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Abstract

Recently, Kulli-Basava indices were introduced and studied their mathematical and
chemical properties which have good response with mean isomer degeneracy. In this
paper, we introduce the modified first and second Kulli-Basava indices, F1-Kulli-Basava
index, square Kulli-Basava index of a graph, and compute exact formulas for regular

graphs, wheels, gear graphs and helm graphs.

1. Introduction

Throughout this paper G is a finite, simple, connected graph with vertex set V(G)
and edge set E(G). The degree d;(v) of a vertex v is the number of vertices adjacent to
v. Let |V(G)| =n and | E(G)| = m. The degree of an edge e¢ = uv in G is defined by
dg(e) =dg(u) +dg(v) = 2. Let S,(v) denote the sum of degrees of all edges incident
to a vertex v. We refer to [1] for undefined term and notation.

Recently, the first and second Kulli-Basava indices were introduced in [2], defined

as

KBi(G)= D [S.()+S.(), KBy(G)= D Sc(u)S.(v).

wUE(G) uvlE(G)
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We introduce the modified first and second Kulli-Basava indices, defined as

"KBI(G)= ) S; "KBy(G)= Y ——

MVDE(G) e(u) + Se (V) MVDE(G) Se (u)Se (V) .
In [3], Furtula and Gutman studied the F-index, defined as

FG) = 3 IS, + 5,00

wlE(G)

Recently, the square ve-degree index was introduced by Kulli [4], defined as

Qve(G) = Z [dve(u) - dve(v)]z-

wlE(G)
We now propose the Fj-Kulli-Basava and square Kulli-Basava indices, defined as

RKB(G)= D [S.() +S.(v)],

wlE(G)

OKB(G)= . [S.(u) =S, ().

wlE(G)

Recently, some F-indices were studied, for example, in [5, 6, 7, 8, 9, 10, 11] and also
some square indices were studied, for example, in [12, 13, 14, 15, 16].
We introduce the Fj-Kulli-Basava polynomial and square Kulli-Basava polynomial

of a graph, defined as

FIKB(G, x) — Z xSe(u)2+Se(v)2’

wlE(G)

OKB(G, )= ¥ S-S0
wlE(G)

In this paper, we establish explicit formulas for the modified first and second Kulli-

Basava indices, Fj-Kulli-Basava and square Kulli-Basava indices of some graphs. Also

the Fj-Kulli-Basava and square Kulli-Basava polynomials of some graphs are obtained.
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2. Regular Graphs

Theorem 1. Let G be an r-regular graph with n vertices and m edges. Then

m

(i) " KBy(G) = ETAERE
4r-(r —

(i) " KB, (G) =

(iii) FKB(G) = 8mr*(r =1)*>.  (iv) QKB(G) = 0.

Proof. Let G be an r-regular graph with n vertices. Then S,(u) = 2r(r —1) for any

vertex u in G.

Thus
N m — 1 — m - m
() " K (G) = wDZE%G) S+ S.0) 2D+ 2(r-1) a(r-1)
1 m m
(i) " KB = - )
(007 WDZE(G) 505,00 20020 421y
(i) RKB(G) = Y [S.(u)* +S.(v)’] = m(2r(r =1))* + (2r(r = 1))’]
wlE(G)
= 8mr2(r - 1)2.
(v) QKB(G) = > (S.(u) = S.(v))* =0.
wOE(G)

Corollary 1.1. If C,, is a cycle with n vertices, then

(i)mKBl(Cn):g. (i) " KB,(C,) = %.

(iii) FKB(C,) = 32n. (iv) OKB(C,) = 0.
Corollary 1.2. If K,, is a complete graph with n vertices, then

n

8(n—1)(n -2)>

(i) "KB|(K,) = (i) " KB (K,) =

8(n—-2)

(iii) FKB(K,) =4n(n-1(n -2)*>. (iv) QKB(K,) = 0.
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Theorem 2. If G is an r-regular graph with n vertices and m edges, then

8r2(r—1)2

(i) FKB(G, x) = mx (i) QOKB(G, x) = ma.

Proof. Let G be an rregular graph with n vertices and m edges. Then
S, (u) = 2r(r =1) for u OV(G). Thus

() FKB(G, x) = Z xSV 48 0) = =P 0?2 8201,
wlE(G)

(i) OKB(G, x) = Z )C[S‘f(”)_s‘f(v)]2 = mx.
wlE(G)

Corollary 2.1. If C,, is a cycle with n vertices, then

. _ 3 .. _ 0
1) FlKB(Cn, x) =nx"2. (i) QKB(Cn, x) =nx.
Corollary 2.2. If K,, is a complete graph with n vertices, then

n(n=1) 8n-1y(n-2)*

(i) RKB(K,, x) = x

(i) OKB(K,,, x) = @xo.

