
Earthline Journal of Mathematical Sciences 
ISSN (Online): 2581-8147   
Volume 2, Number 2, 2019, Pages 283-323 
https://doi.org/10.34198/ejms.2219.283323   
 

Received: May 17, 2019; Accepted: July 1, 2019  

2010 Mathematics Subject Classification: Primary 06A75, 06A15; Secondary 54E15, 54C60. 

Keywords and phrases: ordered sets, Galois connections, uniform spaces, continuous relations. 

The work of the author has been supported by the Hungarian Scientific Research Fund (OTKA) Grant 
K-111651. 

Copyright © 2019 Árpád Száz. This is an open access article distributed under the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 

Galois and Pataki Connections on Generalized Ordered Sets 

Árpád Száz  

 Department of Mathematics, University of Debrecen, H−4002 Debrecen, P.O. Box 400, Hungary 

e-mail: szaz@science.unideb.hu  

Abstract 

In this paper, having in mind Galois and Pataki connections, we establish several basic 

theorems on increasingly seminormal and semiregular functions between gosets. 

An ordered pair ( ) ( )≤=≤ ,XX  consisting of a set X and a relation ≤  on X is called a 

goset (generalized ordered set). 

A function f of one goset X to another Y is called increasingly upper g-seminormal, for 

some function g of Y to X, if ( ) yxf ≤  implies ( ).ygx ≤  

While, the function f is called increasingly upper ϕ -semiregular, for some function ϕ  of 

X to itself, if ( ) ( )vfuf ≤  implies ( ).vu ϕ≤  

The increasingly lower seminormal (semiregular) functions are defined by the reverse 

implications. Moreover, a function is called increasingly normal (regular) if it is both 

increasingly upper and lower seminormal (semiregular). 

The results obtained extend and supplement several former results of O. Ore and the 

present author on Galois and Pataki connections. Namely, the pairs ( )gf ,  and ( )ϕ,f  

may be called increasing Galois and Pataki connections if the function f is increasingly 

g-normal and ϕ -regular, respectively. 



Árpád Száz 

http://www.earthlinepublishers.com 

284 

Introduction  

Ordered sets and Galois connections occur almost everywhere in mathematics [8]. 

They allow of transposing problems and results from one world of our imagination to 

another one. 

In [28], having in mind a terminology of Birkhoff [1, p. 1], an ordered pair 

( ) ( )≤=≤ ,XX  consisting of a set X and a relation ≤  on X is called a goset (generalized 

ordered set). 

In particular, a goset ( )≤X  is called a proset (preordered set) if the relation ≤  is 

reflexive and transitive. And, a proset is ( )≤X  called a poset (partially ordered set) if the 

relation ≤  is in addition antisymmetric. 

In [35], motivated by an ingenious observation of Schmidt [20, p. 209] a function f 

of one goset X to another Y is called increasingly upper g-seminormal, for some function 

g of Y to X, if ( ) yxf ≤  implies ( )ygx ≤  for all Xx ∈  and .Yy ∈  

While, motivated by a fundamental definition of Pataki [17, p. 160], the function f is 

called increasingly upper ϕ -semiregular, for some function ϕ  of X into itself, if 

( ) ( )vfuf ≤  implies ( )vu ϕ≤  for all ., Xvu ∈  

Thus, if f is increasingly upper g-seminormal, then by taking ,fg �=ϕ  we can at 

once see that ( ) ( ) ( )( ) ( ) ( ) ( )vuvfguvfguvfuf ϕ≤⇒≤⇒≤⇒≤ �  for all 

., Xvu ∈  Therefore, f  is increasingly upper ϕ -semiregular. 

The increasingly lower seminormal (semiregular) functions are defined by the 

reverse implications. Moreover, a function is called increasingly normal (regular) if it is 

both increasingly upper and lower seminormal (semiregular). 

Now, in particular, the pairs ( )gf ,  and ( )ϕ,f  may also be naturally called 

increasing Galois and Pataki connections between the gosets X and Y if the function f is 

increasingly g-normal and ϕ -regular, respectively. 

Moreover, we can at once see that a function f of one goset X to another Y is 

increasingly lower X∆ -semiregular if and only it is increasing in the usual sense that 

vu ≤  implies ( ) ( )vfuf ≤  for all ., Xvu ∈  
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In this respect, it is also worth mentioning that if f is an increasingly ϕ -regular 

function of one proset X to another Y, then f is increasing and ϕ  is a closure operation 

on X such that .fff �� ϕ≤≤ϕ  (See [33].) 

