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Abstract

In this paper, we introduce a new class of variational inclusions involving

three operators. We suggest and analyze three-step iterations for finding the

common element of the set of fixed points of a nonexpansive mappings and the

set of the solutions of the variational inclusions using the resolvent operator

technique. We also study the convergence criteria of three-step iterative

method under some mild conditions. Inertial type methods are suggested

and investigated for general variational inclusions. Our results include the

previous results as special cases and may be considered as an improvement

and refinement of the previously known results.

1 Introduction

Variational inclusions are useful and important extensions and generalizations

of the variational inequalities, which were introduced by Stampacchia [37] in

potential theory. It is amazing that variational inequalities have applications

in industry, mathematical finance, economics, decision sciences, ecology,
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mathematical and engineering sciences. Using the projection operator, one can

show that the variational inequalities are equivalent to the fixed point problem.

This alternative formulation has been used to discuss the existence solution of the

variational inequalities and to develop numerical methods. For the formulation,

applications, numerical analysis, sensitivity analysis, dynamical systems and other

aspects if variational inequalities, see [3–14,16–24,24–27,30–33,35,37,39,40] and

the references therein. Rockafellar [36] discussed the proximal point methods

for solving variational inclusion. We would like to mention that the variational

inequalities and variational inclusions are natural generalizations of the variational

principles, which have played important and significant developments in various

branches of pure and applied sciences.

It is well known that the projection method and its variant forms including

the Wiener-Hopf equations can not be extended and modified for solving the

variational inclusions. These facts and comments have motivated us to use the

technique of the resolvent operators. In this technique, the given operator is

decomposed into the sum of two(or more) monotone operators whose resolvent is

easy to evaluate than the resolvent of the original operator. Such type of methods

are called the operator splitting methods and have proved to be every effective

and efficient in solving partial different equations, see Ames [2] and the references

therein. This technique can lead to the development of very efficient and robust

methods, since one can treat each part of the original operator independently. In

the context of the variational inclusions, Noor [21–23] and Noor et al. [30,31] have

used the resolvent technique to suggest and analyze some two-step and three-step

methods. A useful feature of these two-step and three-step methods for solving

variational inclusions is that the resolvent step involves the maximal monotone

part only, while other parts facilitates the problem decomposition. Essentially

using the resolvent technique, one can show that the variational inclusions are

equivalent to the fixed point problems. This alternative equivalent formulation

has played very crucial role in developing some very efficient methods for solving

the variational inclusions and related optimization problems. Using the technique

of updating the solution, Noor [24–26, 31, 32] suggested and analyzed several
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three-step iterative methods for solving different classes of variational inequalities.

The main idea in this technique is to modify the resolvent method by performing

an additional step forward and a resolvent at each iteration. It have been

shown [4,5,13,24–26] that three-step schemes are numerically better than two-step

and one-step methods.

Related to the variational inclusions, we have the problem of finding the fixed

points of the nonexpansive mappings, which is the subject of current interest

in functional analysis. It is natural to unify these two problems and find the

common elements of the set of the solution of variational inclusions and the set of

the fixed-points of the nonexpansive mappings. Noor [26] and Noor et al. [31] have

considered some three-step iterative methods for finding the common element of

the variational inequalities and nonexpansive mappings. Erturk et al. [9], Gupta

[12] and Rathee at al. [35] have used the ideas and techniques of Noor [26] and

Noor et al. [31] to used some new S-type iterative methods for solving some classes

of variational inequalities and related optimization problems.

It is very important to develop some efficient iterative methods for solving the

quasi variational inequalities. Alvarez et al. [1] used the inertial type projection

methods for solving variational inequalities, the origin of which can be traced

back to Polyak [34]. Noor [25] suggested and investigated inertial type projection

methods for solving general variational inequalities. These inertial type methods

have been modified in various directions for solving variational inequalities and

related optimization problems. Noor et al [25,30,32] have analyzed some inertial

projection methods for some classes of general variational inequalities.

Motivated and inspired by the ongoing research in these fields, we introduce

a new class of variational inclusions involving three operators, which is called

the general variational inclusion. We consider resolvent technique to suggest and

analyze a three-step resolvent iterative method for finding the common element

of the solution of the variational inclusions and the set of the fixed-points of

the nonexpansive mappings. We also study the convergence criteria of the new
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iterative method under some mild conditions. The resolvent technique is used to

suggest some inertial type methods for solving the general variational inclusions.

