4: Time series result for the problem in (5.7) when h = 0.01.
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Figure 5: Phase portraits for the Lorenz system in (5.7) when h = 0.01.
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Figure 6: Three-dimensional space for the Lorenz system in (5.7) when h = 0.01.
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6 Conclusion

This paper considered a very large scale integration methods (VLSIM) in

the numerical solution of differential equations. The proposed methods is

a new family of multi-block boundary value integration methods based on

the Enright type-methods. The theoretical properties of the methods with

respect to convergency and stability along with other practical aspect of

implementation have also been presented. The Weiner-Hopf matrix factorization

of the characteristics matrix polynomial of the main method along with the root

distribution of the arising stability polynomial have been used to determine the

structure of the arising second derivative multi-block boundary value method in

(3.4). Finally, the numerical results presented in Tables 1, 2 and 3 , shows that

MBGSDLMME compare in accuracy with methods from [23] and [35] on some

considered ODEs and DAEs in Section 5.
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