Here, a function ϕ  of a goset X to itself is called a closure operation if it is 

increasing, extensive and lower semiidempotent in the sense that ( )xx ϕ≤  and 

( )( ) ( )xx ϕ≤ϕϕ  for all .Xx ∈  Thus, ϕ  is idempotent if X is a poset. 

The importance of regular functions is also apparent from the fact that a function ϕ  

of a proset X to itself is a closure operation if and only if ϕ  is increasingly ϕ -regular. 

That is, ( )vu ϕ≤  is equivalent to ( ) ( )vu ϕ≤ϕ  for all ., Xvu ∈  

In [33], we have also proved that a function f of one proset X to another Y is 

increasingly ϕ -regular if and only if ϕ  is a closure operation on X such that 

( ) ( )vu ϕ≤ϕ  is equivalent to ( ) ( )vfuf ≤  for all ., Xvu ∈  

Several interesting characterizations of increasingly regular and normal functions 

have also been established in [31, 35]. Moreover, some closely related results for 

increasing functions and closure operations have also been proved in [40]. 

Now, by improving and extending some of these results, we shall, for instance, prove 

that for a function f of a sup-complete proset X to an arbitrary one Y, the following 

assertions are equivalent: 

(1)  f  is increasingly normal, 

(2) ( )[ ] [ ]( )AfAf supsup ⊆  for all ,XA ⊆  

(3)  f  is increasing and ( ( )) ( )yy ff IntIntsup ⊆  for all ,Yy ∈  

(4)  f  is increasing and ( ( )) ( ( ))yy ff IntsupIntmax =  for all ,Yy ∈  

(5)  f  is increasing and ( )[ ] [ ]( )( )AfAf ublbsup ⊆  for all ,XA ⊆  

(6)  f  is increasing and ( )( )[ ] [ ]( )( )AfAf ublbublb ⊆  for all .XA ⊆  

Here, by definition, we have ( ) ( ){ }yxfXxyf ≤∈= :Int  for all .Yy ∈  

Moreover, it is noteworthy that if X and Y are supposed to be only arbitrary gosets, then 

(1) already implies the second statement of (6). 



Árpád Száz 

http://www.earthlinepublishers.com 

286 

In [40], for a function f of one goset X to another, we have only prove that f is 

increasing if and only if ( )[ ] [ ]( )AfAf ubub ⊆  for all .XA ⊆  Moreover, if f is 

increasing, then [ ]( )( ) ( )[ ]( )AfAf ublbublb ⊆  for all .XA ⊆  

At the end of this paper, we shall also offer some generalizations of increasingly 

seminormal functions on posets to relations on relator spaces of the form ( ) ( ),, RYX  

where X and Y are sets and R  is a family of relations on X to Y. 

1. A Few Basic Facts on Relations 

A subset F of a product set YX ×  is called a relation on X to Y. If in particular 

,2XF ⊆  with ,2 XXX ×=  then we may simply say that F is a relation on X. In 

particular, ( ){ }XxxxX ∈=∆ :,  is called the identity relation on X. 

If F is a relation on X to Y, then by the above definitions we can also state that F is a 

relation on .YX ∪  However, for several purposes, the latter view of the relation F 

would be quite unnatural. 

If F is a relation on X to Y, then for any XA ⊆  and Xx ∈  the sets 

[ ] ( ){ }FyxAxYyAF ∈∈∃∈= ,::  and ( ) { }[ ]xFxF =  are called the images of A and 

x under F, respectively. 

Moreover, the sets ( ){ }∅≠∈= xFXxDF :  and [ ]XFRF =  are called the 

domain and range of F, respectively. If in particular ,XDF =  then we say that F is a 

relation of X to Y, or that F is a non-partial relation on X to Y. 

In particular, a relation f on X to Y is called a function if for each fDx ∈  there 

exists Yy ∈  such that ( ) { }.yxf =  In this case, by identifying singletons with their 

elements, we may simply write ( ) yxf =  instead of ( ) { }.yxf =  

Moreover, a function ⊻ of X to itself is called a unary operation on X. While, a 

function ∗  of 2X  to X is called a binary operation on X. And, for any ,, Xyx ∈  we 

usually write x⊻ and yx ∗  instead of ⊻ ( )x  and ( )( )., yx∗  

If F is a relation on X to Y, then a function f of FD  to Y is called a selection of F if 
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,Ff ⊆  i.e., ( ) ( )xFxf ∈  for all .FDx ∈  Thus, the Axiom of Choice can be briefly 

expressed by saying that every relation has a selection. 

