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Abstract 

Circumventing order restrictions on numerical methods designed for the integration of 

stiff initial value problem is the concern here via Boundary Value Method. The attainable 

order � = � + � and linear stability properties of the methods are discussed. The 

numerical test on some stiff problems shows that the new methods developed, compare 

favourably with existing methods, with ODE15s of MATLAB used as reference 

numerical solution. 

1. Introduction 

The Dahlquist second order barrier [9] places stringent requirement for numerical 

methods designed for the approximation of the solutions of stiff initial value problems. 

The stringent requirement is that LMF for integrating stiff IVPs must possess A-stability. 

The highest order the LMF can attain is two and this is attainable by implicit subclass of 

the LMF. The conventional linear multi step formula (LMF) considered in [9] was 

regarded as unstable initial value methods and which was later formulated as a boundary 

value method (BVM) by Amodio et al. [2].  However, there is a need to look for a 

polynomial with best stability properties for all step number � of the LMF. It is well-

known that BVMs are efficient for solving ODEs since it can avoid the Dahlquist order 

barrier of classical initial methods for ODEs see [2-7, 18-22]. The BVMs and block 

BVMs have been used to approximate the solutions of delay differential equations [26, 

27] and differential algebraic equations in [18]. Recently, [28] studied Hamiltonian 

problems. Some other recent classes of BVM that has being analyzed by some authors 

includes the generalized second derivative linear multistep method based on Enright [20] 
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where methods developed limitations for all step number � ≥ 1. In [19] a new family of 

second derivative generalized Adams-type methods (SDGAMs) for the numerical 

solution of stiff IVPs in ODEs is proposed. The new formulas are found to be 0	,��	-

stable and 	,��	-stable with (�, � − �)-boundary conditions for all values of � ≥ 1 and 

are of order � = 2� + 2. Boundary value techniques on IVP are considered in [24, 25]. 

The aim of this paper is to develop new boundary value method for stiff initial value 

problem. The organization is as follows; in Section 2 a brief review of Boundary Value 

Method and its stability is discussed, Section 3 contains the construction of the new 

scheme, while the experiment and implementation are documented in Section 4. The 

conclusion is in Section 5 

2. Boundary Value Method (BVM) 

Consider the initial value problems (IVPs) of ODEs �� = �(�, �),   �(�) = �.   �: ℜ × ℜ� → ℜ�, �: ℜ → ℜ�,  �� �, !".                (1) 

A �-step linear multistep formula for solving the IVPs in (1) is given as 

# $%�&'% = ℎ # )%�&'%,
�

%*+
�

%*+                                                 (2) 

where �& signifies the discrete approximation of the solution �(�) at  � = �& and ℎ =  (, � ,-).  and �&  =  �(�&, �&).  The method (2) required � initial solution values �+, �/, … , ���/ to obtain an output ��. That is the continuous solution �(�) in (1) is 

approximated by means sequence discrete of discrete values �&. Nevertheless, due to 

order and A-stability barrier in LMF, a new approach consists of fixing the first �/(≤ �) 

values of the discrete solution �+, �/, . . . , ��2�/ and the last �3 = � − �/ values �.��4'/, . . . , �. yielding the discrete problem,  

# $5'�2�&'5 = ℎ # )5'�2�&'5 ,�4
5*�2

�4
5*��2

 6 − �/, . . . , 6 = �/, �/ + �3 = �                (3) 

�+, �/, . . . , ��2�/,       �.��4'/, . . . , �.          8ixed 

where the continuous IVPs (1) is approximated by means of discrete BVPs. The methods 

obtained are referred as Boundary Value Methods (BVMs), with (�/, �3)-boundary 

conditions. It can be observed that for (�/ = �) and  �3 = 0 in (3), one has the initial 
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value methods (IVMs). So, the class of IVMs is a subclass of BVMs for ODEs based on 

LMF. Nevertheless, the continuous problem (1) provides only the initial value �+ where 

the extra solution values need to be provided. In the sense of [6], the � additional values �+, �/, . . . , ��2�/, �.��4'/, . . . , �. are obtained by introducing a set of � additional 

equations. 

