Earthline Journal of Mathematical Sciences
E-ISSN: 2581-8147

Volume 10, Number 1, 2022, Pages 125-168
https://doi.org/10.34198/ejms.10122.125168

High Order Multi-block Boundary-value Integration
Methods for Stiff ODEs

S. E. Ogunfeyitimi®” and M. N. O. Ikhile?

! Department of Mathematics, University of Benin, Benin City, Nigeria

e-mail: seun.ogunfeyitimi@physci.uniben.edu

2 Department of Mathematics, University of Benin, Benin City, Nigeria

e-mail: ikhile@Quniben.edu

Abstract

In this paper, we present a new family of multi-block boundary value
integration methods based on the Enright second derivative type-methods
for differential equations. We rigorously show that this class of multi-block
methods are generally Ay, x,-stable for all block number by verifying through
employing the Wiener-Hopf factorization of a matrix polynomial to determine
the root distribution of the stability polynomial. Further more, the correct
implementation procedure is as well determine by Wiener-Hopf factorization.
Some numerical results are presented and a comparison is made with some
existing methods. The new methods which output multi-block of solutions
of the ordinary differential equations on application, and are unlike the
conventional linear multistep methods which output a solution at a point or
the conventional boundary value methods and multi-block methods which
output a block of solutions per step. The second derivative multi-block
boundary value integration methods are a new approach at obtaining very
large scale integration methods for the numerical solution of differential
equations.
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1 Introduction

Recently, the notion of obtaining multi-block of solution values at each step of
application rather than the block of solution values per step, or a single solution
per step is recently receiving great attention. The first author to introduce such
method is in [1], which take advantage of parallelism over the implementation of
the conventional linear multistep methods. An extension of [1] can be found in [2].
Although, the introduction of block methods for non-stiff initial value problems is
in [3l|4]. The [5] considered parallel block method for initial value problems. The
use of parallel predictor-corrector was considered in [6]. Other authors on block
methods are in |[7H12|. In accordance with [13], the conventional linear multistep
method (LMMs),

k k
Zajynﬂ' :hZijn+ja Q. = 1, n:(),l,--- s (1.1)
7=0 7=0

has order and stability limitation for the numerical solution of the stiff initial

value problems (IVPs)

Y (z) = f(y(@), z€(xo,X), yl(xo)=yo;

(1.2)
f:RxR™—=R"™ wy,y€R"™ x9,x€R,

in ordinary differential equations (ODEs) see [14-17]. This limitation gives room
for new search for stiff solvers in LMM. However, the introduction of second
derivative function to overcome this limitation was considered in [18,19]. In [20],
the second derivative linear multistep method (SDLMM) is,

k
Yn+k — YUn+k = hZ/ijn+]+h2’ykf7{L+ku n:O)l)"' ) (13)

7=0
with {yo,y1, - ,yk—1} initial condition values. The first characteristics
polynomial p(r) = r¥(r — 1) is choosen for zero-stability and the third

characteristics polynomial w (r) = ¥ is choosen for stability at infinity. The
method in (1.3 is of order p = k+1 and is A—stable for &k = 1,2 and A(«)— stable

http://www. earthlinepublishers.com



High Order Multi-block Boundary-value Integration Methods for Stiff ODEs 127

for k = 3(1)7, with instability setting in when k& > 8. Regardless the improved
order, the second derivative LMMSs are limited with A-stability condition with
respect to their step number k. A new approach to circumvent the order and
stability barrier in LMM for all step number k& can be found in [21H31], where
discretization of is done by a boundary value method (BVM). This is a linear
multistep method coupled with boundary value conditions (instead of initial value
conditions). The next is a new result required to determine the formulation and

the implementation of the proposed methods.

1.1 The Wiener-Hopf factorization and its application

In this subsection, we aim at factoring a matrix polynomial into two products
of matrices, where the determinant of the first matrix contains all its roots in a
unit circle and the second contains its roots outside the unit circle [32-34]. The

Wiener-Hopf factorization can be defined for a matrix-valued function

C(R)= Y _ CiR; Cyecm™m (1.4)
in the Wiener class Wy, formed by all the functions C'(R) such that

S | Cil< oo (1.5)

1=—00

| Fl=( fij ), F =(a;;) for C(R) € Wp,, the Wiener-Hopf factorization exist

in the form
C(R) = F(R)diag(R*,--- , R*)U(R™");
F(R)=> FR, UR)=> UR,
i=0 i=0
det(C(R)) #0 for |R|=1

Here F(R), U(R) € W, and det(F(r)), det (U(r)) are non-zero in the open unit

disk. If the partial indices k; € Z are zeros, the canonical factorization take the
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form

C(R) = F(R\U(R™). (1.6)

Its matrix representation provides a block UL factorization of the infinite block
Toeplitz matrix TM(C;_;).

Co Cp -+ - Fy F - .- U 0
C_4 Co G IEED 0 Fy Fu --- U_1 Uy 0

(1.7)
Moreover, the condition det(F(r)), det(U(r)) # 0 for | r |< 1 provided the
existence of F(R)™!, U(R)™! in W,,, imply that the two infinite matrices have
a block Toeplitz inverse which has bounded infinity norm. If the condition
det(F(r)), det(U(r)) # 0, | R |< 1, for instance, there may exist R with | R |=1
such that det(F(7)) = 0 then, the canonical factorization is said to be weak
canonical factorization. In this case F'(R) or U(R) may be not invertible in W,
e.g F(R) = (1 — R)I has inverse F(R)™! = Y"7° IR’ which does not belong
to Wi, see [34]. An application of the Wiener-Hopf factorization to obtain
a second derivative multi-block boundary value method is illustrated in what

follows. Consider the stability matrix polynomial
p(R) = AiR+ Ay — 2(By + BiR + BaR?) — 2°D1R; 2z = \h, (1.8)

associated with a SDMB3VMs in section 3 (ahead). The matrix coefficients are

given as
1 0 353 1219 1081 2123
A = . By = 120960 4480 Y ; 2520 7560 .
31 29 ) 3733 3733 )
-1 1 T 120960 4480 7560 7560
Ay — ( 0 -1 ) . B, = ( 4?120 _4(%320 ) . D, = < _% _2208196 ) .
) 29 31 ) 191 191 )
0 0 4480 120960 2016 2016

which correspond to a SDMB2VMs that is A; 1-stable. Here the case of z = —6
in ([1.8) gives rise to the characteristics matrix polynomial p2(R) = F(R)U(R),
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which
19807 3657
20160 2240 for for O 0
20191 2327
20160 2240 fDS f04 0 O U1 uo2
Ao — zBo 14627 19771
840 2520
° 1 0 for foo o3 Uoa
2 = 1129 1079 =
Ar—zB1 —2°Dy 2520 320
0 1 fos fou Ul U2
297 43
Az — 2B 2240 6720 0 0 1 0
U1z U4
87 31
2240 20160 0 0 0 1
(1.9)

Using Netwon-Raphson approach as in [32] to resolve this non-linear equation
in (1.9), the Mathematica 11.1 version gives eleven options. However, we have

chosen this
fo1 = —7431.2, foo = 25816.3, foz3 = —2919.69, fos = 9955.48,
ug1 = 0.02556, wuge = —0.007578, wup3z = 0.007395, wugs = —0.002118,

upy = 0.132589, w1y = —0.00639881, w3 = 0.0388393, w4 = —0.0015377.
(1.10)

solution amongst the options. This leads to right hand canonical factorization

amongst other options.