For any relation F on X to Y, we may naturally define two set-valued functions, �F  

of X to ( )YP  and ◊F  of ( )XP  to ( ),YP  such that ( ) ( )xFxF =�  for all Xx ∈  and 

( ) [ ]AFAF =◊  for all .XA ⊂  

Functions of X to ( )YP  can be identified with relations on X to Y. While, functions 

of ( )XP  to ( )YP  are usually more powerful tools than relations on X to Y [38, 46]. 

However, they are frequently less flexible. 

If F is a relation on X to Y, then { } ( ).xFxF Xx ×= ∈∪  Therefore, the values ( ),xF  

where ,Xx ∈  uniquely determine F. Thus, a relation F on X to Y can also be naturally 

defined by specifying ( )xF  for all .Xx ∈  

For instance, the complement relation cF  can be naturally defined such that 

( ) ( ) ( )xFYxFxF cc \==  for all .Xx ∈  The latter notation will not cause confusions, 

since thus we also have .\ FYXF c ×=  

Quite similarly, the inverse relation 1−F  can be naturally defined such that 

( ) ( ){ }xFyXxyF ∈∈=− :1  for all .Yy ∈  Thus, the operations c and −1 are 

compatible in the sense ( ) ( ) .11 cc FF −− =  

Moreover, if in addition G is a relation on Y to Z, then the composition relation 

FG �  can be naturally defined such that ( ) ( ) ( )[ ]xFGxFG =�  for all .Xx ∈  Thus, 

we also have ( )[ ] [ ][ ]AFGAFG =�  for all .XA ⊆  

While, if G is a relation on Z to W, then the box product relation GF ⊠  can be 

naturally defined such that ( ) ( ) ( ) ( )zGxFzxGF ×=,⊠  for all Xx ∈  and .Zz ∈  

Thus, we have ( )[ ] 1−= FAGAGF ��⊠  for all ZXA ×⊆  [36]. 

Hence, by taking ( ){ },, zxA =  and YA ∆=  if ,ZY =  one can see that the box and 

composition products are actually equivalent tools. However, the box product can be 

immediately defined for arbitrary families of relations. 
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Now, a relation R on X may be briefly called reflexive if ,RX ⊆∆  and transitive if 

.RRR ⊆�  Moreover, R may be briefly called symmetric if ,1 RR ⊆−  and 

antisymmetric if .1
XRR ∆⊆−

∩  

Thus, a reflexive and transitive (symmetric) transitive relation may be called a 

preorder (tolerance) relation. And, a symmetric (antisymmetric) preorder relation may 

be called an equivalence (partial order) relation. 

For instance, for ,XA ⊆  Pervin’s relation XAAP c
A ×= ∪

2  is a preorder 

relation on X [32]. While, for a pseudo-metric d on X and ,0>r  Weil’s surrounding 

{( ) ( ) }ryxdXyxBd
r <∈= ,:, 2  is a tolerance relation on X. 

Note that ( )221 c
AAAAA AARRRRS c ∩∩∩ === −  is already an equivalence 

relation on X. And, more generally if A  is a cover (partition) of X, then 

2AS A AA ∈= ∪  is a tolerance (equivalence) relation on X.   

Now, for any relation R on X, we may also naturally define XR ∆=0  and 

1−= nn RRR �  if .N∈n  Moreover, we may naturally define ∪
∞

=
∞ =

0
.

n
nRR  Thus, 

∞R  is the smallest preorder relation on X containing R [12] . 

2. A Few Basic Facts on Generalized Ordered Sets 

According to [28], an ordered pair ( ) ( ),, ≤=≤ XX  consisting of a set X and a 

relation ≤  on X, will be called generalized ordered set, or an ordered set without 

axioms. And, we shall usually write X in place of ( ).≤X  

In the sequel, a generalized ordered set ( )≤X  will, for instance, be called reflexive if 

the relation ≤  is reflexive. Moreover, the generalized ordered set ( ) ( )1−≤=≤′′ XX  will 

be called the dual of ( ).≤X  

Having in mind the terminology of Birkhoff [1, p. 1], a generalized ordered set may 

be briefly called a goset. Moreover, a preordered (partially ordered) set may be called a 

proset (poset). 
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Thus, every set X is a poset with the identity relation .X∆  Moreover, X is a proset 

with the universal relation .2X  And every subfamily of the power set ( )XP  of X is a 

poset with the ordinary set inclusion .⊆  

The usual definitions on posets can be naturally extended to gosets [28]. (And, even 

to arbitrary relator spaces [27] which include ordered sets [7], context spaces [10], and 

uniform spaces [9] as the most important particular cases.) 

