Earthline Journal of Mathematical Sciences

ISSN (Online): 2581-8147

Volume 2, Number 2, 2019, Pages 343-354 https://doi.org/10.34198/ejms.2219.343354

Some New Kulli-Basava Topological Indices

V. R. Kulli

Department of Mathematics, Gulbarga University, Gulbarga 585106, India; e-mail: vrkulli@gmail.com

Abstract

Recently, Kulli-Basava indices were introduced and studied their mathematical and chemical properties which have good response with mean isomer degeneracy. In this paper, we introduce the modified first and second Kulli-Basava indices, F_1 -Kulli-Basava index, square Kulli-Basava index of a graph, and compute exact formulas for regular graphs, wheels, gear graphs and helm graphs.

1. Introduction

Throughout this paper G is a finite, simple, connected graph with vertex set V(G) and edge set E(G). The degree $d_G(v)$ of a vertex v is the number of vertices adjacent to v. Let |V(G)| = n and |E(G)| = m. The degree of an edge e = uv in G is defined by $d_G(e) = d_G(u) + d_G(v) - 2$. Let $S_e(v)$ denote the sum of degrees of all edges incident to a vertex v. We refer to [1] for undefined term and notation.

Recently, the first and second Kulli-Basava indices were introduced in [2], defined as

$$KB_1(G) = \sum_{uv \in E(G)} [S_e(u) + S_e(v)], \qquad KB_2(G) = \sum_{uv \in E(G)} S_e(u)S_e(v).$$

Received: June 8, 2019; Accepted: July 20, 2019

2010 Mathematics Subject Classification: 05C05, 05C07, 05C76.

Keywords and phrases: modified first and second Kulli-Basava indices, F_1 -Kulli-Basava and square Kulli-Basava indices, graphs.

Copyright © 2019 V. R. Kulli. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We introduce the modified first and second Kulli-Basava indices, defined as

$${}^{m}KB_{1}(G) = \sum_{uv \in E(G)} \frac{1}{S_{e}(u) + S_{e}(v)}, \qquad {}^{m}KB_{2}(G) = \sum_{uv \in E(G)} \frac{1}{S_{e}(u)S_{e}(v)}.$$

In [3], Furtula and Gutman studied the F-index, defined as

$$F(G) = \sum_{uv \in E(G)} [S_e(u)^2 + S_e(v)^2].$$

Recently, the square ve-degree index was introduced by Kulli [4], defined as

$$Q_{ve}(G) = \sum_{uv \in E(G)} [d_{ve}(u) - d_{ve}(v)]^2.$$

We now propose the F_1 -Kulli-Basava and square Kulli-Basava indices, defined as

$$F_1KB(G) = \sum_{uv \in E(G)} [S_e(u)^2 + S_e(v)^2],$$

$$QKB(G) = \sum_{uv \in E(G)} [S_e(u) - S_e(v)]^2.$$

Recently, some F-indices were studied, for example, in [5, 6, 7, 8, 9, 10, 11] and also some square indices were studied, for example, in [12, 13, 14, 15, 16].

We introduce the F_1 -Kulli-Basava polynomial and square Kulli-Basava polynomial of a graph, defined as

$$F_1KB(G, x) = \sum_{uv \in E(G)} x^{S_e(u)^2 + S_e(v)^2},$$

$$QKB(G, x) = \sum_{uv \in E(G)} x^{[S_e(u) - S_e(v)]^2}.$$

In this paper, we establish explicit formulas for the modified first and second Kulli-Basava indices, F_1 -Kulli-Basava and square Kulli-Basava indices of some graphs. Also the F_1 -Kulli-Basava and square Kulli-Basava polynomials of some graphs are obtained.

2. Regular Graphs

Theorem 1. Let G be an r-regular graph with n vertices and m edges. Then

(i)
$${}^m KB_1(G) = \frac{m}{4r(r-1)}$$
. (ii) ${}^m KB_2(G) = \frac{m}{4r^2(r-1)^2}$.

