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Abstract

In this paper, some properties for the v-analogue of Gamma and digamma

functions are investigated. Also, a celebrated Bohr-Mollerup type theorem

related to the v-analogue of Gamma function is given. Furthermore, an

expression for the v-digamma function is presented by using the v-analogue

of beta function. Also, some limits for the v-analogue of Gamma and beta

functions are given.

1 Introduction and Preliminaries

Gamma function Γ, which was introduced by Euler with the aim to generalize the

factorial function to non integer values, is one of the most important special

function [1, 2, 3]. It has played a notable role in many branches such as

mathematics and physics. It has been the subject of many studies for over three

hundred years. Many definitions have been given for Gamma function. Although

they all describe the same function, it is not always easy to show that they are

equivalent. For this reason, the features that characterize this function have been

studied for a long time. The purpose of this is that instead of showing that

the definitions given for Gamma function are equivalent, it is an easier way to

find the properties that make this function unique and see if the given definitions

provide these properties. In 1922, two mathematicians, Harald Bohr and Johannes

Mollerup, were able to give a precise characterization of Gamma function. Today,

this theorem is known as the Bohr-Mollerup theorem.
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Generalizations of Gamma function has attracted much attention from

many mathematicians [4, 5, 9, 12, 13, 15, 17]. There are some remarkable

achievements. Recently, in [6], the authors introduced a new one-parameter

deformation of the classical Gamma function and called v-analogue (v-deformation

or v-generalization) of Gamma function. It is defined for x, v > 0 as

Γv(x) =

∫ ∞
0

(
t

v

)x
v
−1

e−tdt. (1)

Note that when v = 1, Γv(x) = Γ(x). They introduced and proved some

identities of the said function such as

Γv(x+ v) = xv−2Γv(x), (2)

Γv(x) = v1−x
v Γ
(x
v

)
, (3)

Γv(v) = 1. (4)

They also gived the relation

Γv(x) = lim
n→∞

n!
(
n
v

)x
v vn+2

x(x+ v)(x+ 2v) . . . (x+ nv)
. (5)

The v-analogue of Gamma function is expressed as

1

Γv(x)
= v

x
v
−2xe

γx
v

∞∏
k=1

(
1 +

x

kv

)
e−

x
kv , (6)

where γ is the Euler-Mascheroni constant, [6]. The logarithmic derivative of

Γv(x) is called v-digamma or v-psi function and denoted by ψv(x). The series

representation of ψv(x) is given in [6] by the relation

Ψv(x) = − ln v + γ

v
− 1

x
+

∞∑
n=1

[
1

nv
− 1

x+ nv

]
. (7)

In this work, we establish some properties involving the v-analogue of Gamma

and digamma functions. Also, we give a Bohr-Mollerup type theorem related to

the v-analogue of Gamma function. After defining the v-analogue of beta function,

we give an expression for the v-digamma function. Finally, we give some limits

for the v-analogue of Gamma and beta functions. We present our results in the

following sections.
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2 Main Results

This section contains three subsections. We prove the Bohr-Mollerup type

theorem, giving some properties and an asymptotic expansion related to the

v-analogue of the Gamma function. Also, we present some integral representations

of the v-analogue of the digamma function.

2.1 Some properties of the v-analogue of Gamma function

Firstly, we define the v-analogue of Gamma function for some negative values.

From the relation (2), we have

Γv(x) = v2 Γv(x+ v)

x
. (8)

Thus, if −v < x < 0, the right-hand side of the equation (8) is well-defined. This

means that we now have Γv(x) defined for −v < x < 0. Note that, since Γv(x) is

positive for x > 0 we get Γv(x) is negative for −v < x < 0. Now writing

Γv(x+ 2v) = Γv((x+ v) + v) = (x+ v)v−2Γv(x+ v) = (x+ v)(v−2)2xΓv(x)

for −2v < x < −v we get

Γv(x) = (v2)2 Γv(x+ 2v)

x(x+ v)
.

Again note that, since Γv(x + 2v) is positive for −2v < x < −v we get Γv(x) is

positive for values −2v < x < −v. This process can be repeated to define Γv(x)

for values −nv < x < −nv + v. Hence we get the following theorem.

Theorem 1. For x, v > 0 and −nv < x < −nv + v, n = 1, 2, . . . we have

Γv(x) = v2n Γv(x+ nv)

x(x+ v) . . . (x+ (n− 1)v)
.