To better understand the BVM, the following definitions shall be considered in the 

next subsection 

2.1. Generalization of IVM to BVM 

The LMF (2) are generalized to BVM by introducing the following definitions; 

Definition 1. Consider a polynomial �(=) such that � is a function of a complex 

variable z, calculated by the formula: 

�(=) = # $%=��% ,              $� ≠ 0.                                               (4)�
%*+  

The zeros of the polynomial �(=) in (4) are denoted by =5, @ = 1, . . . , �. If the zeros  =5 are 

simple for all values of i. 

1. The polynomial �(=) in (4) is called the Schur polynomial that is A�2�4 if for all 

values of @ = 1, . . . , � the inequality |=5| < 1 holds. 

2. The polynomial �(=) in (4) is called the Von Neumann polynomial that is D�2�4 

if for all values of @ = 1, . . . , � the inequality |=5|  ≤  1 is satisfied. 

Definition 3. A BVM with (�/, �3)-boundary conditions are 0�2�4-stable if E(=) is a  D�2�4-polynomial.  

From Definition 3,  0�2�4 -stability reduces to the usual zero stability for LMF when �/ = � and �3 = 0. 
Definition 4.  

(a) For a given F ∈  H, a BVM with (�/, �3)-boundry conditions is  (�/, �3)-

absolutely stable if ∏(=, F) is a A�2�4-polynomial, again, (�/, �3)-absolute stability 

reduces to the usual notion of absolute stability when �/ = � and �3 = 0 for LMF. 

(b) The region of (�/, �3)-absolute stability of the method, J�2�4 =  {F ∈  H ∶∏(=, F)} is a A�2�4 polynomial. Here ∏(=, F) is a polynomial of type (�/, 0, �3). 
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3. Construction of the Proposed New Boundary Value Methods (NBVM) 

The �-step LMF (2) was considered in [9] is an unstable initial value method, this 

was formulated as a boundary value method in [2]. The BVM based on LMF in (2) is 

known as Top Order Methods (TOM) and is zero-stable for only odd step number �, 

while for even step number of � are of less interesting due to their nonzero-stable nature. 

However, there is need to search for polynomial with best stability properties for all step 

number � of the LMF in (2). Consider the Linear Multistep Formula 

# $%
�

%*+ �&'% = ℎ # )%
	

%*+ �&'%;       )	 = 1, �/ = �, �3 = � − �                  (5) 

�/, �3, … , �	�/                  �	 , … , �.���	�/                   �.���	 , … , �.       ; 6 = 0         m(1)                                         m(2)                                    m(3)                           
where the solution values m(1) and m(3) are given by the low order LMF. The additional 

formula that couples with (5) are 

�5 − �5�/ = # )%5�5,�'	�/
%*+         @ = 1, … , � − 2                                 (6) 

and 

�.'5�/ − �.'5�3 = # )%5�.'	�3�% ,�'	�/
%*+         @ = Q0, … , � − 1       odd1, … , � − 1     evenU                      (7) 

(6) and (7) are the initial and final formula. 

� = W� + 12 , �XY XZZ �,� + 22 �XY [�[6 �,U          � = 1,2,3, …                                (8) 

The method (5) is a boundary value method with � ≠ �. The values of � is selected such 

that it gives the best stability properties for all � ≥ 1. 

Here � =  �/ + �3 and �/ = � − 1, �3 = � and �&'% signifies the discrete 

approximation of the analytic solution �(�&'%), �&'% = �(�&'% , �&'%), ] = 0(1)�  
and ℎ = ^�,-_ , ` = D. The � + � parameters {$%}%*+�  and {)%}%*+	  allow the construction 

of the methods (5) of highest order � =  � + �.   
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Some of the step number � in the method (5) is characterized as reversed methods. 

Thus, the reverse method of (5) is given as 

# $%
�

%*+ �&�% = −ℎ # )%
	

%*+ �&�% .                                                (9) 

The (9) can conveniently be written as  

# $��%
�

%*+ �&'� = −ℎ # )%��'	
�

%*��	 �&'� ,                                       (10) 

with )+ = )/ = )��	'/ = 0. The method (9) shall be referred to as Reversed New 

Boundary Value Methods (RNBVM). The coefficient of the reversed form in (5) and (9) 

are presented in Table 1 and are obtained from the transformation.                                              $% →  $% , )% →  )%, �&'% → �&�% , ℎ → −ℎ                                  (11) 

Then the transformation (9) to (10) is  $% →  $��% ,    )% →  )%���	 , �& → �&'� ,         �& → �&'� ,      ℎ → −ℎ.               (12) 

The coefficients for the method in (5), for � = 1(1)6 are presented in Table 1. The 

methods are found to be �2�4-stable and are used along with (�/, �3) boundary 

conditions. 