3. Wheel Graphs

A wheel W, is the join of K| and C,,. Clearly W, has n +1 vertices and 2n edges.
A wheel W, is presented in Figure 1. The vertices of C,, are called rim vertices and the

vertex of K is called apex.

€n1

Figure 1. Wheel W,,.
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Lemma 1. Let W,, be a wheel with n + 1 vertices and 2n edges, n = 3. Then
Ey = {uv DEW,)IS,(6) = n +9, (S,0) = n(u + D)}, || =n
Ey ={w DEW,)IS,() =n+0, (5,0)=n+9}.  |Es|=n
Theorem 3. Let W, be a wheel with n + 1 vertices and 2n edges, n = 3. Then

n n
+

i) "KB(W ) = .
® 1( n) n2+2n+9 2n +18

1 n

(ii) " KB,(W,) = W*%@+D+@+®T

(ili) FKB(W,) = (n> +5n® +55n + 243).
(iv) QKB(W,,) = n(n? - 9).

Proof. By using definitions and Lemma 1, we derive

1
G) "KB(W,) = S S—
VKRS 2 s

1 1
ﬂEﬂp———————)ﬂEﬂﬁ——————)
n+9+n(n+1) n+9+n+9

n n
= +

n2+2n+9 2I’l+18.

1
(i) ™KB w,) = o
KR 2 S s

:lEll((n+9):n(n+1)]+|E2|(m]

1 n

Tr)m D) (o)

(i) AKBW,) = D [S.() +S.()]

wOE(W,)
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| Ey [[(n +9)% + (n(n + 1))*] +] By [[(n +9)* + (n +9)°]
= n(n® +5n° +55n +243).

(iv) QKB(Wn) = Z [Se (u) = Se (V)]z

wlOE(W,)
— 2 2
= Ey |[(n +9) = (n(n +1))]° +] E; |[(n +9) = (n +9)]
= n(n2 - 9)2.
Theorem 4. Let W, be a wheel with n +1 vertices and 2n edges, n =2 3. Then
3,22 2
(i) FKB(W,, x) = nx/" 3% H19n+81 4 ) 2(n+9)"
2 2
(ii) QKB(W,,, x) = nx(’1 -9 4 nx?.

Proof. By using definitions and Lemma 1, we deduce

(i) FKB(W,, x) = Z 15,07 +5,(0)7]
uv[IE(Wn)

|E, |x(n+9)2+n2(n+1)2 +|E, |x(n+9)2+(n+9)2

3 2 2
!t TN +19n481 +nx2(n+9) ‘

(ii) QKB(W,,, x) = Z 18- ()P

wOEW,)

|E, | An+o-n(n+)? +|E, | A(n+9)=(n+o)?

2 o2
= x4 a0,

4. Gear Graphs

A graph is a gear graph obtained from W, by adding a vertex between each pair of
adjacent rim vertices and it is denoted by G,. Clearly G, has 2n +1 vertices and 3n

edges. A graph G,, is depicted in Figure 2.

http://www.earthlinepublishers.com
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Figure 2. Gear graph G,,.

Lemma 2. Let G, be a gear graph with 3n edges. Then G, has two types of edges

as follows:
E; ={uv D E(G,)IS,(u) = n(n +1). S, (v) =n +7},

Ey ={uv D E(G,)|S.(u) =n+7,5,(v) = 6},

Theorem S. If G,, is a gear graph with 2n + 1 vertices and 3n edges, then

n 2n
(i) "KB;(G,) = + .
1( n) n2+2n+7 n+13

1 n
(n+D)(n+7) 3n+7)

(ii) KB, (G,) =

(ili) FKB(G,) = n(n* +2n> + 4n® + 420 + 219).
(iv) QKB(G,) = n(n* —12n% + 4n + 51).

Proof. By using definitions and Lemma 2, we deduce

1
(i) "KB,(G,) = —
DIRBG)Z 2 s o)

:|E1l(n(n+1)1+("+7)]+|E2|(ﬁ+6)

n 2n
= +

n2+2m+7 n+13
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1

(ii) "KB,(G,) = o
’ 2 ) Se)S, ()

wlE(G,

i) 2 )

_ 1 + n
- (n+D)(n+7) 3n+7)

D[S +8.v)]

wlE(G,)

(iii) FKB(G,)

= E|[(n* +n)* + (0 + 7] +| By |[(n +7)7 + 67]
= n(n* +2n° +4n® + 42n + 219).