—7431.2 25816.3 10
F(R) = + R=Fy+ FRR (1.11)
—2919.69 9955.48 0 1

where the roots of the det (F(r)) gives two real outside the unit circle; r =
—1708.01 and ro = —816.273. From (1.10]),

U(R) = 0.02556 —0.007578 n 0.132589 —0.006398
~\ 0.007395 —0.002118 0.038839 —0.001537

> R=U_,+UR
(1.12)

Similarly, the roots of the det (U(r)) gives two real roots inside the unit circle; r3 =
—0.36484 and r4 = —0.116696. The existence of the Wiener-Hopf factorization
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above gives the band structured block Toeplitz matrix

A, O O
Ay A O
O 4 A
A= 0 1
o) o
o) o
B, By O
By Bi Bs
O By, B
B =
o o}
O O
D O O
O D, O
O O D
D=
o o)
O O

The result is the 2-block, 2-point SDBVM

0)
0)
0]

00 OF

oo

AY — hBF — h2DF' = ( _AoY,, + hByFy,

where Y, F, F" are defined in (3.15)).

Aq

By
By

D,

o
O
@)

Bo
By

o

D

Ty 07 hBQFn—f—N) )

; (1.13)

T

(1.14)

In this paper, a family of multi-block boundary value method based on the

Enright type-method through [1] with the purpose of improving the order and

stability properties will be introduced. The article is organized as follows: In

Section 2], a brief introduction of second derivative multi-block methods on initial

and boundary method is presented along their stability criteria. In Section

derivation of multi-block generalized second derivative linear multistep methods
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based on the methods of [20] is presented. Section |4} contain the application of
second derivative MBoVMs on Amenable differential algebraic equations, while
Section [5], is on the implementation of the proposed methods and the conclusion

follows in Section [6

2 Second Derivative Multi-block Boundary Value
Integration Methods

The extension of linear multi-block methods of [1] to second derivative is of the

form,
k k k
Y AV, j=h> BiFyj+h*> DiF, . n=01--: k>1 (21)
j=0 j=0 j=0

obtained from [2] when g = 2, = s, where

4= [ag’]é)}ivlzl(l)s’ By = [b’%)L,zzl(l)s’

Virj = Wntss Ynsgils s Unbsgas—1) =001k (2.2)
Fotj = (fatsg fntsjrt, s fn+s-j+sfl)T
T/z+j = (f7ll+s-j?f7{b+s~j+l7"' ) ;L+S.j+s_1)T.

The {Yn+j}j:0(1)k are the multi-block of non-overlapping solution values,
and {Fpi;};_oq), and {F{lﬂ» }j:O(l)k denote the corresponding multi-block of
non-overlapping function and derivative function values of respectively. The
formula is a k-block, s-point block second derivative formula. Here, the
block shift operator E is defined as E’Y;, = Y,,;;. Here the first, second and third
characteristics matrix polynomial of as

k k

k
pPR)=> AR,  GR) =) BRI, GR)=> DR  (23)
j=0

j=0 Jj=0
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respectively. The first, second and third characteristic stability polynomial of

are

k k k
p(r) =det (p(r)) =det | Y Al |, o(r)=det [ Y Byl |, o(r)=det [Y Dy |.
j=0 j=0 =0
(2.4)
The stability matrix polynomial of (2.1]) on application on the scalar test equation

v =Xy;  Re(\) <0 (2.5)

is —_

[[(R.2) = 5(R) — 26(R) — 2°A(R); 2= Ah (2.6)

The corresponding stability polynomial associated with (2.1)) is thus,

—

H(r, z) = det (H(r, z)) = det (p(r) — zo(r) — 226(7’)) ;

r=e 0<60<2r z=M\h, Re(z) <0

(2.7)

Due to the A-stability limitation of multi-block in [1] and Daniel-Moore conjecture
in [16], we consider the approach in [23]26] on second derivative of [1] with the
condition in subsection 1 holds. The second derivative multi-block boundary value
methods (SDMB2VMs) to be considered are a large scale of integration methods
for numerical approximation of differential equations based on the conventional
initial value multi-block methods in [1,2]. However, The multi-block boundary
value methods (MB2VMs) is first introduced in [35]. Herein, the SDMB2VMs is
described by,

ko ko k2
_ 2 . n = 0(1)(N — k)

> AjirYari=h Y Biy Fuyj+h Y Dy Flj
, ‘ . k>1, k=k +ko
j=—k1 j=—k1 Jj=—Fk1
Yo, -, Y1 Yo YN—k, YN ko1, YN
—_—— —_—

(a) multi-block of solution values to be generated by the SDMB2>VMs (b)

(2.8)

as the main block formula while the initial multi-block solution values (a) and
final multi-block solution values (b) in (2.8 are to be provided or replaced by
multi-block second derivative multistep formulas. The SDMBsVMs in (2.8) is
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a k-block, s-point SDBVM. The coefficients {A;, Bj, D;} are determined by
imposing a O (h45'k+1) truncation error. Here ¢1 = s - k1 is the number of
roots lying inside the unit circle and g = s - ko is the number of roots lying
outside the unit circle of the stability polynomial in of the main methods in
. Implementing as a SDMByVMs, we shall have the discrete problem
generated by a SDMBsVMs with (kp, ke)-block boundary conditions is

written in the compact form

ki1—1
>0 (Aan+j —hBjFnij — thjFZL+j)

AoYpig, -1 — hBoFyik, —1 — h2DoF!,
O

4k —1
AY — hBF — h?DF' = —
(0]

ARYn i N—kot1 = hBrFpiN—ky+1 —h*DyF 4oy

k 2
32521 Ak 5 Ynt N—koti — BBy 4 Fng N—kotj — W Diy 4 By n gy
(2.9)

where
Y = (Y, Y, T F=(F F T
_( n+kis " n+N—k2) ) _( n+kis " n+N—k2)
/ , / - (2.10)
Fr=(Fop s Franoi)

as the multi-block solution, function and derivative vectors of respectively.
The A, B and D are the multi-block Toeplitz matrices obtained from the main
formula without the initial multi-block second derivative formulas and final
multi-block second derivative formulas. The arising SDMBsVMs in is thus
Ap, ko-stable. The multi-block Toeplitz matrix A is of the form