Since the general variational inclusions include the mixed variational inequalities

and related optimization problems as special cases, results proved in this paper

continue to hold for these problems.

2 Basic Results

Let K be a nonempty closed and convex set in a real Hilbert space, whose inner

product and norm are denoted by 〈·, ·〉 and ‖.‖ respectively. Let T,A, g : H −→ H

be three nonlinear operators and S be a nonexpansive operator.

We consider the problem of finding x ∈ H such that

0 ∈ ρTx+ x− g(x) + ρA(x), (2.1)

where ρ > 0 is a constant. Inclusion of the type (2.1) is called the variational

inclusion. Problem (2.1) is also known as finding the zero of the sum of three

(or more) monotone operators. Variational inclusions and related problems are

being studied extensively by many authors and have important applications in

operations research, optimization, mathematical finance, decision sciences and

other several branches of pure and applied sciences, see [8, 13, 14, 16, 36, 38] and

the references therein.

If A(.) ≡ ∂ϕ(.), where ∂ϕ(.) is the subdifferential of a proper, convex and

lower-semicontinuous function ϕ : H −→ R ∪ {+∞}, then the problem (2.1)

reduces to finding x ∈ H such that

0 ∈ Tx+ x− g(x) + ∂ϕ(x), (2.2)

or equivalently, finding x ∈ H such that

〈Tx+ x− g(x), y − x〉+ ϕ(y)− ϕ(x) ≥ 0, ∀y ∈ H. (2.3)
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The inequality (2.3) is called the mixed general variational inequality or the

general variational inequality of the second kind, which was introduced and

studied by Ullah and Noor [39]. It has been shown that a wide class of linear and

nonlinear problems arising in various branches of pure and applied sciences can

be studied in the unified framework of mixed variational inequalities.

We note that, if ϕ is the indicator function of a closed convex set K ⊆ H, that

is,

ϕ(x) ≡ IK(x) =

{
0, if x ∈ K
+∞, otherwise,

then the mixed general variational inequality (2.3) is equivalent to finding x ∈ K
such that

〈Tx+ x− g(x), y − x〉 ≥ 0, ∀y ∈ K, (2.4)

which is called the general variational inequality and appears to be a new one.

We would like to point out that general variational inequality (2.4) is quite

and distinctly different from other general variational inequalities, which were

introduced and studied by Noor [19,20,24–27].

If g(x) = x, then problem (2.4) reduces to finding x ∈ K, such that

〈Tx, y − x〉 ≥ 0, ∀y ∈ K, (2.5)

which is called the classical variational inequality, introduced and studied by

Stampacchia [37] in 1964. For the recent trends and developments in variational

inclusions and inequalities, see [3–14,16,17,19–24,24–28,30–33,35,37,39, 40] and

the references therein.

We also need the following well known concepts and results.
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Definition 2.1. [6] If A is a maximal monotone operator on H, then, for a

constant ρ > 0, the resolvent operator associated with A is defined by

JA(x) = (I + ρA)−1(x), ∀x ∈ H,

where I is the identity operator. It is well known that a monotone operator is

maximal monotone, if and only if, its resolvent operator is defined everywhere. In

addition, the resolvent operator is a single-valued and nonexpansive, that is,

‖JA(x)− JA(y)‖ ≤ ‖x− y‖. ∀x, y ∈ H.

Remark 2.1. It is well known that the subdifferential ∂ϕ of a proper, convex

and lower semicontinuous function ϕ : H → R ∪ {+∞} is a maximal monotone

operator, we denote by

Jϕ(x) = (I + ρ∂ϕ)−1(x), ∀x ∈ H,

the resolvent operator associated with ∂ϕ, which is defined everywhere on H. In

particular, the resolvent operator Jϕ has the following interesting characterization.

Lemma 2.1. [6] For a given z ∈ H, x ∈ H satisfies the inequality

〈x− z, y − x〉+ ρϕ(y)− ρϕ(x) ≥ 0, ∀y ∈ H,

if and only if

x = Jϕz,

where Jϕ = (I + ρ∂ϕ)−1 is the resolvent operator.

