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Abstract

We introduce and investigate q-analogue of a new subclass of Salagean-type

harmonic univalent functions defined by subordination. We first obtained

a coefficient characterization of these functions. We give necessary

and sufficient convolution conditions, distortion bounds, compactness and

extreme points for this subclass of harmonic univalent functions with negative

coefficients.

1 Introduction

Let H denote the class of continuous complex-valued harmonic functions which

are harmonic in the open unit disk U = {z : z ∈ C and |z| < 1} and let A be the

subclass of H consisting of functions which are analytic in U. A function harmonic
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in U may be written as f = h + g, where h and g are analytic in U. We call h the

analytic part and g co-analytic part of f. A necessary and sufficient condition for

f to be locally univalent and sense-preserving in U is that |g′(z)| < |h′(z)| (see [5]).

To this end, without loss of generality, we may write

h(z) = z +

∞∑
k=2

akz
k and g(z) =

∞∑
k=1

bkz
k. (1)

Let HS denote the class of functions f = h + g which are harmonic, univalent,

and sense-preserving in U for which h(0) = h′(0)−1 = 0 = g(0). One shows easily

that the sense-preserving property implies that |b1| < 1.

Clunie and Sheil-Small ( [5]) investigated the class HS as well as its geometric

subclasses and obtained some coefficient bounds. Since then, there have been

several related papers on HS and its subclasses (see [20]).

We recollect here the q-difference operator that was used in geometric function

theory and in several areas of science. We give basic definitions and properties

about the q-difference operator that are used in this study (for details see [4]

and [11]). For 0 < q < 1, we defined the q-integer [k]q by

[k]q =
1− qk

1− q
, (k = 1, 2, 3, ...) .

Notice that if q → 1−, then [k]q → k.

In 1990, İsmail, Merkes and Styer ( [10]) used q- calculus, in the theory of

analytic univalent functions by defining a class of complex valued functions that

are analytic on the open unit disk U with the normalizations f(0) = 0, f′(0) = 1,

and |f(qz)| ≤ |f(z)| on U for every q, q ∈ (0, 1). Motivated by these authors,

several researches used the theory of analytic univalent functions and q-calculus;

for example see ( [1] and [2]). The q-difference operator of analytic functions h

and g given by (1) are by definition, given as follows (see [11])

∂qh(z) =

{
h(z)−h(qz)

(1−q)z ; z 6= 0

h′ (0) ; z = 0
and ∂qg(z) =

{
g(z)−g(qz)

(1−q)z ; z 6= 0

g′ (0) ; z = 0
.
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Thus, for the function h and g of the form (1) , we have

∂qh(z) = 1 +

∞∑
k=2

[k]q akz
k−1 and ∂qg(z) =

∞∑
k=1

[k]q bkz
k−1. (2)

For f ∈ HS, ν ∈ N0 = N ∪ {0},N = {1, 2, ...}, k ≥ 1, 0 < q < 1, let:

D0
q f(z) = f(z) = h(z) + g(z),

D1
q f(z) = D1

qh(z)−D1
qg(z) = z∂qh(z)− z∂qg(z), (3)

...

Dνq f(z) = Dνqh(z) + (−1)νDνq g(z) = z∂q(Dν−1
q h(z)) + (−1)νz∂q(Dν−1

q g(z))

where

Dνqh(z) = z +
∞∑
k=2

[k]νq akz
k, Dνq g(z) =

∞∑
k=1

[k]νq bkz
k.

We note that

(i) limq−→1−Dνq f(z) = Dνf(z) = z +
∞∑
k=2

kνakz
k for f ∈ S (see [16]),

(ii) limq−→1−Dνq f(z) = Dνf(z) = Dνh(z) + (−1)νDνg(z) for f ∈ HS where

Dνh(z) = z +
∞∑
k=2

kνakz
k and Dνg(z) =

∞∑
k=1

kνbkz
k (see [14]).