Ap, A1 - A O O - e o)
Ax
Ao
4=l o : ki ko =k (2.11)
Ag
) : Ak 41
O o 0 0 Ao A A ) s
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where B and D is of a similar form, but with the B’s and D' s respectively, instead
of the A;s. The coefficient block matrices are Toeplitz-block matrices having lower
band k; (equal to the number of block initial conditions) and upper band k3 (equal
to the number of block final conditions). The continuous problem in ([1.2) gives
only the initial value yp, whereas the remaining £ — 1 blocks additional solution
values in (2.8) are not known. However, the k; extra initial blocks Yp, -, Y, -1
(n = 0), of solution values in can be provided by the initial block second

derivative formulas,

k k k
AVY; =Y BYF + Y DYEL i =0(1)k - 1, (2.12)
§=0 j=0 j=0
and the ky extra final blocks Yy, -+, Ynyg,—1 of solution values are provided by

the final block second derivative formulas,

k k k
() _ (4) 2 (4) .
AJ\Zf—k-i-jYN—k-S-j =h E :BJ\Zf—k;-s-jFN—kH +h E :DJ\Zf—k-s-jFJIV—k—Fj’
Jj=0 =0 =0 (2.13)

i=(N—ko+1)(1)N.

The composite matrix scheme, (2.8]), (2.12)) and (2.13]) which is a SDMB2VMs is

of uniform order p. Thus the composition is written in higher dimensional space

as,

ANY —hBNF —h*DyF'=0, O0=(0,---,0)T (2.14)

Here the multi-block of solutions and functions are given as

T
Y - (Ym t 7Yn+k1717Yn+k7"' 7Yn+N7k27Yn+N7’€2+17"' 7Yn+N) )
T
F: (F’VM 7Fn+k1717Fn+k7”' 7Fn+ka27Fn+ka2+17"‘ 7Fn+N) ) (215)
/ / / / / / / T
F = (Fm 7Fn+k;1—17Fn+k"" 7Fn+N—k27Fn+N—k2+17'” ’ n+N)
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and Ay = [a | le] € RNsx(N+1)s iq

Aél) Agl) A](:)
PICEE e A=Y
Ag Ay Ay
Ay = Ag Ay Ay |
Ap Ay Ay
N—ky+1 N—ky+1 N—ky+1
Aé 2+1) Ag 2+1) A( 2+1)
AéN) AgN) A](CN)

(2.16)
and By = [b | BN], Dy = [d | DN] e RNsx(N+Ds ig of gimilar form, but with
B}s and D}s instead of A}s. The matrix Ay — hBy — h?Dy, has a multi-block
quasi-Toeplitz structure [36-38] as a result of the additional multi-block second

derivative formulas from (2.122.13). The (2.14]) is equivalent to the one-block
method

AnYni1 + AgY, = h (ByFny1 + BoF,) + h? (DNE!, | + DoF! (2.17)
+

in higher dimensional block with multi-block of solution output. Here the
multi-block of solution, function and derivative function values are given as

, T
Yn+1 = (Y’I’L+17"' 7Yn+k1717Yn+ka"' 7Yn+N7k27Yn+N7k:2+1a"' 7Yn+N) )
h T
Fn+1 = (FnJrly"' 7Fn+k1717Fn+k7"' »Fn+N7k27Fn+N7k2+1a"' 7Fn+N) (218)
— T
/ _ / ’ / ’ / /
Fn+1 - (Fn-i-l"" 7Fn+k1—15Fn+kv"' 7Fn+N—k2’Fn+N—k2+17"' ’Fn-',-N)
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A(()l) B(()l)
k;—l k;—l
) ap | B
Ao=lalal = A §Boz[b|b]: By
O(Nfl)sts o O(Nfl)sXNs o
(0] (0]
(2.19)
DfY
Dékl_l)
Dy=1[d|d] = Dy (2.20)

O(Nfl)sXNs o

We define the following definitions.

Definition 2.1. The SDMByVMs (2.9)) is pre-consistent if || (Ax)la ||o= 1
holds.

Definition 2.2. A matrix polynomial p(R) of degree k = k1 + k2 in (2.3 is an

Sky ko=matriz polynomial, if the roots {r;}_, of the polynomial p(r) are such that
[ f<- <l [< U< rg [<-- g, aa+@e=q=s-k (2.21)

Definition 2.3. A matrix polynomial p(R) of degree k = k1 + ko in (2.3)) is an
Ny, ky-matriz polynomial, if the roots {rj}gzl of the polynomial p(r) in (2.4) are
such that

[ f<-<frg [S U< rgua <[l at@=g=s-k  (222)
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Definition 2.4. The SDMBVM (2.9) with (k1, k2)-block boundary conditions
where k = k1 + ko is ;

(a) Ok, ko-stable if the corresponding first characteristics matrix polynomial
p(R) in (2.3)) is a Ny, x,- matrix polynomial with ¢; = s- ki and go = s - k.

(b) (K1, k2)-absolutely stable for a given z € C, if the corresponding matrix
polynomial [[(R, z) in (2.6]) is a Sk, k,- matrix polynomial.

(c) The region Dy, y, = {z € C: ﬁ(R, z) in ([2.6) is a Sk, g,-matrix polynomial}
is said to be the region of (k1,ke)-absolute stability.

(d) Ay, gy-stable if C C Dy, g,.

The Ay, ,-stability define the stability of the SDMB,VMs in terms of the block
number k& which is the degree of the stability matrix polynomial (2.6). It can as
well be referred to as Ay, r,-block stability.

Definition 2.5. A SDMByVMs in (2.17) is called a minimum multi-block
boundary value methods if the dimension IV - s is equal to the block number k. In

fact from (2.16]), we have

AW | AP AW BV | BV ... BW
A=aa=| | : : |, B=pBl=| : :
AP | AR AP B | B ... BY
(2.23)
p [ p®M ... p»
D=dDl=| : ; (2.24)
p® | p® ... p®

Note in particular, the definition (2.5 shows that the maximum order of the
k-block methods in (2.8)) defining the minimum SDMBoVMs in (2.17)), see [12].
The next theorem shows the existence of the solution of SDMB2VMs in ([2.8)).