In the following, we use regularization method given by Gel’fand and Shilov in

[10] to obtain an expression for the v-analogue of Gamma function. We subtract
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enough terms of the Taylor’s series of the function e−t in (1) to make the integral

converges. Then for n = 1, 2, . . ., x, v > 0 and −nv < x < −nv + v, we have

Γv(x) =

∫ ∞
0

(
t

v

)x
v
−1
[
e−t −

n∑
i=0

(−t)i

i!

]
dt.

It is known that Bohr-Mollerup theorem, see for example [16], characterizes the

Euler’s Gamma function as the uiquely defined log-convex solution f : (0,∞) →
(0,∞) and satisfies the functional equation f(x + 1) = xf(x) and f(1) = 1.

Now, we give a Bohr-Mollerup type theorem related to the v-analogue of Gamma

function:

Theorem 2. Let f be any positive valued function defined on (0,∞) satisfying

the following three properties for v > 0:

(a) f(v) = 1, (b) f(x+ v) = xv−2f(x) and (c) ln f(x) is convex.

Then f(x) = Γv(x) for all x ∈ (0,∞).

Proof. Since ln Γv is convex by using the Theorem 3.10 in [6], Γv satisfies (a), (b)

and (c). Then, it is enough to prove that f is uniquely determined by (a), (b)

and (c). Also by (b), it is enough to do this for x ∈ (0, v]. By using convexity of

ln f , we obtain

ln f(nv + v)− ln f(nv)

v
≤ ln f(nv + v + x)− ln f(nv + v)

x

≤ ln f(nv + 2v)− ln f(nv + v)

v
.

That is,

1

v
ln

(
f(nv + v)

f(nv)

)
≤ 1

x
ln

(
f(nv + v + x)

f(nv + v)

)
≤ 1

v
ln

(
f(nv + 2v)

f(nv + v)

)
. (9)

By (b), we have

f(nv + v) = n!v−n (10)

and

f(nv + v + x) = (v−2)n+1(nv + x)(nv + x− v)(nv + x− 2v) . . . xf(x). (11)
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Substituting the expressions (10) and (11) in the inequalities (9), we get

x

v
ln(nv−1) ≤ ln

(
(v−2)n+1(nv + x)(nv + x− v)(nv + x− 2v) . . . xf(x)

n!v−n

)
≤ x

v
ln
(
(nv + v)v−2

)
.

Then,

0 ≤ ln

(
(nv + x)(nv + x− v)(nv + x− 2v) . . . xf(x)

n!vn+2(nv−1)
x
v

)
≤ ln

(
nv + v

nv

)x
v

.

Since the last expression tends to 0 as n→∞ we have

lim
n→∞

ln

(
(nv + x)(nv + x− v)(nv + x− 2v) . . . xf(x)

n!vn+2(nv−1)
x
v

)
= 0.

Now, interchanging ln with the limit on the left and applying the exponential to

both sides yields f(x) = Γv(x), and the proof is completed.

Using the relation (3), we give the following formulas:

Proposition 3. Let v > 0. Then the v-analogue of Gamma function satisfies the

relations:

(i) Γv(x)Γv(v − x) = vπ
sin(πxv )

, x 6= 0,−v,−2v, . . . , v, 2v, . . . (v-reflection),

(ii) Γv(x)Γv(x+ v
2 ) = 21− 2x

v
√
vπΓv(2x), x 6= 0,−v

2 ,−v,−
3v
2 ,−2v, . . .

(v-Legendre Duplication),

(iii) Γv(x) =
√

2πv−
2x
v

+ 3
2x

x
v
− 1

2 e−
x
v +O

(
1
x

)
, x > 0.
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Proof. The relation (3) gives

Γv(x)Γv(v − x) = v1−x
v Γ
(x
v

)
v1− v−x

v Γ

(
v − x
v

)
= vΓ

(x
v

)
Γ
(

1− x

v

)
.

Now using the Euler’s reflection formula, see [7]:

Γ(x)Γ(1− x) =
π

sin(πx)
, x /∈ Z,

we get the result (i). Again using equation (3) and Legendre duplication formula,

see [14],

Γ(x)Γ

(
x+

1

2

)
= 21−2x√πΓ(2x), x 6= 0,−1

2
,−1,−3

2
. . . ,

gives that

Γv(x)Γv

(
x+

v

2

)
= v

3
2
− 2x
v Γ
(x
v

)
Γ

(
x

v
+

1

2

)
= v

3
2
− 2x
v 21− 2x

v
√
πΓ(

2x

v
)

= v
3
2
− 2x
v 21− 2x

v
√
πv

2x
v
−1Γv(2x) = 21− 2x

v
√
vπΓv(2x).