For instance, for any subset A of a goset X, we may naturally define 

( ) { },::lb axAaXxA ≤∈∀∈=  

( ) { },::ub xaAaXxA ≤∈∀∈=  

( ) ( ),lbmin AAA ∩=    ( ) ( ),ubmax AAA ∩=  

( ) ( )( ),lbmaxinf AA =    ( ) ( )( ).ubminsup AA =  

In the sequel, by identifying singletons with their elements, we shall, for instance, 

write ( )xub  instead of { }( )xub  for all .Xx ∈  Thus, we have 

( ) ( ) [ [ { }yxXyxxx ≤∈=∞+==≤ :,ub   

for all .Xx ∈  

Now, as an immediate of the corresponding definitions, we can state 

Theorem 2.1. For any subset A of a goset X, we have 

(1) ( ) ( )∩ Aa
aA ∈= ,lblb    (2) ( ) ( )∩ Aa

aA ∈= .ubub  

Hence, it is clear that in particular we also have 

Corollary 2.2. If X is a goset, then 

(1) ( ) X=∅lb  and ( ) ,ub X=∅  

(2) ( ) ( )AB lblb ⊆  and ( ) ( )AB ubub ⊆  for all .XBA ⊆⊆  

By using Theorem 2.1, we can also easily prove the following 

Theorem 2.3. If Φ  is a unary operation on ( ),XP  for some set X, such that 

( ) ( )∩ Aa
aA ∈ Φ=Φ  for all ,XA ⊆  then there exists a relation ≤  on X such that 

( ).ublb ≤≤ =Φ=Φ  
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However, it is now more important to note that we also have the following 

Theorem 2.4. For any two subsets A and B of a goset X, we have 

( ) ( ).ublb ABBA ⊆⇔⊆  

Proof. By the corresponding definitions, each of the above inclusions is equivalent 

to the property that ba ≤  for all Aa ∈  and ,Bb ∈  which can be briefly expressed by 

writing that .≤⊆× BA  (That is, ( )BA ≤∈ Lb  or ( )AB ≤∈ Ub  by [27]) 

Remark 2.5. The above theorem shows that  

( ) ( )BABA ublb ⊆⇔⊆′  

for all ., XBA ⊂   

Therefore, the set-functions lb and ub form a Galois connection between the poset 

( )XP  and its dual in the sense of [7, Definition 7.23], suggested by Schmidt’s 

reformulation [20, p. 209] of Ore’s definition of Galois connexions [16]. 

Remark 2.6. Hence, by taking ,lbub �=Φ  we can easily see that  

( ) ( ) ( )BABA Φ⊆⇔⊆′ lblb  

for all ., XBA ⊂  

Therefore, the set-functions lb and Φ  form a Pataki connection between the poset 

( )XP  and its dual in the sense of [31, Remark 3.8] suggested by a fundamental unifying 

work of Pataki [17] on the basic refinements of relators studied each separately by the 

present author in [24] . 

By [33], the letter fact implies that ,lblb Φ= �  and the function Φ  is a closure 

operation on the poset ( )XP  in the sense of [1, p. 111]. By an observation, attributed to 

Dedekind by Erné [8, p. 50], this is equivalent to the requirement that the function Φ  

with itself form a Pataki connection between the poset ( )XP  and itself. 

3. Some Further Results on Gosets 

Concerning minima and maxima, and infima and suprema, one can easily prove the 

following theorems. 
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Theorem 3.1. For any subset A of a goset X, we have 

(1) ( ) ( ){ },ub:min xAAxA ⊆∈=   (2) ( ) ( ){ }.lb:max xAAxA ⊆∈=  

Remark 3.2. By this theorem, for instance, we may also naturally define 

( ) ( ) ( ){ }.lbub:ub xxAXxA ⊆∈=∗
∩  

Thus, ( ) ( )AAA ∗∗ = ubmax ∩  is just the family of all maximal elements of A. 

Theorem 3.3. For any subset A of a goset X, we have 

(1) ( ) ( ) ( )( ),lbublbinf AAA ∩=   (2) ( ) ( ) ( )( ).ublbubsup AAA ∩=  

Theorem 3.4. For any subset A of a goset X, we have 

(1) ( ) ( )( ),lbsupinf AA =    (2) ( ) ( )( ),ubinfsup AA =  

(3) ( ) ( ),infmin AAA ∩=    (4) ( ) ( ).supmax AAA ∩=  

Theorem 3.5. Under the notation inf,max,min,=Φ  or sup, for any subset A of an 

antisymmetric goset X, we have ( )( ) .1card ≤Φ A  

Remark 3.6. Conversely, one can also easily see that if X is a reflexive goset such 

that ( )( ) 1card ≤Φ A  for all ,XA ⊆  with ( ) ,2card =A  then X is antisymmetric. 