Earthline J. Math. Sci. Vol. 10 No. 1 (2022), 125-168
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Theorem 2.1. Suppose that the matriz roots of the characteristics matriz

polynomial
k
p(R) =) AR (2.25)
§=0
associated with
k
> AYai; =0 n=0,1,--; Yo, Vi, Yect, Yog41,000, YN
J=0 initial and final multi-block of solution values to be provided
(2.26)
are such that,
| Ly =1 lloo<Il Lty lloo<Il Ly41 lloos | Ly [Joo< 1. (2.27)

Then the multi-block solution of the boundary value finite difference equation
associated with (2.26)) having k1 number of initial block conditions and ko number

of final block conditions in

Yo =Cn’G, Yi=Cn'G,---, Yi_1=0Cn"71G,

(2.28)
YN _gpi1 = CnN R o vy =onVaG.

has a solution for n and N —n sufficiently large. In fact, the multi-block solution

of (2.26]) subject to (2.28)) behaves asymptotically as

Y, = R}, (a+O(l?)+O(l{V‘”+) +0 (lgN)> +0 (l?‘"); n=0,1,---,

(2.29)
where the vector a depends on Yy, Y1, -+, Yi,—1 (n =0) and
( b=l L L1 o<1, k1thke=k
ls = mln{| Ts-ki+1 |7 | Tsk1+2 |’ T 7| Ts-ki+s |} > 1,
_ -1 _
.l2 _H Lk1+1L/€1 ||OO< 17 l4 _H I-Jlﬁ—l ||OO< 17 (230)
Lj+1 = dmg (Ts.j+1, Ts.j+2, s ,Ts-j-i-s) s ] = 0(1)]€ -1
H Lkl HOO: maX{| Ts(k1—1)+1 |7 ’ Ts(k1—1)+2 |, T 7| T's-ky ‘} <L
|7sky =1, 1<|Tsbytr |, 7=1(1)s
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Proof. The proof is in [35], where R} is the generating matrix root (solvent). [

Theorem 2.2. Given the stability polynomial [[(r, z) in (2.7)), we have [[(r, z) =

0 which defines a map between the complex r-plane and the complex z plane,
2(r) = det(p(r) — z6(r) — 2°Q(r)) (2.31)

where r € C is a root of the stability polynomial [[(r, z) such that z = z(r).

The following holds.

The set
T = {zEC :z:z(eie),0§9<27r} (2.32)
Here, the set 7 is the set associating to the roots on the boundary of the unit

circle and is known as the boundary locus, see the similar case of linear multistep

formula in section 4.7.1 in [23].

3 Multi-block Generalized Second Derivative LMF
based on Method’s of Enright.

Consider an initial multi-block generalized second derivative linear multistep
method based on the Enright type-method (MBGEMsS),

k
AYik + Ak 1Yoyh1 =hY_ BiFuyj+ W Dol
=0

k>1;, a=1,2
n=0,1,---,

}/O,Yla"' aYk—l

(block solution values to be provided)

(3.1)

Earthline J. Math. Sci. Vol. 10 No. 1 (2022), 125-168
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in order to get Yy, Yit1, Yito, -+ ; in a step by step fashion, with
1 0 O 0 0 00 0 1
-1 1 0 0 0 00 0 0
0 -1 1 0 00 0 0
Ay = y Ap1 =
0 0 -1 0 0 0 00 0 0
1 0 ; 0
0 0 0 11 000 00 /s
SXS
(3.2)
and
Dy 1; diagonal matrix, a=1
Dy = ! g . (3.3)
Dy 2; dense matrix, a=2

Here, the coefficient matrices Bj, Dy, , are strictly determined to have maximum
order p = s(k + 2). The MBGEM in of order p = 3s is A-stable for fixed
block number k£ = 1 and increasing block size s = 2(1)5, Dy 2 and A(a)-stable
for s = 6 and instability set in from s > 7. The method in is also of order
p =2(k+2) and is A—stable for k =1, Dy, 5 and A(«)— stable for k = 2(1)7, and
become unstable at k£ > 8. To overcome the order and stability barrier in ,
we transform (3.1)) to

k
2 /
AYoiu+ AuaYngur =0 BiFuij +WPDyoFl,, u#k, k>1 n=01,-,
=0
Y0,Y2, - Yy Y, s YN—ptu YN _ktut1s s YN
—_ —_
(al) solution values to be generated by the SDMB2VM (a2)

(3.4)

as the main formula in a second derivative multi-block boundary value method
implementation. The coefficient matrices A, = A and A,_1 = Ap_1 in . The
multi-block solution values (al) and (a2) in are to be provided or replaced by
second derivative block linear multistep formulae. Considering as a second
derivative multi-block boundary value methods (SDMByVMs) with u # k, we
gain the freedom of choosing the appropriate values of u that provide methods

having the best stability properties for all block number k > 1. Here, u is define
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as
Bl k odd
u=1{ 7’ ¢ D k=1,2,3,--; (3.5)
55 k even

Here, the first characteristics polynomial p(r) for a method in (3.4)) is of degree
sk with s(k — u) number of roots at infinity, such that

gl = Qgfp—1 = * "+ = Og(y41) = 0; u>1

Thus for v = k, the is the conventional second derivative methods in
(3.1). The k + 2 matrix coefficients {Bj};?zo and D, allow the construction
of methods from of maximal order p = s(k + 2). However, D, can be
choosen as diagonal matrix or full matrix. The proposed methods shall be
referred to as multi-block generalized second derivative linear multistep methods
of Enright (MBGSDLMME). The corresponding local truncation error operator
for the MBGSDLMME is,

LYy(zn);h] = AyYni1(zn) + Au_1Yn ()

K 3.6
= hz Bi(W)F (Yotj(2n)) — hQF/(Yn—i—v(xn)); (30
§=0
where
Yn+j($n) =(y ($n+js) 'Y ($n+js+1) 'Y (xn+js+2) Y ($n+js+s—1))T

F(l_l) (Yn+]($n)) = <f(l_1) (l'nJrjsa Yy (xn+js)) af(l_l) (:L'nJrjerly ) (l'nJrjerl)) 3

T
FID (@nsjsra, ¥ (@najsr2)) s FOY (@ngjss—1,y ($n+js+s—1))>

The Taylor series about z,, in (3.6) gives

L [¥aln)ih] = 3

=0

; ’ . . . T
Vi@ YO @) = (49 @).y? @a), - 9P ()

S

The next theorem holds for the MBGSDLMME.
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Theorem 3.1.
Given e = (1,--- ,1)T, the coefficients {Cy}2o—0 in (3.7) are given by

e— Ayu(s)e — Ay_1(s)e; z=0
cfAu(s)(chsje) Ay—1(s)(c+ sje) — Zf o Bj(s)e; z=1
@ = Ay(5)(c+ 5je)? — Aur(s)le+ sje)? — 2o By(s)(c + sje)
—D,(s)e; r=2
C, = 3 — Au(s)(c+sje)® — Ay_1(s)(c + sje)?
—x Z?:o Bj(s)(c+ 5]6)2 (x — 1)Dy(s)(c + sve); x=3
c® — Au(s)(c+ sje)® — Au—1(s)(c + sje)*
-z Z?:o Bj(s)(c+ sje)* ' — (x — 1)Dy(s)(c + sve)* 2 T =45,
(3.8)
where ¢ = (c1,ca, - - ,cS)T.