(iii)
$$F_1KB(G) = 8mr^2(r-1)^2$$
. (iv) $QKB(G) = 0$.

Proof. Let G be an r-regular graph with n vertices. Then $S_e(u) = 2r(r-1)$ for any vertex u in G.

Thus

(i)
$${}^m KB_1(G) = \sum_{uv \in E(G)} \frac{1}{S_e(u) + S_e(v)} = \frac{m}{2r(r-1) + 2r(r-1)} = \frac{m}{4r(r-1)}.$$

(ii)
$${}^m KB_2(G) = \sum_{uv \in F(G)} \frac{1}{S_e(u)S_e(v)} = \frac{m}{2r(r-1)2r(r-1)} = \frac{m}{4r^2(r-1)^2}.$$

(iii)
$$F_1KB(G) = \sum_{uv \in E(G)} [S_e(u)^2 + S_e(v)^2] = m[(2r(r-1))^2 + (2r(r-1))^2]$$

= $8mr^2(r-1)^2$.

(iv)
$$QKB(G) = \sum_{uv \in E(G)} (S_e(u) - S_e(v))^2 = 0.$$

Corollary 1.1. If C_n is a cycle with n vertices, then

(i)
$${}^{m}KB_{1}(C_{n}) = \frac{n}{8}$$
. (ii) ${}^{m}KB_{2}(C_{n}) = \frac{n}{16}$.

(iii)
$$F_1KB(C_n) = 32n$$
. (iv) $QKB(C_n) = 0$.

Corollary 1.2. If K_n is a complete graph with n vertices, then

(i)
$${}^m KB_1(K_n) = \frac{n}{8(n-2)}$$
. (ii) ${}^m KB_2(K_n) = \frac{n}{8(n-1)(n-2)^2}$.

(iii)
$$F_1KB(K_n) = 4n(n-1)^3(n-2)^2$$
. (iv) $QKB(K_n) = 0$.

Theorem 2. *If G is an r-regular graph with n vertices and m edges, then*

(i)
$$F_1KB(G, x) = mx^{8r^2(r-1)^2}$$
. (ii) $QKB(G, x) = mx^0$.

Proof. Let G be an r-regular graph with n vertices and m edges. Then $S_e(u) = 2r(r-1)$ for $u \in V(G)$. Thus

(i)
$$F_1KB(G, x) = \sum_{uv \in E(G)} x^{S_e(u)^2 + S_e(v)^2} = mx^{(2r(r-1))^2 + (2r(r-1))^2} = mx^{8r^2(r-1)^2}.$$

(ii)
$$QKB(G, x) = \sum_{uv \in E(G)} x^{[S_e(u) - S_e(v)]^2} = mx^0.$$

Corollary 2.1. If C_n is a cycle with n vertices, then

(i)
$$F_1KB(C_n, x) = nx^{32}$$
. (ii) $QKB(C_n, x) = nx^0$.

Corollary 2.2. If K_n is a complete graph with n vertices, then

(i)
$$F_1KB(K_n, x) = \frac{n(n-1)}{2}x^{8(n-1)^2(n-2)^2}$$
. (ii) $QKB(K_n, x) = \frac{n(n-1)}{2}x^0$.

3. Wheel Graphs

A wheel W_n is the join of K_1 and C_n . Clearly W_n has n+1 vertices and 2n edges. A wheel W_n is presented in Figure 1. The vertices of C_n are called *rim vertices* and the vertex of K_1 is called *apex*.

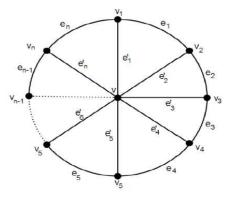


Figure 1. Wheel W_n .

Lemma 1. Let W_n be a wheel with n+1 vertices and 2n edges, $n \ge 3$. Then

$$E_1 = \{uv \in E(W_n) | S_e(u) = n + 9, (S_e(v) = n(n+1))\}, \qquad |E_1| = n$$

$$E_2 = \{uv \in E(W_n) | S_e(u) = n + 9, (S_e(v) = n + 9)\}, \qquad |E_2| = n.$$

Theorem 3. Let W_n be a wheel with n+1 vertices and 2n edges, $n \ge 3$. Then

(i)
$${}^{m}KB_{1}(W_{n}) = \frac{n}{n^{2} + 2n + 9} + \frac{n}{2n + 18}$$
.