By Stirling’s asymptotic formula for Gamma function, see [18]:

Γ(x) =
√

2πxx−
1
2 e−x +O

(
1

x

)
and the relation (3) we get

Γv(x+ v) = v1−x+v
v Γ

(x
v

+ 1
)

= v−
x
v
x

v
Γ
(x
v

)
= v−

x
v
x

v

√
2πxx−

1
2 e−x +O

(
1

x

)

=
√

2πx
x
v

+ 1
2 v−

2x
v
− 1

2 e
−x
v +O

(
1

x

)
.

Now recalling the recurrence formula (2) we get the relation (iii).
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2.2 Asymptotic expansion of the v-analogue of Gamma function

Now, we use the following result which can be found in [8] to give an analogue of

the Stirling’s formula for the function Γv.

Theorem 4. Assume that f : (a, b) → R, with a, b ∈ [0,+∞) attains a global

minimum at a unique point c ∈ (a, b), such that f
′′
(c) > 0. Then one has∫ b

a
g(x)e−

f(x)
h dx = h

1
2 e−

f(c)
h

√
2π

g(c)√
f ′′(c)

+O(h). (12)

Theorem 5. For x, v > 0, the following identity holds:

Γv(x+ 1) =
√

2πv−
2x
v
− 1

2x
x
v

+ 1
2 e−

x
v +O

(
1

x

)
.

Proof. We have

Γv(x+ 1) =

∫ ∞
0

(
t

v

)x
v

e−tdt.

By making the change of variable t = ux we get

Γv(x+ 1) = v−
x
v x

x
v

+1

∫ ∞
0

u
x
v e−ux du = v−

x
v x

x
v

+1

∫ ∞
0

e−x(u−
1
v

lnu) du.

Let f(u) = u− lnu
1
v . Then f

′
(u) = 0 if and only if u = 1

v . Also, f
′′
( 1
v ) = v > 0.

Then, from (12), we have

∫ ∞
0

e−x(u−
1
v

lnu) du =

(
1

x

) 1
2

e−
x
v

(1+ln v)
√

2π
1√
v

+O

(
1

x

)
=

√
2π

x
v−(xv+ 1

2)e−
x
v +O

(
1

x

)
.

Therefore

Γv(x+ 1) =
√

2πv−
2x
v
− 1

2x
x
v

+ 1
2 e−

x
v +O

(
1

x

)
,

and the proof is completed.
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2.3 v-Analogue of the digamma and beta functions

The next two theorems gives the integral representations of the function ψv. On

the other hand,

Theorem 6. We have

ψv(x) =
1

v

∫ ∞
0

1

y

[
e−y − 1(

1 + y
v

)x
v

]
dy (13)

for x, v > 0.

Proof. Taking the first derivative of (1) with respect to x and using the identitiy

ln
( t
v

)
=

∫ ∞
0

e−x − e−
t
v
x

x
dx

we get

Γ
′
v(x) =

1

v

∫ ∞
0

(
t

v

)x
v
−1

ln

(
t

v

)
e−t dt

=
1

v

∫ ∞
0

∫ ∞
0

(
t

v

)x
v
−1 e−t−y − e−t(1+ y

v )

y
dy dt

=
1

v

∫ ∞
0

∫ ∞
0

(
t

v

)x
v
−1 e−t−y − e−t(1+ y

v )

y
dt dy

=
1

v

∫ ∞
0

1

y

[
e−y

∫ ∞
0

(
t

v

)x
v
−1

e−t dt−
∫ ∞

0

(
t

v

)x
v
−1

e−t(1+ y
v ) dt

]
dy.

Now, using the definition of Γv(x) and change of variable
(
1 + y

v

)
t = s, we have

Γ
′
v(x) =

1

v

∫ ∞
0

1

y

[
e−y Γv(x)− 1(

1 + y
v

)x
v

Γv(x)

]
dy

=
1

v
Γv(x)

∫ ∞
0

1

y

[
e−y − 1(

1 + y
v

)x
v

]
dy,

and since ψv(x) = Γ
′
v(x)

Γv(x) the result follows.
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Theorem 7. We have

ψv(x) =
1

v

∫ ∞
0

[
e−t

t
− e−

tx
v

1− e−t

]
dt (14)

for x, v > 0.