A harmonic function f = h+g defined by (1) is said to be q−harmonic, locally

univalent and sense-preserving in U denoted by HSq, if and only if the second

dilatation wq satisfies the condition

|wq(z)| =
∣∣∣∣∂qg(z)

∂qh(z)

∣∣∣∣ < 1

where 0 < q < 1 and z ∈ U. Note that as q → 1−, HSq reduces to the family

HS ( [1] and [13])

We also let the subclass THSq consist of harmonic functions f = h + g in HSq
so that h and g are of the form

h(z) = z −
∞∑
k=2

|ak| zk and g(z) = (−1)ν
∞∑
k=1

|bk| zk. (4)
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We say that an analytic function f is subordinate to an analytic function F and

write f ≺ F , if there exists a complex valued function $ which maps U into oneself

with $(0) = 0, such that f(z) = F ($(z)) (z ∈ U).

Furthermore, if the function F is univalent in U, then we have the following

equivalence:

f (z) ≺ F (z)⇔ f(0) = F (0) and f(U) ⊂ F (U).

Denote by HSνq (δ, A,B) the subclass of HSq consisting of functions f of the

form (1) that satisfy the condition

Dν+1
q f (z)

Dνq f (z)
≺ (1− δ) 1 +Az

1 +Bz
+ δ =

1 + [A+ (B −A)δ]z

1 +Bz
, (5)

where −B ≤ A < B ≤ 1 and 0 ≤ δ < 1 .

Finally, we let THSνq (δ, A,B) ≡ HSνq (δ, A,B)∩THSq. By suitably specializing

the parameters, the classes HSνq (δ, A,B) reduces to the various subclasses of

harmonic univalent functions. Such as,

HSνq (0, A,B) = SH (ν, q, A,B) (see [17]),

HS0
q (0, A,B) = S∗H (q, A,B) (see [19] and [17]),

HS1
q (0, A,B) = CHq (A,B) (see [17]),

HSνq (0, (1 + q)α− 1, q) = Hν
q (α) for 0 ≤ α < 1 (see [13]),

HS0
q (0, (1 + q)α− 1, q) = S∗Hq(α) for 0 ≤ α < 1 (see [2]),

HS1
q (0, (1 + q)α− 1, q) = SCHq(α) for 0 ≤ α < 1 (see [1]),

HSνq (δ, A,B) = SH (ν, δ, A,B) for q → 1− (see [3]),

HSνq (0, A,B) = SH (ν,A,B) for q → 1− (see [8]),

HS0
q (0, A,B) = S∗H (A,B) for q → 1−(see [6] and [7]),

HS1
q (0, A,B) = CH (A,B) for q → 1−(see [8]),
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HSνq (0, (1 + q)α− 1, q) = Hν(α) for 0 ≤ α < 1 and q → 1−(see [14]),

HS0
q (0, (1 + q)α− 1, q) = S∗H(α) for 0 ≤ α < 1 and q → 1− (see [12], [15]),

HS1
q (0, (1 + q)α− 1, q) = SCH(α) for 0 ≤ α < 1 and q → 1− (see [12], [15]),

HSνq (0,−1, q) = Hν(0) for q → 1− (see [14]),

HS0
q (0,−1, q) = S∗H for q → 1− (see [18]),

HS1
q (0,−1, q) = CH for q → 1− (see [18]).

Making use of the techniques and methodology used by Dziok (see [6] and

[7]), Dziok et al. (see [8] and [9]), in this paper we find necessary and sufficient

conditions, distortion bounds, radii of starlikeness and convexity, compactness

and extreme points for the above defined class THSνq (δ, A,B). In this paper we

find necessary and sufficient conditions, distortion bounds, extreme points for the

above defined class THSνq (δ, A,B).

2 Main Results

For functions f1 and f2 ∈ HSq of the form

fj(z) = z +
∞∑
k=2

ak,jz
k +

∞∑
k=1

bk,jzk, (z ∈ U, j = 1, 2), (6)

we define the Hadamard product of f1 and f2 by

(f1 ∗ f2)(z) = z +
∞∑
k=2

ak,1 ak,2z
k +

∞∑
k=1

bk,1 bk,2zk (z ∈ U).

First we state and prove the necessary and sufficient conditions for harmonic

functions in HSνq (δ, A,B).