(ii)
$${}^{m}KB_{2}(W_{n}) = \frac{1}{(n+9)(n+1)} + \frac{n}{(n+9)^{2}}.$$

(iii)
$$F_1KB(W_n) = (n^3 + 5n^2 + 55n + 243).$$

(iv)
$$QKB(W_n) = n(n^2 - 9)^2$$
.

Proof. By using definitions and Lemma 1, we derive

(i)
$${}^{m}KB_{1}(W_{n}) = \sum_{uv \in E(W_{n})} \frac{1}{S_{e}(u) + S_{e}(v)}$$

$$= |E_{1}| \left(\frac{1}{n+9+n(n+1)}\right) + |E_{2}| \left(\frac{1}{n+9+n+9}\right)$$

$$= \frac{n}{n^{2}+2n+9} + \frac{n}{2n+18}.$$

(ii)
$${}^{m}KB_{2}(W_{n}) = \sum_{uv \in E(W_{n})} \frac{1}{S_{e}(u)S_{e}(v)}$$

$$= |E_{1}| \left(\frac{1}{(n+9)\times n(n+1)}\right) + |E_{2}| \left(\frac{1}{(n+9)(n+9)}\right)$$

$$= \frac{1}{(n+9)(n+1)} + \frac{n}{(n+9)^{2}}.$$

(iii)
$$F_1KB(W_n) = \sum_{uv \in E(W_n)} [S_e(u)^2 + S_e(v)^2]$$

$$= |E_1|[(n+9)^2 + (n(n+1))^2] + |E_2|[(n+9)^2 + (n+9)^2]$$
$$= n(n^3 + 5n^2 + 55n + 243).$$

(iv)
$$QKB(W_n) = \sum_{uv \in E(W_n)} [S_e(u) - S_e(v)]^2$$

 $= |E_1|[(n+9) - (n(n+1))]^2 + |E_2|[(n+9) - (n+9)]^2$
 $= n(n^2 - 9)^2$.

Theorem 4. Let W_n be a wheel with n+1 vertices and 2n edges, $n \ge 3$. Then

(i)
$$F_1KB(W_n, x) = nx^{n^3+3n^2+19n+81} + nx^{2(n+9)^2}$$
.

(ii)
$$QKB(W_n, x) = nx^{(n^2-9)^2} + nx^0$$
.

Proof. By using definitions and Lemma 1, we deduce

(i)
$$F_1KB(W_n, x) = \sum_{uv \in E(W_n)} x^{[S_e(u)^2 + S_e(v)^2]}$$

$$= |E_1| x^{(n+9)^2 + n^2(n+1)^2} + |E_2| x^{(n+9)^2 + (n+9)^2}$$

$$= nx^{n^3 + 3n^2 + 19n + 81} + nx^{2(n+9)^2}.$$

(ii)
$$QKB(W_n, x) = \sum_{uv \in E(W_n)} x^{[S_e(u) - S_e(v)]^2}$$

$$= |E_1| x^{[n+9-n(n+1)]^2} + |E_2| x^{[(n+9)-(n+9)]^2}$$

$$= nx^{(n^2-9)^2} + nx^0.$$

4. Gear Graphs

A graph is a gear graph obtained from W_n by adding a vertex between each pair of adjacent rim vertices and it is denoted by G_n . Clearly G_n has 2n + 1 vertices and 3n edges. A graph G_n is depicted in Figure 2.

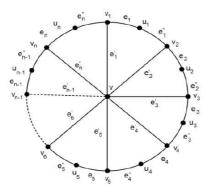


Figure 2. Gear graph G_n .