Proof. Using the change of variable 1 + y
v = et in the equation (13), we have

ψv(x) =
1

v
lim
t→0+

[∫ ∞
t

e−y

y
dy −

∫ ∞
ln( t

v
+1)

e−
tx
v

1− e−t
dt

]

=
1

v
lim
t→0+

[∫ ln( t
v

+1)

t

e−y

y
dy +

∫ ∞
ln( t

v
+1)

(
e−t

t
− e−

tx
v

1− e−t

)
dt

]

and since ∣∣∣∣∣
∫ ln( t

v
+1)

t

e−y

y
dy

∣∣∣∣∣ ≤
∫ ln( t

v
+1)

t

∣∣∣∣e−yy
∣∣∣∣ dy ≤ ∫ t

ln( t
v

+1)

dy

y
→ 0

as t→ 0, we get the result.

Remark 8. By letting v = 1 in the Theorems 6 and 7, we obtain the integral

representations of ψ due to Dirichlet and Gauss respectively given in [2].

Now, we introduce the v-analogue of beta function in a similar way to the

classical beta function B.

Definition 9. Let v > 0. Then the v-analogue (also called v-deformation or

v-generalization) of beta function is defined as

Bv(x, y) =
Γv(x)Γv(y)

Γv(x+ y)
(15)

for x, y > 0.

Since by using the equation (3) we have

Bv(x, y) = vB
(x
v
,
y

v

)
,
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then we get the integral representation of Bv as

Bv(x, y) = v

∫ 1

0
t
x
v
−1(1− t)

y
v
−1 dt

for x, y, v > 0.

Now, we give an expression for the v-digamma function by using the v-analogue

of beta function.

Theorem 10. Let x, v > 0. Then the v-digamma function has the series

representation

ψv(x) = −γ
v

+

∞∑
n=1

(−1)n+1

(nv)n!

n∏
k=1

(x
v
− k
)
.

Proof. By the definition of derivative we have

Γ
′
v(x) = lim

y→0

Γv(x+ y)− Γv(x)

y
.

Then, using the equation (15) and the symmetry of Bv i.e. Bv(x, y) = Bv(y, x)

we get

ψv(x) =
Γ
′
v(x)

Γv(x)
=

1

Γv(x)
lim
y→0

Γv(x+ y)− Γv(x)

y

= lim
y→0

Γv(y)−Bv(x, y)

yBv(x, y)

= lim
y→0

Γv(y)−Bv(y, x)

yBv(y, x)
. (16)

Now, using v-Weierstrass canonical product (6) and the serie representation of

the exponential function, [11],

ex =
∞∑
n=0

xn

n!
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we have

lim
y→0

Γv(y) = lim
y→0

[
1

y
v2− y

v e−
γy
v

∞∏
n=1

(
1 +

y

nv

)−1
e
y
nv

]

= lim
y→0

1

y

(
1− γy

v
+O(y2)

)
lim
y→0

(
v2− y

v

∞∏
n=1

(
1 +

y

nv

)−1
e
y
nv

)

= v2

(
lim
y→0

1

y
− γ

v

)
= v2 lim

y→0

1

y
− γv, (17)

and using the power series, [11],

(1 + x)q = 1 + qx+
q(q − 1)

2!
x2 + . . .+

q(q − 1) . . . (q − k + 1)

k!
xk + . . .

in the integral representation of Bv for x = −t and q = y
v − 1, we have

Bv(x, y) = v

∫ 1

0

t
x
v−1(1− t)

y
v−1 dt

= v

∫ 1

0

t
x
v−1

[
1−

(y
v
− 1
)
t+
(y
v
− 1
)(y

v
− 2
) t2

2!
− . . .

]
dt

= v

[
v

x
−
(y
v
− 1
) v

x+ v
+
(y
v
− 1
)(y

v
− 2
) v

2!(x+ 2v)
− . . .

]
. (18)

Now, using the equations (16), (17) and (18), we have

ψv(x) = lim
y→0

Γv(y)−Bv(y, x)

yBv(y, x)

=

v2 lim
y→0

1

y
− γv − v2 lim

y→0

1

y
+ v2

(x
v
− 1
) 1

y + v
− v2

2!