The vector powers are component-wise power. The MBGSDLMME in (3.4)
is pre-comnsistent if Cp = 0 and consistent if it is of order at least p > 1, where

Co =0 and C; = 0. See page 249 in [35]. The Lt.e is given as Cpi1 = %

To determine the stability matrix polynomial of the method in (3.4), on

application of Dahlquist test problem in (2.5) on (3.4), here R'Y, = Y,j,
R"Y,, = Y4y and u is given in (3.5) to give,

_ k
R,z) = AyR* + Ay_1R* ' — 2 B:R/ — 2D, ,R". 3.9
.] b
7=0

The stability polynomial associated with MBGSDLMME in (3.4)is given as

k
H(r, z) =det | Ayr" + Ayqr 1t — 2 Z Bjrj - zzDu,a'r“
§=0

q1 q
= g ajrj —z E bj?“] — 22b2u7“2u
j=1 j=0

and the methods from (3.4) are found to be A, j_,-stable and can be used with

(u, k—wu)-block boundary conditions. The first characteristics stability polynomial

(3.10)
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possesses a unique structure of the form,
p(r) = det (Auyr™ + Ay_1r™ 1) =071 (r — 1), (3.11)

second characteristics stability polynomial is,

k q
o(r) = det ZBjrj = ijrj, q=s-k (3.12)
j=0 J=0

and third characteristics polynomials associated with (3.4)).
(r) = det (Dy,ar") = byur® (3.13)

The stability region of the MBGSDLMME in are the unbounded region of
the exterior of the closed curves for all k¥ > 2 as shown in the boundary loci in
Fig. [2| and |3 for k£ = 2(1)13. One can see, the sigma set of the proposed methods
in grows as the block number k (even) increases. Therefore MBGSDLMME
in are A, _y,—stable since, C™ is contained in the (u,k — u)— absolutely
stability region of . In fact, when D, is strictly diagonal matrix or full
matrix, the method in is A, p—y—stable for fixed s, along with increasing
block number k see, Fig. [l However, for a fixed block number k and increasing
blocksize s, the is found to be A, j_,—stable when D, is strictly diagonal
and A(a), k—y-stable when Dy contains dense matrix. By introducing the block
Toeplitz matrices (BT-matrices) s (N — k) x s (N — k)

A, O -~ O
Ao
A= 0O
O
AO Au
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By,

BO A Bu

Dyo O
(0] O
. D=
O Dy,
(0]

(0}
O D,,

the discrete problem generated by a k—block SDMByVMs in (3.4) with (u, k—u)—
block boundary conditions can be written in the compact form

AY — hBF — h’DF' =

u—1
~Ay1Yu1+h>_ BjF,
§=0

u—2
h)_ B;F
j=0

hBoFy—1
0

O
hBrFn_ji1

k—u

h  BuyFn
j=1

This is a set of nonlinear system of matrix equations, where

(3.14)

T
Y:(Ym"'yYN—k—i—l)Ta F:(Fu7"'7FN—k+1)T7 F,:(F';?"'vF],V—k’-l—l)

(3.15)

are multi-block solution, multi-block function and multi-block derivative vectors.

The A and B are the multi-block Toeplitz matrices obtained from the main

http://www. earthlinepublishers.com



High Order Multi-block Boundary-value Integration Methods for Stiff ODEs 145

formula without the initial multi-block formulas and final multi-block
formulas. The arising SDMB,VMs in (3.4)) is thus A, ;—,-stable. The continuous
problem provides only the initial value gy, whereas the u— extra initial
multi-block solution values Yy, Y7, -+ ,Y,_1 of can be given by the initial

formulas

k
A+ AD Y =Y BYE + 2DYF; i=10u—1, i=0()u- 1,
=0
(3.16)
or

Bj(’i)Fj +R2DOF; i=11u—1, i=0(1)u—1,

a1

WE

A+ AD Y = h
§=0

(3.17)

and k — u extra final blocks YN _g1yu+1,- -, Y, of multi-block solution values in

(3.4) are given by the final block formula

k
A g+ A Y =0y BY Fyy + B2D FY s i = 0(1)k —u— 1.
=0

(3.18)

or

=

AYN A Y = 1Y BY Fy g+ B2DY) Fl i i = 0(1)k—u—1. (3.19)
j=0

Here Agi) = A, and Az@1 = Au—1. The composition in (3.4), (3.18) or (3.19)),

(3.18) or (3.19) is written in higher dimensional space of one block method (2.17))

as
ANYpi1 + AgYy, = h (BN Fyy1 + BoFy,) + b (DnE) . + DoF)) (3.20)
where
Vi1 = Ynsts Yotk 1s Vot 5 Vg N Yok Nk 1o 5 Yoy v)
Fovr= Fogtr s Fotrots Fskr s Fut N—toos Frt N kot 1, Frn) (3.21)
Fylb+1 = (F;L-Ha"' 7F7/L+k1—17F7/L+k’.'. 7Fv/L+N—k2aFr/L+N—k2+1v"' aFn+N’)T?
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The following condition holds for the convergence of the second derivative
MB>2VMs in (3.20)

Lemma 3.1. Suppose that the sequence {ej;1} satisfies the condition of the

difference inequality
eir1 < (1 + ahi+1) e +mir1hir; 1=0,1 (3.22)
with the sequences {e;41}, {dix1}, {hit1} and « are positive integer, then
i i
eir1 < | e+ ijhj exp (a Z hT> (3.23)
j=0 r=0

Theorem 3.2. Suppose the effect of round-off error is insignificant and the (|1.2])

satisfies the following Lipschitz condition
| F(t,z) = Ft,7) o< L[| 2 -7 || (3.24)

for allt € [ty,T] and x, T, € C. The methods in (3.4) with (k1,ks)-block boundary
condition is convergent of order p = s(k + 2), if is consistent and the definition

21 holds.

Proof.
When the composite methods in (3.20)) is used to approximate the solution of the
ODEs in (|1.2) with the initial multi-block solution values Yy, Y1, - - -, Y, and final

multi-block solution values Yy _,+1, -+, yn. Then,
> T
Yn+1 = (YnJrl)"' aYn+k171;Yn+k;"' 7Yn+N7k27Yn+N7k2+17"' 7Yn+N) 9
=~ T
Foir= (Foyts s Fagko—1, Fagks  Fag Nekos Fag N—ko 15 5 Fg ) (3.25)
fa T
/ ! ! / / ! .
Fn+1 = (Fn+17 e ?Fn+k171’ Fn+k7 T aFn+N7k27Fn+N—k2+17 T ,Fn+N> )

is the mult-block of solution and function values and the local truncation error

is given as

Tny1(h) = ANYni1 — hByF,yy — W2DNF.  + AgY, — hBoF, — h*DoF,, (3.26)
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subtracting (3.20]) from (3.26]) gives the global truncation error

Ent1 = Ynp1 — Vg1 = (AN) " g1 (h) — (An) " Ao (Vs —

)

)

+h(AN) T By (Fns1 — Fuga) + h(An) "' Bo(F, — F) (3.27)
+1*(AN) "' Dn(Fppy = Fryr) + 12 (An) ' Do(Fy, — F)
for easy mnotation, let || (AN)"!By |loo= o, || (AN)"'By |loo= 9, |

(AN)T'Dn o=, || (AN)"' Do [loo= B, €0 = 0, ep41 = maxo<j<n || ent1 oo,

The SDMB2,VMs in is pre-consistent, see definition Hence, the
SDMB,VMs in is consistent for order p = s(k + 2). Then from (3.24)), we
have

lent1 loo=1l €n lloo +L((hp + B*®) || €1 [loo + (R0 + h°B) [ &n ||)