Lemma 2. Let G_n be a gear graph with 3n edges. Then G_n has two types of edges as follows:

$$E_1 = \{uv \in E(G_n) | S_e(u) = n(n+1), S_e(v) = n+7\}, | E_1 | = n.$$

$$E_2 = \{uv \in E(G_n) | S_e(u) = n+7, S_e(v) = 6\}, | E_2 | = 2n.$$

Theorem 5. If G_n is a gear graph with 2n + 1 vertices and 3n edges, then

(i)
$${}^{m}KB_{1}(G_{n}) = \frac{n}{n^{2} + 2n + 7} + \frac{2n}{n + 13}.$$

(ii)
$${}^m KB_2(G_n) = \frac{1}{(n+1)(n+7)} + \frac{n}{3(n+7)}.$$

(iii)
$$F_1KB(G_n) = n(n^4 + 2n^3 + 4n^2 + 42n + 219).$$

(iv)
$$QKB(G_n) = n(n^4 - 12n^2 + 4n + 51).$$

Proof. By using definitions and Lemma 2, we deduce

(i)
$${}^{m}KB_{1}(G_{n}) = \sum_{uv \in E(G_{n})} \frac{1}{S_{e}(u) + S_{e}(v)}$$

$$= |E_{1}| \left(\frac{1}{n(n+1) + (n+7)}\right) + |E_{2}| \left(\frac{1}{n+7+6}\right)$$

$$= \frac{n}{n^{2} + 2n + 7} + \frac{2n}{n+13}.$$

(ii)
$${}^{m}KB_{2}(G_{n}) = \sum_{uv \in E(G_{n})} \frac{1}{S_{e}(u)S_{e}(v)}$$

$$= |E_{1}| \left(\frac{1}{n(n+1)(n+7)}\right) + |E_{2}| \left(\frac{1}{(n+7)6}\right)$$

$$= \frac{1}{(n+1)(n+7)} + \frac{n}{3(n+7)}.$$
(iii) $F_{1}KB(G_{n}) = \sum_{uv \in E(G_{n})} [S_{e}(u)^{2} + S_{e}(v)^{2}]$

$$= |E_{1}| [(n^{2} + n)^{2} + (n+7)^{2}] + |E_{2}| [(n+7)^{2} + 6^{2}]$$

$$= n(n^{4} + 2n^{3} + 4n^{2} + 42n + 219).$$
(iv) $QKB(G_{n}) = \sum_{uv \in E(G_{n})} [S_{e}(u) - S_{e}(v)]^{2}$

$$= |E_{1}| (n^{2} + n - n - 7)^{2} + |E_{2}| (n+7-6)^{2}$$

$$= n(n^{4} - 12n^{2} + 4n + 51).$$

Theorem 6. Let G_n be a gear graph with 2n+1 vertices and 3n edges, $n \ge 3$. Then

(i)
$$F_1KB(G_n, x) = nx^{n^3+3n^2+15n+49} + 2nx^{n^2+14n+85}$$
.

(ii)
$$QKB(G_n, x) = nx^{(n^2-7)^2} + 2nx^{(n+1)^2}$$
.

Proof. By using definitions and Lemma 2, we obtain

(i)
$$F_1KB(G_n, x) = \sum_{uv \in E(G_n)} x^{[S_e(u)^2 + S_e(v)^2]}$$

$$= |E_1| x^{(n^2 + n)^2 + (n + 7)^2} + |E_2| x^{(n + 7)^2 + 6^2}$$

$$= nx^{n^3 + 3n^2 + 15n + 49} + 2nx^{n^2 + 14n + 85}.$$

(ii)
$$QKB(G_n, x) = \sum_{uv \in E(G_n)} x^{[S_e(u) - S_e(v)]^2}$$

$$= |E_1| x^{(n^2 + n - n - 7)^2} + |E_2| x^{(n + 7 - 6)^2}$$

$$= nx^{(n^2 - 7)^2} + 2nx^{(n + 1)^2}$$

5. Helm Graphs

A helm graph H_n is a graph obtained from W_n by attaching an end edge to each rim vertex. Clearly H_n has 2n + 1 vertices and 3n edges. A graph H_n is shown in Figure 3.