Theorem 1. Let f ∈ HSq. Then f ∈ HSνq (δ, A,B) if and only if

Dνq f (z) ∗Θ(z; ζ) 6= 0, (ζ ∈ C, |ζ| = 1, z ∈ U\{0}),
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where

Θ(z; ζ) =
(B −A)(1− δ)ζz + (1 + [A+ (B −A)δ]ζ) qz2

(1− z)(1− qz)

−(2 + [B +A+ (B −A)δ]ζ) z − (1 + [A+ (B −A)δ]ζ) qz2

(1− z)(1− qz)
.

Proof. Let f ∈ HSq. Then f ∈ HSνq (δ, A,B) if and only if (5) holds or equivalently

Dν+1
q f (z)

Dνq f (z)
6= 1 + [A+ (B −A)δ]ζ

1 +Bζ
(ζ ∈ C, |ζ| = 1, z ∈ U\{0}). (7)

Now for

Dνq f (z) = Dνq f (z) ∗
(

z

1− z
+

z̄

1− z̄

)
,

and

Dν+1
q f (z) = Dνq f (z) ∗

(
z

(1− z)(1− qz)
− z̄

(1− z)(1− qz)

)
the inequality (7) yields

(1 +Bζ)Dν+1
q f (z)− {1 + [A+ (B −A)δ]ζ}Dνq f (z)

= Dνqh(z) ∗
[
(1 +Bζ)

z

(1− z)(1− qz)
− {1 + [A+ (B −A)δ]ζ} z

1− z

]

−(−1)νDνq g(z) ∗
[
(1 +Bζ)

z̄

(1− z̄)(1− qz)
+ {1 + [A+ (B −A)δ]ζ} z̄

1− z̄

]

= Dνq f (z) ∗Θ(z; ζ) 6= 0

Now we state and prove a sufficient coefficient bound for the class HSνq (δ, A,B).

Theorem 2. Let f be of the form (1). If −B ≤ A < B ≤ 1, 0 ≤ δ < 1 and

∞∑
k=1

(Φk |ak|+ Ψk |bk|) ≤ 2(B −A)(1− δ), (8)
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where

Φk = [k]νq

{
(B + 1) [k]q − (A+ 1)− (B −A)δ

}
(9)

and

Ψk = [k]νq

{
(B + 1) [k]q + (A+ 1) + (B −A)δ

}
(10)

then f is harmonic, sense-preserving, locally univalent in U, and f ∈ HSνq (δ, A,B).

Proof. Since

|Dqh(z)| ≥ 1−
∞∑
k=2

[k]q |ak| |z|k−1

> 1−
∞∑
k=2

[k]νq

{
(B + 1) [k]q − (A+ 1)− (B −A)δ

}
(B −A) (1− δ)

|ak|

≥
∞∑
k=1

[k]νq

{
(B + 1) [k]q + (A+ 1) + (B −A)δ

}
(B −A) (1− δ)

|bk|

>
∞∑
k=1

[k]νq

{
(B + 1) [k]q + (A+ 1) + (B −A)δ

}
(B −A) (1− δ)

|bk| |z|k−1

≥
∞∑
k=1

[k]q |bk| |z|k−1 ≥ |Dqg(z)| ,

it follows that f ∈ HSq. On the other hand, f ∈ HSνq (δ, A,B) if and only if there

exists a complex valued function $; $(0) = 0, |$(z)| < 1 (z ∈ U) such that

Dν+1
q f (z)

Dνq f (z)
=

1 + [A+ (B −A)δ]$(z)

1 +B$(z)

or equivalently ∣∣∣∣∣ Dν+1
q f (z)−Dνq f (z)

BDν+1
q f (z)− [A+ (B −A)δ]Dνq f (z)

∣∣∣∣∣ < 1. (11)

Earthline J. Math. Sci. Vol. 9 No. 2 (2022), 165-178
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Substituting for Dqh(z) and Dqg(z) in (11), we obtain∣∣Dν+1
q f (z)−Dνq f (z)

∣∣− ∣∣BDν+1
q f (z)− [A+ (B −A)δ]Dνq f (z)