Table 1: The coefficients of new schemes in (5) and (9) for � = 1, 2, … ,5 � $+ $/ $3 $c $d $e $f )+ )/ )3 )c 

1 -2 2      1    

2 -3 0 3     1 4   

3 − 109  
-1 2 19 

   13 
2   

4 4748 
-4 94 

83 
116 

  14 
3 92 

 

5 247600 
1918 

12 
136  

18 
1200 

 110 
32 

3  

6 − 68225 
−24575  − 72 

409  
83 

225 − 1450 
115 

85 
6 163  
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3.1. The order of NBVM 

The linear difference operator ℒ �(�), ℎ" connected to the NBVM of (5) is given by, 

                ℒ �(�), ℎ" = # $%
�

%*+ �(� + ]ℎ) = ℎ # )%
	�/
%*+ ��(� + ]ℎ)                             (13) 

where �(�) is a continuously differentiable function in [�+, h", [11, 17]. The equation 

(11) gives the local truncation error of the method in (5), since �(�) is a supposed 

solution of (2). Let �(�) have higher derivatives ��(� + ]ℎ), ��′(� + ]ℎ),…, then by 

Taylor series expansion, (5) becomes ℒ �(�), ℎ" = j+�(�) +  j/ℎ��(�) +  j3ℎ3���(�) + ⋯ + jlℎl�l(�) + ⋯  ,          (14) 

where  

j+ = # $%
�

%*+  

j/ = # ]$%
�

%*+ −  # )%
	

%*+  

j3 =  # ]32 $%
�

%*+ −  # ])%
	

%*+                                                 (15) 

⋮ 
jn = # ]n�!

�
%*+ $% − # ]n�/(� − 1)! )%

	
%*+      � = 0,1, … 

 Thus, the following definition holds 

Definition 5. The NBVM (5) has an order of order p, if   j% = 0, ] = 0(1)�, jn'/ ≠ 0                                            (16) 

where  jn'/ ≠ 0 is the error constant and its principal local truncation error can be given 

as pq[ = jn'/ℎn'/�(n'/)(�) + r(ℎn'/),                                            (17) 

from equation (14). 
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Definition 6. The NBVM in (5) is said to be consistent if it has an order � ≥ 1. To 

get the stability of this method in (5), it is applied on the test problem  �� = s�,        t[(s) < 0.                                                    (18) 

This will help to obtain the boundary locus plot of the stability polynomial of the method 

in (5). Thus,  

  s # $%Y%�
%*+ �& − sℎ # )%

	
%*+ Y%�& = 0,                                         (19) 

here Y%�& = �&'% . The stability polynomial associated with the method in (5) is given as  

u(Y, =) = E(Y) − = v (Y)                                                       (20) 

with 

  E(Y) = # $%Y%�
%*+ ,             v(Y) = # )%

	�/
%*+ Y%                                            (21) 

which are the first and second characteristics polynomial associated with (5). The 

necessary condition for having the boundary loci as a regular curve is for the form first 

characteristics polynomial E(Y) to have only one root of unit modulus. The stability plot 

of the method in (5) is given in Figures 1-5.  

The composite scheme of (5), (6) and (7) is conveniently written in one block form 

as,   .w&'/ + +w& = ℎ(x.y&'/ + x+y&); 6 = 0,1, …                             (22) 

where the matrix = [�|." ∈ t.×(.'/) and is given as 

   =

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎛

$+(/) | $/(/) $3(/) ⋯ ⋯ $�(/)⋮ | ⋮ ⋮ ⋮ ⋮ ⋮$+(	�/) | $/(	�/) ⋯ ⋯ $3(/) $�(	�/)0 | $+ ⋯ ⋯ $� 00 | 0 ⋱ ⋱ ⋱ 00 | 0 $+ ⋱ ⋱ $�0 | 0 $+(�) ⋯ ⋯ $�(�)0 | 0 ⋮ ⋮ ⋮ ⋮0 | 0 $+(��	�/) ⋯ ⋯ $�(/) ⎠
⎟⎟
⎟⎟
⎟⎟
⎟⎞