This property of the resolvent operator Jϕ plays an important part in

developing the numerical methods for solving the mixed variational inequalities.
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3 Iterative Methods and Convergence Analysis

In this section, we show that the general variational inclusions are equivalent

to the fixed point problem. This alternative equivalent formulation is used to

suggest and analyze several iterative method.

Lemma 3.1. The element x ∈ H is a solution of the general variational inclusion

(2.1), if and only if, x ∈ H satisfies the relation

x = JA[g(x)− ρTx], (3.1)

where ρ > 0 is a constant and JA = (I+ρA)−1 is the resolvent operator associated

with the maximal monotone operator.

Proof. Let x ∈ H be a solution of (2.1). Then

0 ∈ ρTx+ x− g(x) + ρA(x), ρ > 0

⇐⇒ (g(x)− ρTx) + (I + ρA)(x)

⇐⇒ x = (I + ρA)−1[g(x)− ρTx] = JA[g(x)− ρTx],

the required result.

It is clear from Lemma 3.1 that variational inclusion (2.1) and the fixed

point problems are equivalent. This alternative equivalent formulation has

played a significant role in the studies of the variational inequalities and related

optimization problems.

Let S be a nonexpansive mapping. We denote the set of the fixed points

of S by F (S) and the set of the solutions of the variational inequalities (2.1)

by V I(H,T ). We can characterize the problem. If x∗ ∈ F (S) ∩ V I(H,T ), then
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x∗ ∈ F (S) and x∗ ∈ V I(H,T ). Thus, from Lemma 3.1, it follows that

x∗ = Sx∗ = JA[g(x∗)− ρTx∗] = SJA[g(x∗)− ρTx∗], (3.2)

where ρ > 0 is a constant.

Using the technique of updating the solution, we can rewrite the equation (3.1)

in the following form as:

z = SJA[g(x)− ρTx]

y = SJA[g(z)− ρTz]

x = SJA[g(y)− ρTy].

This fixed point formulation is used to suggest the following three-step iterative

methods for finding a common element of two different sets of solutions of the

fixed points of the nonexpansive mappings S and the variational inclusion (2.1).

Algorithm 3.1. For a given x0 ∈ H, compute the approximate solution xn by

the iterative schemes

zn = (1− cn)xn + cnSJA[g(xn)− ρTxn], (3.3)

yn = (1− bn)xn + bnSJA[g(zn)− ρTzn], (3.4)

xn+1 = (1− an)xn + anSJA[g(yn)− ρTyn], (3.5)

where an, bn, cn ∈ [0, 1] for all n ≥ 0 and S is the nonexpansive operator.

Algorithm 3.1 is a three-step predictor-corrector method.

Note that for cn ≡ 0, Algorithm 3.1 reduces to:

Algorithm 3.2. For an arbitrarily chosen initial point x0 ∈ H, compute the

sequence the approximate solution{xn} by the iterative schemes

yn = (1− bn)xn + bnSJA[g(xn)− ρTxn],

xn+1 = (1− an)xn + anSJA[g(yn)− ρTyn],

where an, bn ∈ [0, 1] for all n ≥ 0 and S is the nonexpansive operator.
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Algorithm 3.2 is also called the two-step (Ishikawa iterations) iterative method.

For bn = 1, an = 1, Algorithm 3.2 reduces to:

Algorithm 3.3. For an arbitrarily chosen initial point x0 ∈ H, compute the

sequence {xn} by the iterative schemes

yn = SJA[g(xn)− ρTxn],

xn+1 = SJA[g(yn)− ρTyn].

Remark 3.1. It should be remarked that our Algorithm 3.3 is a two-step method,

which may be regarded as a predictor-corrector method. Moreover, Algorithm 3.2

covers the case in Algorithm 3.3 whenever an ≡ 1 for all n ≥ 0.

Algorithm 3.3 can be written as

xn+1 = SJA[g(SJA[g(xn)− ρTxn])− ρTSJA[g(xn)− ρTxn]],

which is called extraresolvent Algorithm.

For bn ≡ 0, cn ≡ 0 and g = I, Algorithm 3.1 collapses to the following iterative

method, which is known as the Mann iteration or one-step method for solving the

variational inclusion (2.1).