∣∣
=

∣∣∣∣∣
∞∑
k=2

[k]νq ([k]q − 1)akz
k − (−1)ν

∞∑
k=1

[k]νq ([k]q + 1)bkzk

∣∣∣∣∣
−

∣∣∣∣∣(B −A) (1− δ)z +

∞∑
k=2

[k]νq

(
B [k]q −A− (B −A)δ

)
akz

k

− (−1)ν
∞∑
k=1

[k]νq

(
B [k]q +A+ (B −A)δ

)
bkzk

∣∣∣∣∣
≤

∞∑
k=2

[k]νq ([k]q − 1) |ak| |z|k +

∞∑
k=1

[k]νq ([k]q + 1) |bk| |z|k

− (B −A) (1− δ)|z|+
∞∑
k=2

[k]νq

(
B [k]q −A− (B −A)δ

)
|ak| |z|k

+
∞∑
k=1

[k]νq

(
B [k]q +A+ (B −A)δ

)
|bk| |z|k

≤ |z|

{ ∞∑
k=2

Φk |ak| |z|k−1 +

∞∑
k=1

Ψk |bk| |z|k−1 − (B −A) (1− δ)

}
< 0,

The harmonic function

f(z) = z +
∞∑
k=2

(B−A)(1−δ)xk
Φk

zk +

∞∑
k=1

(B−A)(1−δ)yk
Ψk

zk (12)

where
∞∑
k=1

|xk|+
∞∑
k=1

|yk| = 1

shows that the coefficient bound given by (8) is sharp. The functions of the form

(12) are in HSνq (δ, A,B) because

∞∑
k=1

(
Φk

2(B−A)(1−δ) |ak|+
Ψk

2(B−A)(1−δ) |bk|
)

=

∞∑
k=1

(|xk|+ |yk|) = 1.
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by (8).

Next we show that the bound (8) is also necessary for THSνq (δ, A,B).

Theorem 3. Let f = h+ g with h and g of the form (4). Then f ∈ THSνq (δ, A,B)

if and only if the condition (8) holds.

Proof. In view of Theorem 2, we only need to show that f /∈ THSνq (δ, A,B) if

condition (8) does not hold. We note that a necessary and sufficient condition for

f = h + g given by (4) to be in THSνq (δ, A,B) is that the coefficient condition (8)

to be satisfied. Equivalently, we must have∣∣∣∣∣∣
∞∑
k=2

[k]νq ([k]q−1)|ak|zk+
∞∑
k=1

[k]νq ([k]q+1)|bk|zk

(B−A)(1−δ)z−
∞∑
k=2

[k]νq(B[k]q−A−(B−A)δ)|ak|zk−
∞∑
k=1

[k]νq(B[k]q+A+(B−A)δ)|bk|z̄k

∣∣∣∣∣∣ < 1.

For z = r < 1 we obtain

∞∑
k=2

[k]νq ([k]q−1)|ak|rk−1+
∞∑
k=1

[k]νq ([k]q+1)|bk|rk−1

(B−A)(1−δ)−
∞∑
k=2

[k]νq(B[k]q−A−(B−A)δ)|ak|rk−1−
∞∑
k=1

[k]νq(B[k]q+A+(B−A)δ)|bk|rk−1
< 1.

(13)

If condition (8) does not hold, then condition (13) does not hold for r sufficiently

close to 1. Thus there exists z0 = r0 in (0, 1) for which the quotient (13) is greater

than 1. This contradicts the required condition for f ∈ THSνq (δ, A,B) and so the

proof is complete.

Theorem 4. Let f ∈ THSνq (δ, A,B). Then for |z| = r < 1, we have

|f(z)| ≤ (1 + |b1|) r +
(B −A) (1− δ)− [2 +A+B + (B −A)δ] |b1|

[2]νq [(B + 1)q + (B −A) (1− δ)]
r2,

and

|f(z)| ≥ (1− |b1|) r −
(B −A) (1− δ)− [2 +A+B + (B −A)δ] |b1|

[2]νq [(B + 1)q + (B −A) (1− δ)]
r2.
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Proof. We only prove the right hand inequality. The proof for the left hand

inequality is similar and will be omitted. Let f ∈ THSνq (δ, A,B). Taking the

absolute value of f we have

|f(z)| ≤ (1 + |b1|) r +
∞∑
k=2

(|ak|+ |bk|) rk

≤ (1 + |b1|) r + r2

[2]νq [(B+1)q+(B−A)(1−δ)]

∞∑
k=2

(Φk |ak|+ Ψk |bk|)

≤ (1 + |b1|) r +
(B −A) (1− δ)− [2 +A+B + (B −A)δ] |b1|

[2]νq [(B + 1)q + (B −A) (1− δ)]
r2.