(x
v
− 1
)(x

v
− 2
) 1

y + 2v
+ . . .

lim
y→0

y

[
v2

y
− v2

y + v

(x
v
− 1
)

+
v2

2!(y + 2v)

(x
v
− 1
)(x

v
− 2
)
− . . .

]

=
−γv + v2

(
x
v − 1

)
1
v −

v2

2!

(
x
v − 1

) (
x
v − 2

)
1
2v + . . .

v2

= −γ
v

+

∞∑
n=1

(−1)n+1

(nv)n!

n∏
k=1

(x
v
− k
)
,

Earthline J. Math. Sci. Vol. 10 No. 1 (2022), 109-123
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and the result follows.

3 A Limit for the v-Analogue of Gamma and Beta

Function

In this section, we give a limit for the v-analogue of Gamma and beta function

by using the Proposition 3.

Theorem 11. For x, v > 0 and a,b > 0 we have

lim
x→∞

(x
v

) b−a
v

[
Γv(ax+ v)

Γv(bx+ v)

] 1
x

=

(
aa

bb

) 1
v

(ve)
b−a
v .

Proof. By using the equations (2) and (iii) of the Proposition 3 we get

Γv(ax+ v) =
√

2πv−
2ax
v
− 1

2 (ax)
ax
v

+ 1
2 e−

ax
v

(
1 +O

(
1

ax

))
(19)

and

Γv(bx+ v) =
√

2πv−
2bx
v
− 1

2 (bx)
bx
v

+ 1
2 e−

bx
v

(
1 +O

(
1

bx

))
. (20)

Then from (19) and (20) we obtain

[
Γv(ax+ v)

Γv(bx+ v)

] 1
x

=
(ax)

a
v

+ 1
2x v−

2a
v
− 1

2x e−
a
v

(bx)
b
v

+ 1
2x v−

2b
v
− 1

2x e−
b
v

×

[(
1 +O

(
1
ax

))(
1 +O

(
1
bx

))] 1
x

. (21)

Since

lim
x→∞

(
A

B

) 1
x

= 1, 0 < A,B <∞

and

lim
x→∞

[
1 +O

(
1

Ax

)] 1
x

= 1, A > 0

we have

lim
x→∞

x
b−a
v

[
Γv(ax+ v)

Γv(bx+ v)

] 1
x

=
a
a
v

b
b
v

v−
2(a−b)
v e−

a−b
v ,

and the result follows.
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Theorem 12. For x, v > 0 and a,b,c,d > 0, we have

lim
x→∞

[Bv(ax+ c, bx+ d)]
1
x =

a
a
v b

b
v

(a+ b)
a+b
v

.

Proof. By relations (2), (15) and (iii) of Proposition (3), we can write

Bv(ax+ c, bx+ d) =
Γv(ax+ c)Γv(bx+ d)

Γv((a+ b)x+ c+ d)

=
√

2πv−
2(ax+c)

v + 3
2 (ax+ c)

ax+c
v − 1

2 e−
ax+c

v

(
1 +O

(
1

ax+ c

))
×

×
√

2πv−
2(bx+d)

v + 3
2 (bx+ d)

bx+d
v − 1

2 e−
bx+d

v

(
1 +O

(
1

bx+ d

))
×

× 1
√

2πv−
2(a+b)x+c+d

v + 3
2 ((a+ b)x+ c+ d)

(a+b)x+c+d
v − 1

2 e−
(a+b)x+c+d

v

(
1 +O

(
1

(a+b)x+c+d

)) .
Now observing that

lim
x→∞

(Bx+ C)
1
x = 1, B > 0, C ≥ 0,

lim
x→∞

(
Ax+B

Cx+D

)
=
A

C
, A,C > 0, B,D ≥ 0

and

lim
x→∞

(
1 +O

(
1

Dx+ E

))
= 1, D > 0, E ≥ 0

we get

lim
x→∞

[Bv(ax+ c, bx+ d)]
1
x =

v
−2a
v v

−2b
v

v
−2(a+b)

v

(
a

a+ b

)a
v
(

b

a+ b

) b
v

=
a
a
v b

b
v

(a+ b)
a+b
v

,

and the result follows.

4 Conclusions

Some properties, Bohr-Mollerup type theorem and an asymptotic expansion

related to the v-analogue of the Gamma function have been given. Some
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integral representations of the v-analogue of the digamma function have been

presented by defining the v-analogue of beta function. Also, some limits

for the v-analogue of Gamma and beta functions have been given. Using the

results of this paper, one can investigate and find new results on the said functions.
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