Algorithm 3.4. For a given x0 ∈ H, compute the approximate solution xn+1 by

the iterative schemes:

xn+1 = (1− an)xn + anSJA[xn − ρTxn]. (3.6)

We now discuss some special cases of Algorithm 3.1 for solving the mixed

variational inequalities (2.3) and the classical variational inequalities (2.5).

I. If A(.) ≡ ϕ(.), the subdifferential of a proper lower-semicontinuous and convex

function ϕ, then JA = Jϕ, and consequently Algorithm 3.1 collapses to:
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Algorithm 3.5. For a given x0 ∈ H, compute the approximate solution xn by

the iterative schemes

zn = (1− cn)xn + cnSJϕ[g(xn)− ρTxn],

yn = (1− bn)xn + bnSJϕ[g(zn)− ρTzn],

xn+1 = (1− an)xn + anSJϕ[g(yn)− ρTyn],

where an, bn, cn ∈ [0, 1] for all n ≥ 0 and S is the the nonexpansive mapping.

Algorithm 3.5 is also a three-step method for solving the mixed variational

inequalities (2.3).

II. If ϕ is the indicator function of a closed convex set K in H, then Jϕ ≡ PK , the

projection of H onto the closed convex set K. In this case Algorithm 3.5 reduces

to the following method.

Algorithm 3.6. For a given x0 ∈ H, compute the approximate solution xn by

the iterative schemes

zn = (1− cn)xn + cnSPK [g(xn)− ρTxn],

yn = (1− bn)xn + bnSPK [g(zn)− ρTzn],

xn+1 = (1− an)xn + anSPK [g(yn)− ρTyn],

where an, bn, cn ∈ [0, 1] for all n ≥ 0 and S is the the nonexpansive mappings.

Algorithm 3.6 is a three-step method for solving the classical variational

inequalities (2.3). Noor [26] and Noor and Huang [31] have studied the

convergence analysis of Algorithm 3.6 and its various special cases.

From the above discussion, it is clear that Algorithm 3.1 is quite general and

it includes several new and previously known algorithms for solving variational

inequalities and related optimization problems.
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Definition 3.1. A mapping T : H → H is called µ-Lipschitzian if for all x, y ∈ H,

there exists a constant µ > 0, such that

||Tx− Ty|| ≤ µ||x− y||.

Definition 3.2. A mapping T : H → H is called α-inverse strongly monotonic if

for all x, y ∈ H, there exists a constant α > 0, such that

〈Tx− Ty, x− y〉 ≥ α||Tx− Ty||2.

Definition 3.3. A mapping T : H → H is called r-strongly monotonic if for all

x, y ∈ K, there exists a constant r > 0, such that

〈Tx− Ty, x− y〉 ≥ r||x− y||2.

Definition 3.4. A mapping T : H → H is called relaxed (γ, r)-cocoercive if for

all x, y ∈ K, there exists constants γ > 0 and r > 0, such that

〈Tx− Ty, x− y〉 ≥ −γ||Tx− Ty||2 + r||x− y||2.

Remark 3.2. Clearly a r-strongly monotonic mapping must be a relaxed

(γ, r)-cocoercive mapping, or a γ-inverse strongly monotonic mapping must be

a relaxed (γ, r)-cocoercive mapping whenever r = 0, but the converse is not true.

Therefore the class of the relaxed (γ, r)-cocoercive mappings is the most general

class, and hence definition 3.4 includes both the definition 3.2 and the definition

3.3 as special cases.

Lemma 3.2. Suppose {δk}∞k=0 is a nonnegative sequence satisfying the following

inequality:

δk+1 ≤ (1− λk)δk + σk, k ≥ 0

with λk ∈ [0, 1],
∑∞

k=0 λk =∞, and σk = o(λk). Then limk→∞ δk = 0.
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We now investigate the strong convergence of Algorithm 3.1 and Algorithm 3.4

in finding the common element of two sets of solutions of the variational inclusions

(2.1) and F (S) and this is the main motivation of this paper.

Theorem 3.1. Let T be a relaxed (γ, r)-cocoercive and µ-Lipschitzian mapping

of H into H. Let g be a relaxed (γ1, r1)-cocoercive and µ1-Lipschitzian mapping.