+ 1 (AN ool Tas1(R) oo (3-28)
< ei+ L((hg + B*V)eip1 + (hd + h?B)e;) + d || (An) ™" [|oo h*FH

here d > 0 is independent of h and n = 0(1)W;. Suppose there exist a non-negative
ho, and L(¢ho — Wh?) < 1 such that

o < (1 — L(p(ho — h) + W (h3 — h?) — 9h — 5h2)> . Jhs(k+2)+2
e 1 - L{pho + Uh3) 1~ Lipho + Uh2)
(3.29)
0 < h < hg, then from lemma (3.1)), we have

JT o [Le+ 0+ @+ B)ho)] | a2y
s(1 — L(pho + Wh})) ¢ [ s(1 — L(¢ho + Uh3)) ] h (3.30)

ent1 <

where J = d || (An)™" ||so, T = Wyh = WyNs - h.

Hence,

_ s(k+2)+1
(max || enta [loo= O(h ) (3.31)
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For example, the matrix coefficients of eight order MBGSDLMME in ({3.4))

with v = 1, and s = 2, are given as

A1Yyi1 + AgYy = W(BoF,, + B1Fyi1 + BaFyyo) + h2D1 2 F) (3.32)

0 -1 1 0 1081 2123 1759)
_ DAL .n. | 2520 7560 | .~ _ [ 25401600
Ao = 0 0 AL = 1 1 i Bi =\ 33 a7 |1C0= 289
7560 7560 25401600
353 1219 99 43 217 289
_ 120960 4480 |.p. _ [ 4480 0320 |.p _ 672 2016 | .
Bo=|{ _ S 5 iBe={ T Ty [iDr=| a0 o |
120960 4480 7480 120960 2016 2016
(3.33)

it is A 1-stable and can be used with one initial second derivative linear multistep
formula (SDLMF)

10667fy 7869f1 11573f 5849f; 1091fy  1537fs
Y1 — Yo = - - +

40320 4480 7560 2520 4480 120960
B2 4447 f1 n 907f5\ _ 206991
2016 672 /)’ 9~ 725401600
(3.34)
and one final additional block equation given by
0 -1 1 0
A(()N) _ : AgN) _ ;
0 O -1 1
™) 289 277 1759
_ 2016 672 O — 25401600 )
Dy’ = 907 4447 ;Cy = 26591 )
672 2016 25401600 (3.35)
_ 43 99 2123 1081
BWN) _ 40320 4480 gV _ 7560 2520 | .
0 1537 1091 |1 _ 5849 11573 |’
120960 4480 2520 7560
1219 353
BW) _ < 4480 120960 ) .
2 7869 10667 '
4480 40320
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Thus is conveniently written in one-block form in conformality with (3.20) as,

A 0 0 0 0
Ay A1 0 0 0 0 0
) 0 Ay 4 0 0
Ay = . .
N 0 0
0 Ay A 0
0 0 0 AN 4
(3.36)
B1 By 0 0 0
By By By 0
) 0 By By B 0
By = ,
N 0 0
0 0 BO Bl B2
0 o o B{™ BN BN
D, O O O O
O D O OO O O
i O OD, OO O O
Dy = . . 3.37
N O O ., . .. ., .. ( )
: O O O D O
o .- o o o p"™ o
| Ao | Bo
On—1)sxns | 0 On—nysxns | 0
Ay = | 0 |, By= | 0 (3.38)
| |
| 0 | o

of dimension Ns x N s respectively. An example of seventh order MBGSDLMME
in (3.4) with v =1, and s = 2, (here B, contain diagonal matrix), is

AIYn+1 + AgY, = h(BOFn + BanJrl + BZFn+2) + h2D1F7/H_1 (339)
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1 586 113 289
D 945 1260 |.~ 846720
- 1 s B = 463 586 ;Os =

= O

463 586 _191
1260 945 846720
_ 107 97 o1 1 271 0
_ 20160 315 . R 20160 756 . 1008 )
By = 1 347 s B2 = 19 Y ;D1 = 0 191 )
756 630 20160 1008
(3.40)

it is Ay j-stable and can be used with one initial SDLMF

1139fy  24293f; 1777fo 586 fs
y1—yo=nh +

n n 9fs  97f5
3780 20160 1260 945 315 4032 (3.41)
32 863 f5 4447
1008’ 7 846720
and one final additional block equation given by
0 —1 1 0
A(()N) _ : AgN) _ :
0 O -1 1
271 277
_ 271 0 _ _207_
D) _ 1008 g = 282240 :
' ( 0 _% ) ’ _289202740
N 1317 N _254 137 (3.42)
B = oo )= T ),
T 3780 6720 T 140 T 945
2521 37
BW) _ ( 6720 3780 ) .
2 149 643 ’
105 2240

Example for k = 2, s = 3, one obtains the matrix coefficients of a tenth order
MBGSDLMME in (3.4),

A Y41+ AoY, = h(BoF,, + B1Fpi1 + BaFyy2 + D2 1Gpoa (3.43)
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where,

Ay

By =

Since

69823
1 0 0 00 —1 ~ 2395008000
. _ S T 263 .
40321
0 -1 1 00 0 "~ 2395008000
10908767 83423 25559 6151 4127 3391
18144000 725760 907200 907200 3628800 36288000
640307 13903 101741 - By — 1241 2129 2497
1814400 22680 1814400 » 22 145152 1814400 29030400
5557 57517 10965089 6163 1069 41
181440 145152 18144000 226800 453600 290304
2687 3523 71137 441 0 0
7257600 453600 226800 1600
3391 643 __ 58703 Dy 4 — 0 2497 0
29030400 362880 3628800 » H1,1 11520
2497 3233 5353 0 0 2497
36288000 3628800 907200 14400

)

it is Ay 1-stable, it can be implemented with one additional initial and final

block equations from (3.16)) and (3.18]) respectively. Further example for k = 2,
s = 4, one obtains the matrix coefficients of a twelfth order MBGSDLMME in

B9,

where,

Ay

By

A1Ypq1 + AoYy, = W(BoF, + BiFpy1 + BoFyio 4+ D1 F) Ly

" 67999067136000

1 0 0 0 0 0 -1
-1 1 0 0 0 O _
s Ag = ;Cig =

o -1 1 0 0 0

0 0o -1 1 0O 0 0 O

360233 914845571 79953451 9199123573
10762752000 1307674368000 8717820120 29059430400
25797689 61321669 523498609 113923639

3179457280000 200594304000 261534873600 7264857600

T 33187 231294521 16646251 425662331
20432412000 2179457280000 10372053600 87178201200
5512813 53896501 264566209 171220639