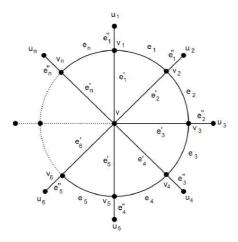


Figure 3. Helm graph H_n .

Lemma 3. Let H_n be a helm graph with 3n edges. Then H_n has three types of edges as given below:

$$E_1 = \{uv \in E(H_n) | S_e(u) = n(n+2), S_e(v) = n+17\}, \qquad |E_1| = n.$$

$$E_2 = \{uv \in E(H_n) | S_e(u) = S_e(v) = n+17\}, \qquad |E_2| = n.$$

$$E_3 = \{uv \in E(H_n) | S_e(u) = n+17, S_e(v) = 3\}, \qquad |E_3| = n.$$

Theorem 7. Let H_n be a helm graph with 2n + 1 vertices and 3n edges. Then

(i)
$${}^{m}KB_{1}(H_{n}) = \frac{n}{n^{2} + 3n + 17} + \frac{n}{2n + 34} + \frac{n}{n + 20}$$
.

(ii)
$${}^m KB_2(H_n) = \frac{1}{(n+2)(n+17)} + \frac{n}{(n+17)^2} + \frac{n}{3(n+17)}$$
.

(iii)
$$FKB(H_n) = n[n^2(n+2)^2 + (n+17)^2] + 2n(n+17)^2 + n[(n+17)^2 + 9].$$

(iv)
$$QKB(H_n) = n(n^2 + n - 17)^2 + n(n + 14)^2$$
.

Proof. By using definitions and Lemma 3, we deduce

(i)
$${}^{m}KB_{1}(H_{n}) = \sum_{uv \in E(H_{n})} \frac{1}{S_{e}(u) + S_{e}(v)}$$

$$= |E_{1}| \left(\frac{1}{n(n+2) + n + 17}\right) + |E_{2}| \left(\frac{1}{n+17 + n + 17}\right)$$

$$+ |E_{3}| \left(\frac{1}{n+17 + 3}\right)$$

$$= \frac{n}{n^{2} + 3n + 17} + \frac{n}{2n+34} + \frac{n}{n+20}.$$

(ii)
$${}^{m}KB_{2}(H_{n}) = \sum_{uv \in E(H_{n})} \frac{1}{S_{e}(u)S_{e}(v)}$$

$$= |E_{1}| \left(\frac{1}{n(n+2)(n+17)}\right) + |E_{2}| \left(\frac{1}{(n+17)(n+17)}\right)$$

$$+ |E_{3}| \left(\frac{1}{(n+17)3}\right)$$

$$= \frac{1}{(n+2)(n+17)} + \frac{n}{(n+17)^{2}} + \frac{n}{3(n+17)}.$$

(iii)
$$F_1KB(H_n) = \sum_{uv \in E(H_n)} [S_e(u)^2 + S_e(v)^2]$$

$$= |E_1|[n^2(n+2)^2 + (n+17)^2] + |E_2|[(n+17)^2 + (n+17)^2]$$

$$+ |E_3|[(n+17)^2 + 3^2]$$

$$= n[n^2(n+2)^2 + (n+17)^2] + 2n(n+17)^2 + n[(n+17)^2 + 9]$$

(iv)
$$QKB(H_n) = \sum_{uv \in E(H_n)} [S_e(u) - S_e(v)]^2$$

$$= |E_1|(n^2 + 2n - n - 17)^2 + |E_2|(n + 17 - n - 17)^2 + |E_3|(n + 17 - 3)^2$$

$$= n(n^2 + n - 17) + n(n + 14)^2.$$

Theorem 8. Let H_n be a helm graph with 2n + 1 vertices and 3n edges. Then

(i)
$$F_1KB(H_n, x) = nx^{n^2(n+2)^2 + (n+17)^2} + nx^{2(n+17)^2} + nx^{(n+17)^2 + 9}$$

(ii)
$$QKB(H_n, x) = nx^{(n^2+n-17)^2} + nx^0 + nx^{(n+14)^2}$$
.