In [29], by using the notation ( ){ },lb: AAXA ⊆⊆=L  we have first proved that a 

reflexive goset X is antisymmetric if and only if ( ) 1card ≤A  for all .L∈A  

Definition 3.7. A goset X is called inf-complete (sup-complete) if ( ) ∅≠Ainf  

( )( )∅≠Asup  for all .XA ⊆  

Remark 3.8. Quite similarly, a goset X may, for instance, be also naturally called 

min-complete if ( ) ∅≠Amin  for all nonvoid subset A of X. 

Thus, the set N  of all natural numbers is min-, but not inf-complete. While, the 

extended real line { }∞+∞−= ,∪RR  is inf-, but not min-complete. 

Now, as an immediate consequence of Theorem 3.4, we can state the following 

straightforward extension of [1, Theorem 3, p. 112]. 
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Theorem 3.9. For a goset X, the following assertions are equivalent: 

(1) X is inf-complete,   (2) X is sup-complete. 

Remark 3.10. Similar equivalences of several modified inf- and sup-completeness 

properties of gosets have been established in [4] and [3]. 

Definition 3.11. A goset X is called linear if for any ,, Xvu ∈  with ,vu ≠  we have 

either vu ≤  or .uv ≤  

Remark 3.12. If X is a goset, then for any Xvu ∈,  we write vu <  if both vu ≤  

and .vu ≠  

Therefore, if the goset X is linear, then for any ,, Xvu ∈  with ,vu ≠  we actually 

have either vu <  or .uv <  

Moreover, as a consequence of the corresponding definitions, we can also state 

Theorem 3.13. For a goset X, the following assertions are equivalent: 

(1)  X is reflexive and linear, 

(2)  for any ,, Xvu ∈  we have either vu ≤  or ,uv ≤  

(3) ( ) ∅≠Amin  ( )( )∅≠Amax  for all XA ⊆ with ( ) .2card1 ≤≤ A  

Hence, it is clear that in particular we also have 

Corollary 3.14. If X is a min-complete (max-complete) goset, then X is reflexive and 

linear. 

The importance of reflexive, linear, and antisymmetric gosets is apparent from the 

following 

Theorem 3.15. (1) If X is an antisymmetric goset, then vu <  implies uv ≤/  for all 

,, Xvu ∈  

(2) While, if X is a reflexive and linear goset, then vu ≤/  implies uv <  for all 

., Xvu ∈  

Proof. To check (2), note that if ,vu ≤/  then by Theorem 3.13 we have .uv ≤  

Moreover, by the reflexivity of X, we also have .uv ≠  Therefore, we also have .uv <  
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Now, as an immediate consequence of this theorem, we can also state the following 

very particular Galois-type connection. 

Corollary 3.16. If X is a reflexive, linear and antisymmetric goset, then for any 

Xvu ∈,  we have vu <  if and only if .uv ≤/  

Remark 3.17. If ( )XX ≤  is a goset and ,XY ⊆  then by taking 2YXY ∩≤=≤  we 

can at once see that ( )YY ≤  is also a goset which inherits several basic properties of the 

original goset ( ).XX ≤  

Moreover, concerning subgosets, we can also easily prove the following 

Theorem 3.18. If X is a goset and ,XY ⊆  then for any YA ⊆  we have 

(1) ( ) ( ),minmin AA XY =    (2) ( ) ( ),minmin AA XY =  

(3) ( ) ( ) ,lblb YAA XY ∩=    (4) ( ) ( ) ,ubub YAA XY ∩=  

(5) ( ) ( ),infinf AYA YX ⊆∩   (6) ( ) ( ).supsup AYA YX ⊆∩  

Proof. To check (5), note that if ( ),inf AX∈α  then by Theorem 3.3 we have 

( )AXlb∈α  and ( )( ).lbub AXX∈α  Hence, if Y∈α  also holds, by using (3) we can 

see that ( ).lb AY∈α  

Moreover, if ( ),lb Av Y∈  then by using (3) we can see that Yv ∈  and ( ).lb Av X∈  

Hence, since ( )( ),lbub AXX∈α  we can infer that .α≤v  This shows that 

( )( ).lbub AYX∈α  Hence, since ,Y∈α  by using (3) we can already infer that  

( )( ).lbub AYY∈α  Thus, by Theorem 3.3, ( )AYsup∈α  also holds. 