077080064000 653837184000 435891456000 58118860800

4010257

"~ 1387736064000

4522787
2719962685440
92427157

106034111

67999067136000

(3.44)
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450855749083 193289207 _ 103627613 119702819
762810048000 1482624000 2594592000 8717829120
1005044731 294593723 261825097 _ 119892569
B = 2905943040 486486000 3459456000 7264857600
1 _ 7382527 3912369061 294593723 215857459 ’
290594304 10378368000 486486000 4843238400
485715409 _ 104898883 610887817 454827967333
43589145600 2594592000 1482624000 762810048000
_ 2891921 128312183 __ 81674251 25797689
717516800 145297152000 653837184000 3051240192000
345704453 _ 27037529 74011757 _ 133787
By = 87178291200 34871316480 726485760000 20432412000 .
2 _ 49253033 11344999 _ 110821937 5512813 ?
7264857600 10461394944 871782912000 726485760000
249792089 _ 37865123 326587901 _ 11591303
9686476800 14529715200 1307674368000 871782912000
184329877
660441600 0 0 0
109551893
Dy = 0 471744000 0 0
0 0 92427157 0
471744000
109551893
0 0 0 660441600

It is Ay 1-stable and can be implemented with one additional initial and final block

equations from (3.16]) and (3.18)) respectively.

4 Application of Second Derivative MB;VMs on
Amenable Differential Algebraic Equations

One of the advantages of second derivative MBaVMs in (3.20)) is that, they can
easily be extended to the solution of differential algebraic equations. In fact,

different form of DAEs can be expressed in the form

dt

M— = t 4.1
o= fa) (4.)

where,

1 0 0 0

0 1 0 0

0 0 1

0 0
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Figure 1: Boundary loci of the MBGSDLMME in (3.4) of order p = s(k + 1) for

k=2, 5=2(1)9; Dy,.

t s ™~ ] I T
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Figure 2: Boundary loci of the MBGSDLMME in (3.4) of order p = s(k + 1) for
s =2, k=2(1)13; Dy1.
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Figure 3: Boundary loci of the MBGSDLMME in (3.4) of order p = s(k + 1) for
s =2, k= 2(1)13; Dyo.
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is singular. Many special classes of problems are naturally represented in DAEs
forms such as mechanical systems and systems of rigid bodies (Hairer and Wanner
1996, p. 463; Brenan et al. 1989, p. 130), electric networks (Brenan et al. 1989,
p. 170), multibody and constrained Hamiltonian systems (Hairer and Wanner
1996,p. 530). The DAE in can be converted to ODEs in through

repeated analytic differentiation.This leads to the following definition.

Definition 4.1. cf: |[16] The non-linear DAEs

f (t/(a:), t(z), x) =0, (4.3)
has index p, if g is the minimal number of differentiation,
df (t'(z), t(z),x) d'f (¢'(z), t(x), )
o " _ -0.--. ’ = 4.4
7 (#(@),t(a) ) = 0, D 0, S 0. (14)

where (4.4) gives room to extract an explicit system of ordinary differential

equations ¢'(z) = p(t(z), x).

The following DAEs,

0=g(x,t) 0=g(x,t,z2) 0=g(x,t,2) 0=g(x,t)
(4.5)

(a) t'=fxt) | t'=fxt) [(© ¥=Fflwtz) [ 2'=[(ztz2)

are amenable to be solved by second derivative MBo VM. The (a) does not contain
algebraic variables in both the differential equation and algebraic equation part
and (b) does not contain algebraic variables in the differential equation part.
However, the (c) in is solvable by SDMB,VM, if it is feasible to make the
algebraic variables z the subject of relation in the algebraic equation part. While
the DAE of the form in (d) is not amenable to be solved by second derivative
MB2VMs in general. Note that, there are algebraic variables z in the differential
part, but absent in the algebraic constraint. In fact, the first derivative of the
algebraic variables z can not be obtained from the differential part. On account

of this, (d) is not amenable to be solved by second derivative methods except an
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explicit 2’ is provided, see, [23] pp.336 and [35] for example of (d). By applying
the MBGSDLMME in (3.20) on (a) in (4.5)) gives

ANYoi1 4 AoYn = h (BNF(Yni1, Zny1) + BoF (Y, Zn))
+ h? (DNF'(Yni1, Zns1) + DoF' (Yo, Z,))

O = ING(Ynik, Znir); In = (I, Lsy - )T (4.7)
The algebraic in (4.7)) can also be replaced by

BN*G(YTH—I; Zn+1) + Bo*G(Yn, Z’n) or
0= (4.8)
G(Ynik Zngk) + hDNG' (Yosk, Zntk)

The option was consider in the numerical experiment. Here Iy, By,
Box and Dy* are coefficients from a method of the same order as ([4.6) to avoid

degradation in order of convergences.

5 Numerical Experiment

In this section we present the results of some numerical experiments on some Stiff
ODEs, DAEs to illustrate the performance of the MBGSDLMME in . The
MBGSDLMME in for k =2, p =28, (i.e MBGSDLMME-8) is implemented
as main method in one-block formalism in along with two initial block
formulas and one final block formula in and respectively, induced
by eight order MBGSDLMME .The iteration scheme we have adopted to use in
resolving the implicitness in is the Newton-Raphson technique. Thus the
multi-block solution Y, 1 = Yrﬂv in (3.21]) is iteratively obtained from,

, 1
Al Al oM YTEZ} ) .
TE vl - (afmj”) ML) im0 g>1 ()
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where
Ofn+1 Ofnt1 . Ofn+1
Oynt1  Oyni2 OYn+N-s
Ofnt2  Ofni2 Ofn+2
aF(Yn-‘rl) _ 8(fn+17"' 7fTL+N~8) _ OYn+t1 M m (5 2)
aYTl'f'l 8 (yn+17 o 7y7’b+N'8)
Ofnys  Ofnts . OfniNs
Oynt1  Oyni2 OYn+N-s
and / /
OF (Yni1) _ 0 (fnsas = friws) (5.3)
OYn+1 O (Yn+1, " YntN-s)
M(Yn+1) = ANYn-‘,-l + /_10}7” — hB()Fn - hBNFn—i—l — hQD()FT/l - hZDNFr/LJrl = 0.
(5.4)

A modified Newton-Raphson method which uses a fixed Jacobian J = %—A;[ from

the ODEs in (1.2)) and (4.1) when available can also be employed. The method
in (3.20) are implemented with minimum block size using the Newton-Raphson
method in ([5.1)).