Z [Se(u) - Se(v)]z

wOE(G,)

(iv) OKB(G,)

| By [(n® +n=n=7)* +| Ey |(n+7 ~6)’

n(n* =12n% + 4n +51).

Theorem 6. Let G, be a gear graph with 2n +1 vertices and 3n edges, n 2 3.

Then
. n3+3n% +15n+49 n%+14n+85
(i) FKB(G,,, x) = nx + 2nx .

(n*=7)? (n+1)*

(i) QKB(G,,, x) = nx + 2nx

Proof. By using definitions and Lemma 2, we obtain

(i) FKB(G,, x) = Z x[Se(M)2+S€(V)2]
wlE(G),)

= | B | 0y | (76

3 2 2
= nx" +3n"+15n+49 + 2" +14n+85.

http://www.earthlinepublishers.com
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Z x[Se(”)_Se(V)]2

wlE(G,)

(i) QKB(G,,, x)

|E1 |x(n2 +n—n—7)2 + | E, |x(n+7—6)2

2_7)2

(n+1)°

nx(n + 2nx

5. Helm Graphs

A helm graph H, is a graph obtained from W, by attaching an end edge to each rim

vertex. Clearly H, has 2n +1 vertices and 3n edges. A graph H,, is shown in Figure 3.

Figure 3. Helm graph H,,.

Lemma 3. Let H, be a helm graph with 3n edges. Then H, has three types of

edges as given below:
E ={wO0EH,)S,(u)=n(n+2),S,(v)=n+17}, |E|=n
Ey = {uv O E(H,)1S, () = 5,(v) = n +17), B =n
Ey; ={wOE(H,)|S,(u) =n+17, S,(v) =3}, |E3| =n.
Theorem 7. Let H, be a helm graph with 2n + 1 vertices and 3n edges. Then
n n__,._n

i) "KB,(H,) = + :
() " KBy (H,) W2 43n+17 2m+34 n+20

Earthline J. Math. Sci. Vol. 2 No. 2 (2019), 343-354
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v m — 1 n n
(i) " KBy (H,) = (n+2)(n+17) ' (n +17)? ! 3(n +17)°

(iii) FKB(H,) = n[n®(n + 2)> + (n +17)*] + 2n(n +17)% + n[(n +17)% +9].
(iv) QKB(H,) = n(n2 +tn- 17)2 +n(n + 14)2.

Proof. By using definitions and Lemma 3, we deduce

O KB (H,)= Y

wUE(H,) e(u) +S, (V)

1 1
:|E1|( j+|E2|(—)
n(n+2)+n+17 n+17+n+17

1
HEy || ———
| 3|(n+17+3)

n n n
= + + .
W2 +3n417 2n+34 n+20

() "KBy(H,) = Y,

= |(n(n n 2)1(n ¥ 17)] *1E |[(n + 17)1(” * 17)j

15 (G

1 n n
= + +

(n+2)(n+17)  (n+17)> 3(n+17)

(i) AKB(H,) = Y [S.w)® +5.(:)]

wlE(H,,)

| Ey [[n?(n +2)* + (n +17)°] +| Ey |[(n +17)% + (n +17)]
+| B3 |[(n +17)% +3%]

:n[nz(n+2) +(n+17) ]+2n(n+17 +n[(n+17 +9]

http://www.earthlinepublishers.com
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(iv) OKB(H,,)

z [Se(”) - Se(v)]2

wiE(H,)

|E |(n® +2n=n=17)? +| Ey |(n +17 = n = 17)?
+| Ey|(n+17 - 3)?
:n(n2 +n—17)+n(n+14)2.

Theorem 8. Let H,, be a helm graph with 2n +1 vertices and 3n edges. Then

2 2 2 2 2
(i) RKB(H,, x) = nx" (n42)7+(n+17)7 20 +17)7 g (n1T)749,

2. 17\2 2
(i) QKB(H,,, x) = nxl™ *7717)7 4 20 4 pyln#14)7

Proof. By using definitions and Lemma 3, we obtain

() RKB(H,, x)= Y 150 +5,(0)7]

| E, |xn2(n+2)2+(n+17)2 + | E, |x(n+17)2+(n+17)2
+ | E; |x(n+17)2+32

_ n?(n+2)?+(n+17)? 2(n+17)?

2
= nx (n+17) +9.

+ nx + nx

(i) QKB(H,,, x) = Z PAOEAQ)S

wOE(H,)
= |E |x(n2+2n—n—l7)2 +|E, |x(n+l7—n—17)2 +| Es |x(n+17—3)2

2, 2 2
- nx(n +n-17) + 0 +nx(n+l4) ‘
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