.              (23) 
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The matrix x =  !|x." ∈ t.×(.'/) can be similarly defined with )% instead of $% and )%(5)
 instead of $%(5)

 in , the matrices +,x+ are assumed to be + ≔ �[_� ∈ ℝ_×_ and x+ ≔ ![_�  ∈ ℝ_×_ with [_ ≔ (0,0, … ,0,1)� ∈ ℝ_. Hereafter, both matrices  and x are 

can be shown to be nonsingular.  w&'/ = (�&'/, �&'3, … , �&'.)� , w& = (�&�.'/, �&�.'3, … , �&)�                (24) y&'/ = (�&'/, �&'3, … , �&'.)� , y& = (�&�.'/, �&�.'3, … , �&)� .                  (25) 

Definition 7. A block method is said to be pre-stable if the spectrum of the 

corresponding matrix pencil (. − =x.) is contained in ℂ'.  

The case of solving linear problem in (1), Gaussian elimination with partial pivoting 

is required, while Modified Newton approach is needed for non-linear problem. The 

stability plot of the methods in (5) and (9) are given in Figures 1-4. For step number � = 1,2, … ,20. 
 

     

Fig. 1. Plots show boundary loci for � = 

4,5,10, 16 and 19. 

Fig. 2. Reserved plots showing boundary 

loci for � = 7,12 and 18. 
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Fig. 3. Plot of Boundary loci of � = 3, 8, 9, 

11, 15 and 17. 

Fig. 4. Reversed Plot of Boundary loci of � = 6, 15 and 20.  

Consider the example, when � = 2 in (5) with the main method 

3�&'3 − 3�& = ℎ(�& + 4�&'/) + �&'3 ;  6 = 0,1, … , D − 3     He = − 130.        (26) 

The method (27) is /,/-stable as shown in Figure 1 applied on (1) with one final 

condition   

�. − �.�/ = ℎ �38 �. + 1924 �.�/ − 524 �.�3 + 124 �.�c�                         (27) 

for � = 3 the method in (5) is given as 

− 109 �& − �&'/ + 2 �&'3 + 19 �&'c = ℎ �13 �& +  2�&'/� ; 6 = 0,1, … , D − 4     Hf = 1180.   (28) 

 It is 3,/-stable and applied on (1) with two initial conditions and one final condition. 

  The initial condition is given by 

�/ − �+ = ℎ � 11720 �& − 37360 �&�/ − 1930 �&�3 + 173360 �&�c − 19720 �&�d�          (29) 

k 9

k 15

k 3

k 11

k 17

k 8

1 2 3 4 5
Re z

3

2

1

1

2

3

Imz

k 20

k 15

k 6

5 10 15
Re z

5

5

Imz



O. Beolumn and K. O. Muka 

http://www.earthlinepublishers.com 

258

and the final is given 

�.�/ − �.�3 = ℎ �− 19720 �. + 173360 �.�/ − 1930 �.�3 − 37360 �.�c + 11720 �.�d�.    (30) 

4. Numerical Experiments and Results 

Some linear and non-linear stiff problems were carried out to examine the accuracy 

and performance of the NBVM. All computations were done in MATLAB R2015a 

(8.5.0.197613) software package. 

Problem 1. Consider the linear problem 

�� = �−21 19 −2019 −21 2040 −40 −40� �,      �(0) = � 10−1�                              (31) 

 �(0) = �[�3, + [�d+, (cos(40�) + sin(40�))[�3, − [�d+, (cos(40�) + sin(40�))2[�d+, (cos(40�) − sin(40�)) � 

Table 2 contains the maximum relative error ���2���� | �5(�^) − �, ℎ|/(1 + |�5 , ℎ |) at the 

interval 0 < �^  ≤  1 using the NBVMs2 and RNBVMs2. The performance compared 

with Generalized Adams Methods (GAMs5) of order � =  6 in [5], and the variable-step 

boundary value methods based on Reverse Adams Method [2] of order � =  6 [3]. It is 

observed that the proposed method in (5) perform better than the GAMs5 order � = 6 

with less function evaluation. 

Table 2: The numerical solution of Problem 1. 