Remark 3.19. In connection with (5), Tamás Glavosits, my PhD student, showed 

that the corresponding equality need not be true even if X is finite poset. 

For this, he took { },,,, dcbaX =  { },\ bXY =  { },\ aYA =  and considered the 

preorder ≤  on X generated by the relation ( ) ( ) ( ){ }.,,,,, dbcbbaR =   

Thus, he could at once see that ( ) ( )( ) { }( ) { },maxlbmaxinf aaAA YY ===  but 

( ) ( )( ) { }( ) { },,maxlbmaxinf bbaAA XX ===  and thus ( ) .inf ∅=YAX ∩  
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4. Increasing Functions of One Goset to Another 

Increasing functions are usually called isotone, monotone, or order-preserving in 

algebra. Moreover, in [7, p. 186] even the extensive maps are called increasing. 

However, we prefer to use a terminology of analysis [21, p. 128]. 

Definition 4.1. If f  is a function of one goset X to another Y, then we say that: 

(1)  f  is increasing if vu ≤  implies ( ) ( )vfuf ≤  for all ,, Xvu ∈  

(2)  f  is strictly increasing if vu <  implies ( ) ( )vfuf <  for all ., Xvu ∈  

Remark 4.2. Quite similarly, the function f may be called decreasing if vu ≤  

implies ( ) ( )ufvf ≤  for all ., Xvu ∈  

Thus, we can note that f is a decreasing function of X to Y if and only if it is an 

increasing function of X to the dual Y ′  of Y. 

Therefore, the study of decreasing functions can be traced back to that of the 

increasing ones. In [40], by proving the following statements, we have shown that almost 

the same is true in connection with the strictly increasing ones. 

Theorem 4.3. For a function f of one goset X to another Y, the following assertions 

hold:  

(1)  f  is strictly increasing if f  is injective and increasing, 

(2)  f  is injective if X is linear and f  is strictly increasing. 

Remark 4.4. Note that if in particular Y is reflexive, then the strict increasingness of 

f  also implies the increasingness of f. 

In [40], concerning strictly increasing functions, we have also proved  

Theorem 4.5. If f is a strictly increasing function of a linear goset X onto an 

antisymmetric one Y, then 1−f  is a strictly increasing function of Y onto X. 

However, it is now more important to note that, by [40], we also have 

Theorem 4.6. For a function f  of one goset X to another Y, the following assertions 

are equivalent: 

(1)  f  is increasing, 
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(2) ( )[ ] ( )( )xfxf ubub ⊆  for all ,Xx ∈  

(3) ( )[ ] [ ]( )AfAf ubub ⊆  for all .XA ⊆  

Remark 4.7. Note that f is an increasing function of X to Y if and only if it is an 

increasing function of X ′  to .Y ′  

Therefore, in the above theorem we may write lb in place of ub. However, because of 

Theorem 3.3 and Corollary 2.2, we cannot write sup instead of ub. 

Despite this, in [40], we could also easily prove the following 

Theorem 4.8. For a function f of a reflexive goset X to an arbitrary one Y, the 

following assertions are equivalent: 

(1)  f  is increasing, 

(2) ( )[ ] [ ]( )AfAf ubmax ⊆  for all ,XA ⊆  

(3) ( )[ ] [ ]( )AfAf maxmax ⊆  for all ,XA ⊆  

(4) ( )[ ] [ ]( )AfAf ubmax ⊆  for all XA ⊆  with ( ) .2card ≤A  

Proof. To prove the implication (1) ⇒ (3), note that if (1) holds, then by the 

definition of maximum and Theorem 4.6 we have 

( )[ ] ( )[ ] [ ] ( )[ ]AfAfAAfAf ububmax ∩∩ ⊆=  

[ ] [ ]( ) [ ]( )AfAfAf maxub =⊆ ∩  

for all XA ⊆  even if X is not assumed to be reflexive. 

Now, by using this theorem, we can also easily prove 

Corollary 4.9. If f  is a function on a reflexive goset X to an arbitrary one Y such 

that 

( )[ ] [ ]( )AfAf supsup ⊆ �  

for all XA ⊆  with ( ) ,2card ≤A  then f  is already increasing. 