Problem 1: Consider the linear problem in [23]

—21 19 -20
Y= 19 -21 20 |y, yO0O)=| 0 [; (5.5)
40 —40 —40 -1

e 2% + 7407 (cos(40x) + sin(40z))
y(x) =< | e 2 — e 1% (cos(40z) + sin(40z))
27497 (cos(40x) — sin(40x))

This system of ODEs is stiff with the stiffness ratio S = 28.5 and the eigenvalues
of the Jacobian matrix are \y = —2 and Ay3 = —40 + 40:. Table [I| contains
the maximum relative error max _ | yi(z) —yin | /(14 | yin [) in the interval

0 < 2 <1 using MBGSDLMME-8. The performance compares with generalized
backward differentiation formulas (GBDFs) of order p = 8, Extended Trapeziodal
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rule of first kind (ETR) of order p = 8 and Extended Trapeziodal rule of second
kind (ETRags) of order p = 8 in [23]. It is observed that the MBGSDLMME-8
perform better than the GBDFs, ETR and ETRss, where rate is the numerical

order of convergence given in bracket and is computed from

T;
rate:logz<T1>; i=11m, m=3, 0<z<1
2

Ty = max | yi(x) = yin | /(1H+ [ yin ) (5.6)

1<i<3

Ty = max | yi(z) —y;n | /(14 [ y;n |)

1<i<3
This rate in Table [I] is obtained from applying the MBGSDLMME-8 with two
different step sizes h and % From which the rate is computed from the log of
the absolute value of the ratio of two errors at the output point x. Here y;(z) is
the exact solution at = since it is available for the ordinary differential equations
in Problem 1. The numerical order of convergence conform with the theoretical

order.

Problem 2: Consider the Lorenz system

vi(@) =b(y2(t) —pn (1)) w1(0) =1
Yo(7) = —y1ys + ay1 —y2(t)  y2(0) =5 (5.7)
y3(2) = y1(t)y2(t) — cys(t)  y3(0) = 10
The plot is given in Figures and |§| for values of a =28, b =10, ¢ = %.
In Figure |4} is the time series plot of individual y;(t), y2(t), y3(t) against time
t. The portrait of ya(t) against y1(t), y3(t) against yo(t) and ys3(t) against y (¢) is

given in Figure [f] while the three-dimensional space plot is shown in Figure [6]
Problem 3: The problem consider is chemical rection kinetics of index 1 in [16]
Yy = —0.04y1 + 10%yay3,  yh = 0.04y1 — 10%yays — 3 x 10743,

O=yi+y2+ys—1; w1(0) =1, 32(0) =0, y3(0)=0.

From definition (4.1]), the DAE of index one in problem 3 can be written in ODEs
in (L.2) as,
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Problem 4: Robertson’s equation, [16]

Yy = —0.04y1 + 10%y2y3,  yh = 0.04y1 — 10%yayz — 3 x 1073,

(5.9)
ys =3 x107y3; 11(0) =1, w2(0)=0, y3(0)=0.

The problem considered in (5.8) aand (5.9). Table [2| contains the absolute error
which is given as the modulus of the ODE15s in MATLAB minus the numerical
solution of the MBGSDLMME.

Problem 5: The next problem is of index one, [23}|40]

1 —z 22 1 —(x+1) z+22 0
0 1 —z |y+]o0 -1 r—1 |y= 0 (5.10)
0 0 0 0 0 1 sin(x)

with boundary condition y1(0) = 1 and y2(1) — y3(1) = e. The theoretical result

is
y1 =€ “+xe’, yo=e"+uwsin(r), yz3=sin(z)

suppose Y4 is written as eys, then the DAE in (5.10)) transforms to

1 —22-1 22+ (- Dz+z 0
/ — in(x)
v+ 0 -1 zyp—1 y=| mink (5.11)
1 (z)
0 0 E S'L’flsa;

this problem is excessively stiff and sensitive to the solution from the third
component due to the parameter ¢ — 0. This readily explains why ODE15s is
unable to give a solution of reasonable accuracy compared to the exact solution
and the solution from MBGSDLMME-8. However, ODE15s is considered as a

reference solution.
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Table 1: Numerical solution of problem 1 in the interval 0 < z < 1 with Ns =
(N -s)* =4.

MBGSDLMME-8 GBDF-8 ETR-8 ETR2-8s

(N -s)* 4 8 8 8

steps error error error error
(rate) (rate) (rate) (rate)

50 3.32e — 5 7.32e —2 147¢e—-3 1.30e—3

(=) (=) (=) (=)

100 1.63e — 7 4.49¢ —4 7.8le—6 6.72e —6
(7.50) (7.31) (7.56) (7.60)

200 1.05e — 9 2.68¢ —6 4.88e—8 4.20e—38
(7.30) (7.39) (7.32) (7.32)

400 4.76e — 12 1.54e —8 1.84e —10 1.54e—10
(7.99) (7.45) (7.59) (8.09)

The maximum relative error from Odelbs at £ = 1 is 3.660087954199254¢ — 5

Table 2: Comparison of results from problem 3, 4 using Erry; =| y; (3.20) —
ODE15s(y;) |,i = 1(1)3, h = 0.0001.

Problem 3 ‘ problem 4

b'e Erry; Errys Errys ‘ Erry; Errys Errys

1 518e—-6 —-7.89¢—10 5.18¢—6 ‘ —4.42e -7 —7.04e—11 44e—-7
5 1.03e—-5 1.19¢ - 9 1.03e =5 ‘ —4.19¢e -6 850e—10 4.19¢ -6

10 6.28e —5 5.09¢e -9  6.28¢ — 5 ‘ 2.05e — 5 22le—9  2.05e—-5
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Table 3: Numerical solution of problem 5 with Ns = (N - s)* =4, h = 0.01.

X

Exact

solution (y1,y2,y3)T

MBGSDLMME-8

solution (y1,ya,y3)7

ODE15s
solution(y1, ¥, y3)”

10

3.035898818647817
3.518900191163779
0.836025978600521

217854.9150401765
21801.94812091745

—0.535603334614296

9.809460533275866¢ + 18
40  2.449915218100874e + 17

3.03706392172143
3.51905149198082
0.836025978600521

217796.8076402711
21796.29119316302

—0.535603334614296

2.662759915698755
3.201941362146939
0.788432436870595

221498.6357290881
22143.5041602270
—0.5440211109

9.804702611996597¢ + 18  8.239333037971687e + 18

2.449674714825473e + 17 2.06761180705137¢ + 19

0.717846740396360 0.717846740396360 0.0

40

1@;{‘”
i

150 0 50 100 150

150

Figure 4: Time series result for the problem in (5.7) when h = 0.01.
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40 60

Figure 5: Phase portraits for the Lorenz system in (5.7)) when h = 0.01.

Figure 6: Three-dimensional space for the Lorenz system in (5.7)) when h = 0.01.
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6 Conclusion

This paper considered a very large scale integration methods (VLSIM) in
the numerical solution of differential equations. The proposed methods is
a new family of multi-block boundary value integration methods based on
the Enright type-methods. The theoretical properties of the methods with
respect to convergency and stability along with other practical aspect of
implementation have also been presented. The Weiner-Hopf matrix factorization
of the characteristics matrix polynomial of the main method along with the root
distribution of the arising stability polynomial have been used to determine the
structure of the arising second derivative multi-block boundary value method in
. Finally, the numerical results presented in Tables and |3| , shows that
MBGSDLMME compare in accuracy with methods from [23] and [35] on some
considered ODEs and DAEs in Section [l
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