Step size (h) NBVM (rate) � = 2, � = 4 

NBVM (rate) � = 3, � = 5 

Amodio (rate)  � = 6 

GAMs5 (rate) � = 6 

0.05 1.84x10�/ 1.09x10�/ 5.70x10�3 2.25x10�/ 

0.025 1.99x10�3 1.30x10�3 8.70x10�c 4.41x10�3 

0.0125 1.99x10�c 1.25x10�c 4.9x10�d 6.49x10�c 

0.00625 1.57x10�d 3.68x10�e 1.2x10�e 8.86x10�d 

0.003125 7.75x10�f 7.5x10�� 2.20x10�� 9.88x10�e 
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Problem 2. Predator and corrector model ZZ� �(�) = �/(�)�(�) − �3(�)�(�)�(�)                                         (32) 

ZZq �(�) = !(�)�(�) − !3(�)�(q)�(�)                                            (33) 

�/(q) = 4 + tan(q),  �3(q) = exp(2q) ,  !/(q) = −2,   !3(q) = cos(q) ,   �(0) = −4,  �(0) = 4 

In Table 3, the proposed method was compared with ETR/BDF, GBDF/BDF, TOM/BDF 

in [16]. It was observed in Table 3 the proposed methods perform better with less 

function evaluation, LU decomposition and fewer Jacobian evaluations than the 

compared the ETR/BDF, GBDF/BDF, TOM/BDF in [16]. 

Table 3: Numerical Solution to problem 2. 

MTD_EMP Tol #funct_eva #Reject #LU_decomp #Jacobian 

ETR/BDF 10-2 

10-3 

10-4 

10-5 

10-6 

8000 

9760 

13520 

18800 

Failed test 

0 

1 

1 

1 

 

400 

488 

680 

944 

100 

122 

169 

235 

GDBF/BDF 10-2 

10-3 

10-4 

10-5 

10-6 

8000 

9760 

13520 

18800 

25920 

0 

1 

1 

1 

1 

400 

488 

680 

940 

1296 

100 

122 

169 

234 

324 

TOM/BDF 10-2 

10-3 

10-4 

10-5 

10-6 

8000 

9760 

13520 

18800 

Failed test 

0 

1 

1 

1 

 

400 

488 

680 

944 

100 

122 

169 

235 
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k2 10-2 

10-3 

10-4 

10-5 

10-6 

560 

632 

808 

848 

4648 

0 

0 

0 

0 

316 

70 

79 

101 

106 

581 

34 

34 

34 

34 

350 

k3 10-2 

10-3 

10-4 

10-5 

10-6 

530 

670 

780 

790 

1020 

0 

0 

0 

0 

0 

53 

67 

78 

79 

102 

25 

25 

25 

25 

25 

Problem 3. 

Vander Pol  ��� + �(�3 − 1)�� + � = 0;   �(0) = 2,    ��(0) = 0,   � > 0.                   (34) 

This is solved by transformation into a first-order system of two ODEs given by                                                        �/� = �3                                                                                      (35) �3� = −�/ + ��3(1 − �/3);   �/(0) = 2,   �3(0) = 0.                                (36) 

The Vander Pol problem is used to demonstrate how robust the methods are in solving 

stiff nonlinear problems. The problem is solved for � = 50, using order � = 5 of the 

methods in (5) and step size ℎ = 0.0001. The graph of the computed solution compared 

with that obtained using ODE15s is displayed in Figure 6. 
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Figure 5: NBVM compared with ODE15s. 

In Figure 5, the �/ and �3 are the numerical solution from the ODE15s from 

Problem 3.  

The solution obtained from the NBVM in (5) coincides with the solution of ODE15s 

as shown in Figure 5. 

5. Conclusion 

This paper presents a NBVM with their stability properties. The NBVM in (5) has the 

stability at infinity for all k unlike the conventional LMF in (2) which stability is limited. 

The coefficients of the scheme are presented in Table 1. The methods are �2�4-stable 

and correctly implemented with (�, � − �)-boundary conditions. The NBVM of order � = 5, � = 3 and � = 4, � = 2 in (5) has been implemented in one block form (22) along 

with the extra initial method in (20) and final method in (21) on some stiff problems with 

their results shown in Tables 2, 3 and Figure 5. It is also seen that the proposed NBVM in 

(5) is well bounded. In Table 3, the proposed method was compared with ETR/BDF, 

GBDF/BDF, TOM/BDF in [16]. The new scheme performs better with less functions, LU 

decomposition and fewer Jacobian evaluations than the compared the ETR/BDF, 

GBDF/BDF, TOM/BDF as shown in Table 3. 
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