Proof. If A is as above, then by Theorems 3.4 and 3.3 we have 

( )[ ] ( )[ ] [ ]( ) [ ]( ).ubsupsupmax AfAfAfAf ⊆⊆⊆  

Therefore, by Theorem 4.8, f  is increasing. 
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5. Closure and Interior Operations on Gosets 

According to [40], we shall now also use the following 

Definition 5.1. If ϕ  is a unary operation on a goset X, then we say that: 

(1) ϕ  is extensive (intensive) if ( ),XX ∆≤ϕϕ≤∆  

(2) ϕ  is upper (lower) semiidempotent if ( ).22 ϕ≤ϕϕ≤ϕ  

Remark 5.2. Moreover, ϕ  may be naturally called upper (lower) semiinvolutive if 

2ϕ  is extensive (intensive). That is, ( ).22
XX ∆≤ϕϕ≤∆  

Remark 5.3. In this respect, it is also worth noticing that ϕ  is upper (lower) 

semiidempotent if and only if its restriction to its range is extensive (intensive). 

Therefore, if ϕ  is extensive (intensive), then ϕ  is upper (lower) semiidempotent.  

The importance of extensive functions is also quite obvious from the following 

theorem of [40]. 

Theorem 5.4. If ϕ  is a strictly increasing operation on a min-complete, 

antisymmetric goset X, then ϕ  is extensive. 

Remark 5.5. To feel the importance of extensive operations, it is also worth noticing 

that if ϕ  is an extensive operation on an antisymmetric goset, then each maximal 

element x of X is already a fixed point of ϕ  in the sense that ( ) .xx =ϕ  

This fact has also been strongly emphasized by Brøndsted [5]. Moreover, fixed point 

theorems for extensive maps (which are sometimes called expansive, progressive, 

increasing, or inflationary) were also proved in [13], [7, p. 188], and [15]. 

The following theorem of [40] shows that, in contrast to the injective, increasing 

functions the inverse of an injective, extensive operation need not be extensive. 

Theorem 5.6. If ϕ  is an injective and extensive operation on antisymmetric goset X 

such that [ ]XX ϕ=  and 1−ϕ  is also extensive, then .X∆=ϕ  

From this theorem, by using Theorems 4.5 and 5.4, we can immediately derive 
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Corollary 5.7. If ϕ  is a strictly increasing operation on a min-complete, 

antisymmetric goset X such that [ ],XX ϕ=  then .X∆=ϕ  

In general, the idempotent operations are quite different from the both upper and 

lower semiidempotent ones. However, we may still naturally use the following 

Definition 5.8. An increasing, extensive (intensive) operation is called a preclosure 

(preinterior) operation. And, a lower semiidempotent (upper semiidempotent) preclosure 

(preinterior) operation is called a closure (interior) operation. 

Moreover, an extensive (intensive) lower semiidempotent (upper semiidempotent) 

operation is called a semiclosure (semiinterior) operation. While, an increasing and 

upper (lower) semiidempotent operation is called an upper (lower) semimodification 

operation. 

Remark 5.9. Thus, ϕ  is, for instance, an interior operation on a goset X if and only 

if it is a closure operation on the dual X ′  of X. 

Concerning closure operations, in [40] we have, for instance, proved the following 

two theorems. 

Theorem 5.10. If ϕ  is a closure operation on a sup-complete, transitive, and 

antisymmetric goset X, then for any ,XA ⊆  we have 

( )( ) [ ]( )( ).supsup AA ϕϕ=ϕ  

Hence, it is clear that in particular we also have the following 

Corollary 5.11. Under the above conditions, for any ,XA ⊆  we have 

( )( ) [ ]( )AA ϕ=ϕ supsup  if and only if  [ ]( ) [ ]( )( ).supsup AA ϕϕ=ϕ  

Theorem 5.12. If ϕ  is a closure operation on a transitive goset X, and [ ],AY ϕ=  

then for any YA ⊆  we have  

( )[ ] ( ).supsup AA YX ⊆ϕ  

Hence, by using Definition 3.7 and Theorem 3.5, we can immediately derive 

Corollary 5.13. If in addition to the above conditions, X is sup-complete and 

antisymmetric, then for any YA ⊆  we have 

( ) ( )( ).supsup AA XY ϕ=  
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Remark 5.14. Surprisingly, the corresponding infimum properties of closure 

operations are much simpler, and do not require the transitivity of X. 

6. The Induced Order and Interior Relations 

Definition 6.1. For a function f  of a set X to a goset Y, we define a relation fOrd  on 

X such that  

( ) ( ) ( ){ }vfufXvuf ≤∈= :Ord  

for all .Xu ∈  The relation fOrd  will be called the natural order induced by f . 