Proof. By using definitions and Lemma 3, we obtain

(i)
$$F_1KB(H_n, x) = \sum_{uv \in E(H_n)} x^{[S_e(u)^2 + S_e(v)^2]}$$

$$= |E_1| x^{n^2(n+2)^2 + (n+17)^2} + |E_2| x^{(n+17)^2 + (n+17)^2}$$

$$+ |E_3| x^{(n+17)^2 + 3^2}$$

$$= nx^{n^2(n+2)^2 + (n+17)^2} + nx^{2(n+17)^2} + nx^{(n+17)^2 + 9}.$$
(ii) $QKB(H_n, x) = \sum_{uv \in E(H_n)} x^{[S_e(u) - S_e(v)]^2}$

$$= |E_1| x^{(n^2 + 2n - n - 17)^2} + |E_2| x^{(n+17 - n - 17)^2} + |E_3| x^{(n+17 - 3)^2}$$

$$= nx^{(n^2 + n - 17)^2} + nx^0 + nx^{(n+14)^2}$$

References

- [1] V. R. Kulli, *College Graph Theory*, Vishwa International Publications, Gulbarga, India, 2012.
- [2] B. Basavanagoud and P. Jakkannavar, Kulli-Basava indices of graphs, *Inter. J. Appl. Engg. Research* 14(1) (2018), 325-342.

[3] B. Furtula and I. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015), 1184-1190. https://doi.org/10.1007/s10910-015-0480-z

- [4] V. R. Kulli, On the square ve-degree index and its polynomial of certain network, *Journal* of Global Research in Mathematical Archives 5(10) (2018), 1-4.
- [5] N. De, *F*-index of bridge and chain graphs, *Malay. J. Fund. Appl. Sci.* 12 (2016), 109-113. https://doi.org/10.11113/mjfas.v12n3.471
- [6] S. Ghobadi and M. Ghorbaninejad, The forgotten topological index for four operations on some special graphs, *Bull. Math. Sci. Appl.* 16 (2016), 89-95. https://doi.org/10.18052/www.scipress.com/BMSA.16.89
- [7] V. R. Kulli, *F*-Revan index and *F*-Revan polynomial of some families of benzenoid systems, *Journal of Global Research in Mathematical Archives* 5(11) (2018), 1-6.
- [8] V. R. Kulli, Computing square Revan index and its polynomial of certain benzenoid systems, *International Journal of Mathematical Archive* 9(12) (2018), 41-49.
- [9] V. R. Kulli, Computing *F*-reverse index and *F*-reverse polynomial of certain networks, *International Journal of Mathematical Archive* 9(8) (2018), 27-33.
- [10] V. R. Kulli, Computing the *F*-ve-degree index and its polynomial of dominating oxide and regular triangulate oxide networks, *International Journal of Fuzzy Mathematical Archive* 16(1) (2018), 1-6.
- [11] V. R. Kulli, Neighborhood Dakshayani indices, submitted.
- [12] V. R. Kulii, Computing square Revan index and its polynomial of certain benzenoid systems, *International Journal of Mathematics and its Applications* 6(4) (2018), 213-219.
- [13] V. R. Kulli, Square reverse index and its polynomial of certain networks, *International Journal of Mathematical Archive* 9(10) (2018), 27-33.
- [14] V. R. Kulli, Minus leap and square leap indices and their polynomials of some special graphs, *International Research Journal of Pure Algebra* 8(11) (2018), 54-60.
- [15] V. R. Kulli, On hyper KV and square KV indices and their polynomials of certain families of dendrimers, Journal of Computer and Mathematical Sciences 10(2) (2019), 279-286. https://doi.org/10.29055/jcms/1007
- [16] V. R. Kulli, Minus F and square F-indices and their polynomials of certain dendrimers, Earthline J. Math. Sci. 1(2) (2019), 171-185. https://doi.org/10.34198/ejms.1219.171185