Let S be a nonexpansive mapping of H into H such that F (S) ∩ V I(H,T ) 6= ∅.
Let {xn} be a sequence defined by Algorithm 3.1, for any initial point x0 ∈ H,

with conditions∥∥∥∥ρ− r − γµ2

µ2

∥∥∥∥ <
√

(r − γµ)2 − µ2k(2− k)

µ2
, r > γµ2 + µ

√
k(2− k), k < 1,(3.7)

an, bn, cn ∈ [0, 1] and
∑∞

n=0 an =∞, and k =
√

1 + 2γ1µ21 − 2r1 + µ21.

Then xn obtained from Algorithm 3.1 converges strongly to x∗ ∈ F (S) ∩
V I(H,T ).

Proof. Let x∗ ∈ H be the solution of F (S) ∩ V I(H,T ). Then

x∗ = (1− cn)x∗ + cnSJA[g(x∗)− ρTx∗] (3.8)

= (1− bn)x∗ + bnSJA[g(x∗)− ρTx∗] (3.9)

= (1− an)x∗ + anSJA[g(x∗)− ρTx∗], (3.10)

where an, bn, cn ∈ [0, 1] are some constants. From (3.3), (3.8), and the

nonexpansive property of the resolvent JA and the nonexpansive mapping S, we

have

||xn+1 − x∗||

= ||(1− an)xn + anSJA[g(yn)− ρTyn]− (1− an)x∗ − anSJA[g(x∗)− ρTx∗]||

≤ (1− an)||xn − x∗||+ an||SJA[g(yn)− ρTyn]− SJA[g(x∗)− ρTx∗]||

≤ (1− an)||xn − x∗||+ an||yn − x∗ − ρ(Tyn − Tx∗)||

+‖yn − x∗ − (g(yn)− g(x∗))‖. (3.11)
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From the relaxed (γ, r)-cocoercive and µ-Lipschitzian definition on T ,

||yn − x∗ − ρ(Tyn − Tx∗)||2

= ||yn − x∗||2 − 2ρ〈Tyn − Tx∗, yn − x∗〉+ ρ2||Tyn − Tx∗||2

≤ ||yn − x∗||2 − 2ρ[−γ||Tyn − Tx∗||2 + r||yn − x∗||2]

+ρ2||Tyn − Tx∗||2

≤ ||yn − y∗||2 + 2ργµ2||yn − x∗||2 − 2ρr||yn − x∗||2 + ρ2µ2||yn − x∗||2

= [1 + 2ργµ2 − 2ρr + ρ2µ2]||yn − x∗||2

= θ21‖yn − x∗‖2, (3.12)

where

θ21 =
√

1 + 2ργµ2 − 2ρr + ρ2µ2. (3.13)

In a similar way, using the relaxed (γ1, r1)-cocoercivity and µ1-Lipschitzian of the

operator g, we have

‖yn − x∗ − (g(yn)− g(x∗))‖ ≤ k‖yn − x∗‖, (3.14)

where k is defined as:

k =
√

1 + 2γ1µ21 − 2r1 + µ21. (3.15)

Combining (3.11), (3.12), (3.13), (3.14) and (3.15), we have

‖xn+1 − x∗‖ ≤ (1− an)‖xn − x∗‖+ anθ‖yn − x∗‖. (3.16)

In a similar, from (3.4) and (3.9), we have

||yn − x∗|| ≤ (1− bn)||xn − x∗||+ bnθ||zn − x∗||. (3.17)

and from (3.5) and (3.10), it follows that

‖zn − x∗‖ ≤ (1− cn)‖xn − x∗‖+ cnθ‖xn − x∗‖,

= {(1− cn(1− θ))}‖xn − x∗‖

≤ ‖xn − x∗‖. (3.18)
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From (3.16), (3.17) and (3.18), we obtain that

||xn+1 − x∗|| ≤ (1− an)||xn − x∗||+ anθ||yn − x∗||

≤ (1− an)||xn − x∗||+ anθ||zn − x∗||

≤ (1− an)‖xn − x∗‖+ anθ‖xn − x∗‖

= [1− an(1− θ)]||xn − x∗||, (3.19)

and hence by Lemma 3.2, limn→∞ ||xn − x∗|| = 0, completing the proof.

Next we will provide and prove the strong convergence theorem of Algorithm

3.4 under the α-inverse strongly monotonicity. With the following result, we can

obtain the result of [31] as a special case.