Theorem 5. Set

h1(z) = z, hk(z) = z − (B −A) (1− δ)
Φk

zk, (k = 2, 3, ...),

and

gk(z) = z + (−1)ν
(B −A) (1− δ)

Ψk
z̄k, (k = 1, 2, ...).

Then f ∈ THSνq (δ, A,B) if and only if it can be expressed as

f(z) =
∞∑
k=1

(xkhk(z) + ykgk(z))

where xk ≥ 0, yk ≥ 0 and
∞∑
k=1

(xk + yk) = 1. In particular, the extreme points of

THSνq (δ, A,B) are {hk} and {gk}.

Proof. Suppose

f(z) =

∞∑
k=1

(xkhk(z) + ykgk(z))

=

∞∑
k=1

(xk + yk)z −
∞∑
k=2

(B −A) (1− δ)
Φk

xkz
k

+ (−1)ν
∞∑
k=1

(B −A) (1− δ)
Ψk

ykz̄
k.
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Then

∞∑
k=2

Φk |ak|+
∞∑
k=1

Ψk |bk| = (B −A) (1− δ)
∞∑
k=2

xk + (B −A) (1− δ)
∞∑
k=1

yk

= (B −A) (1− δ)(1− x1) ≤ B −A

and so f ∈ THSνq (δ, A,B). Conversely, if f ∈ THSνq (δ, A,B), then

|ak| ≤
(B −A) (1− δ)

Φk
and |bk| ≤

(B −A) (1− δ)
Ψk

.

Set

xk =
Φk

(B −A) (1− δ)
|ak| (k = 2, 3, ...),

and

yk =
Ψk

(B −A) (1− δ)
|bk| (k = 1, 2, ...).

Then note by Theorem 3, 0 ≤ xk ≤ 1 (k = 2, 3, ...) and 0 ≤ yk ≤ 1 (k = 1, 2, ...).

We define

x1 = 1−
∞∑
k=2

xk −
∞∑
k=1

yk

and note that by Theorem 3, x1 ≥ 0. Consequently, we obtain

f(z) =

∞∑
k=1

(xkhk(z) + ykgk(z))

as required.

Now we show that THSνq (δ, A,B) is closed under convex combinations of its

members.

Theorem 6. The class THSνq (δ, A,B) is closed under convex combination.

Proof. For j = 1, 2, 3, ... let fj ∈ THSνq (δ, A,B), where fj is given by

fj(z) = z −
∞∑
k=2

|akj |z
k + (−1)ν

∞∑
k=1

|bkj |z̄
k.

Earthline J. Math. Sci. Vol. 9 No. 2 (2022), 165-178
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Then by (8),
∞∑
k=1

(
Φk|akj |+ Ψk|bkj |

)
≤ 2 (B −A) (1− δ).

For
∑∞

j=1 λj = 1, 0 ≤ λj ≤ 1, the convex combination of fj may be written as

∞∑
j=1

λjfj(z) = z −
∞∑
k=2

 ∞∑
j=1

λj |akj |

 zk + (−1)ν
∞∑
k=1

 ∞∑
j=1

λj |bkj |

 z̄k.

Then by (8),

∞∑
k=1

Φk

∞∑
j=1

λj |akj |+ Ψk

∞∑
j=1

λj |bkj |

 =
∞∑
j=1

λj

( ∞∑
k=1

[
Φk|akj |+ Ψk|bkj |

])

≤ 2 (B −A) (1− δ)
∞∑
j=1

λj

= 2 (B −A) (1− δ).

This is the condition required by (8) and so
∑∞

j=1 λjfj(z) ∈ THSνq (δ, A,B).
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