Theorem 3.2. Let α > 0. Let T be an α-inverse strongly monotonic mapping

of H into H, and S be a nonexpansive mapping of such that F (S)∩V I(H,T ) 6= ∅.
Let {xn} be the approximate solution obtained from Algorithm 3.4 for any initial

point x0 ∈ H, where ρ ∈ [a, b] ⊂ (0, 2α) and an ∈ [c, d] for some constants

c, d ∈ (0, 1). Then the sequence {xn} converges strongly to x∗ ∈ F (S)∩V I(H,T ).

Proof. Let T is α-inverse strongly monotonic with the constant α > 0. Then

T is 1
α–Lipschitzian continuous. Consider

‖xn − x∗ − ρ[Txn − Tx∗]‖2

= ‖xn − x∗||2 + ρ2||Txn − Tx∗‖2 − 2ρ〈Txn − Tx∗, xn − x∗〉

≤ ‖xn − x∗‖2 + ρ2‖Txn − Tx∗‖2 − 2ρα||Txn − Tx∗||2

= ‖xn − x∗‖2 + (ρ2 − 2ρα)‖Txn − Tx∗‖2

≤ ‖xn − x∗‖2 + (ρ2 − 2ρα) · 1

α2
‖xn − x∗‖2

= (1 +
(ρ2 − 2ρα)

α2
)‖xn − x∗‖2. (3.20)

Set θ2 = (1 + (ρ2−2ρα)
α2 )1/2.

Then from the condition ρ ∈ [a, b] ⊂ (0, 2α), it follows that θ2 ∈ (0, 1).
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From (3.4), (3.8), (3.20) and the nonexpansive property of the operators of S

and JA, we have

||xn+1 − x∗||

≤ (1− an)||xn − x∗||+ an||SJA[xn − ρTxn]− SJA[x∗ − ρTx∗]||

≤ (1− an)||xn − x∗||+ an||xn − x∗ − ρ(Txn − Tx∗)||

≤ (1− an)||xn − x∗||+ anθ2||xn − x∗||

= [1− an(1− θ2)]||xn − x∗||.

Therefore, it follows limn→∞ ‖xn − x∗‖ = 0, from Lemma 3.2.

From the fixed point formulation (3.2), we have

x = Sx = SJA[g(x)− ρTx],

which can be written as

x = SJA[g((1− γ)x+ γx))− ρT ((1− γ)x+ γx)], (3.21)

where γ is a constant.

The fixed point formulation is used to suggest the following iterative method

for solving the general variational inclusion (2.1).

Algorithm 3.7. For given initial values x0, x1, compute the approximate solution

xn+1 be the iterative scheme

xn+1 = SJA[g((1− γ)xn + γxn−1))− ρT ((1− γ)xn + γxn−1)], n = 0, 1, 1, 2, ...,(3.22)

which is called the inertial proximal point method.

Algorithm 3.7 is equivalent to the following two-step inertial iterative method.

Algorithm 3.8. For given initial values x0, x1, compute the approximate solution

xn+1 be the iterative scheme

yn = (1− γn)xn + γnxn−1

xn+1 = (1− αn)yn + αnSJA[g(yn)− ρT (yn)], n = 0, 1, 1, 2, ...,

where αn > 0 and γn are constants.
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In a similar way, we can suggest the four-step inertial methods for solving the

general variational inequalities (2.1).

Algorithm 3.9. For a given x0 ∈ H, compute the approximate solution xn by

the iterative schemes

yn = (1− γn)xn + γnxn−1

zn = (1− cn)yn + cnSJA[g(yn)− ρTyn],

wn = (1− bn)zn + bnSJA[g(zn)− ρTzn],

xn+1 = (1− an)wn + anSJA[g(wn)− ρTwn],

where an, bn, cn, γn ∈ [0, 1], ∀n ≥ 0 and S is the nonexpansive operator.

For different choices of the parameters an, bn, cn, λn ∈ [0, 1], and the operators,

one can contain Mann iteration, Ishikawa iterations and Noor iterations as special

cases of Algorithm 3.9. Using the techniques of Jabeen et al. [15] and Noor et

al. [30].

Remark 3.3. Using the above techniques and ideas of Noor et al. [29], we

can suggest and analyze several inertial type methods for solving the general

variational inclusion and its variant forms. Comparison and implementation of

these methods need further research efforts.
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