Remark 6.2. Thus, under the notation ,Ord ff =≤  for any ,, Xvu ∈  we have 

vu f≤  if and only if ( ) ( ).vfuf ≤  

Therefore, as an immediate consequence of the corresponding definitions, we can 

state the following 

Theorem 6.3. If f is a function of a set X to a goset Y, then fOrd  is the largest 

relation on X making f  to be increasing. 

Proof. If ≤  is a relation on X making f to be increasing, then vu ≤  implies 

( ) ( )vfuf ≤  implies vu f≤  for all ., Xvu ∈  Therefore, ,f≤⊆≤  and thus fOrd⊆≤  

is also true. 

Several further basic properties of the relation fOrd  have been proved in [35] . 

For instance, as some immediate consequences of some slightly more general results, 

we have established the following two theorems. 

Theorem 6.4. If f  is a function of a set X to a goset Y, then 

(1) fOrd  is a preorder on X if Y is a proset, 

(2) fOrd  is a partial order on X if f  is injective and Y is a poset. 

Theorem 6.5. A function f  of a goset X to a proset Y is increasing if and only if any 

one of the following assertions holds: 

(1) fOrd  is decreasing,  (2) fOrd  is ascending valued, 

(3) 1Ord−
f  is increasing,  (4) 1Ord−

f  is descending valued. 
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Remark 6.6. A relation F on a goset X to a set Y is called increasing if the induced 

set-valued function �F  is increasing. That is, vu ≤  implies ( ) ( )vFuF ⊆  for all 

., Xvu ∈  

While, a relation F on a set X to a goset Y is called ascending valued if the function 
�F  is ascending valued. That is, ( )uFv ∈  and wv ≤  imply ( )uFw ∈  for all Xu ∈  

and .Yw ∈  

By [35], a relation F on a goset X to a set Y is increasing if and only if its inverse is 

ascending valued. And dually, a relation F on a set X to a goset Y is descending valued if 

and only if its inverse is decreasing. 

Definition 6.7. For any function f of a set X to a goset Y, we define a relation fInt  

on Y to X such that  

( ) ( ){ }yxfXxyf ≤∈= :Int  

for all .Yy ∈  The relation fInt  will be called the proximal interior induced by f. 

Remark 6.8. Note that if in particular f  is a function of a power set ( )XP  to a goset 

Y, then by identifying singletons with their elements, we may also naturally define 

( ) ( )yXy ff Intint ∩=  for all .Yy ∈  Thus, fint  is a relation on Y to X which may be 

called the topological interior induced by f. 

Note also that if in particular R is a relation on X to Y, then in accordance with our 

former definitions, we have ◊=
RR IntInt  and .Intintint �RRR == ◊  Therefore, we 

may also naturally define ◊=
RR OrdOrd  and .Ordord �RR =  Thus, for instance, for 

any Xvu ∈,  we have ( )uv Rord∈  if and only if ( ) ( ).vRuR ⊆  

Concerning the relation ,Int f  in [35] we have, for instance, proved the following 

theorems. 

Theorem 6.9. If f  is a function of a set X to a goset Y, then 

( ) .IntIntOrd 111 −−− == fff ff ��  

Theorem 6.10. If f is a function of a set X to a goset Y, then for any Yy ∈  and 

Xx ∈  we have 
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( ) ( )[ ]yfyf lbInt 1−=       and      ( ) ( )( ).ubInt 1 xfxf =−  

Remark 6.11. In this respect, it is also worth noticing that ( [ ( )]).Intub yfy f∈  

Namely, by the definition of ,Int f  for every ( ),Int yx f∈  we have ( ) .yxf ≤  

Theorem 6.12. If f  is a function of a set X to a transitive goset Y, then 

(1) fInt  is increasing,   (2) 1Int−
f  is ascending valued. 

Remark 6.13. If in particular X is also a goset and f  is increasing, then we can also 

state that 

(1) 1Int−
f  is decreasing,   (2) fInt  is descending valued. 

However, in view of the corresponding results of Section 4, it is now more important 

to note that following theorem is also true. 

Theorem 6.14. If f  is a function of one goset X to another Y such that 

( )[ ] [ ]( )( )AfAf ublbsup ⊆  

for all ,XA ⊆  then  

( ( )) ( ( ))yy ff IntsupIntmax =  

for all .Yy ∈  

Proof. If ,Yy ∈  then by Theorem 3.4 we have 

( ( )) ( ( )).IntsupIntmax yy ff ⊆  

Therefore, we need actually prove only the converse inclusion. 

For this, note that if ( ( )),Intsup yx f∈  then by the assumed property of f  we have 

( ) [ ( ( ))] ( ( [ ( )])).IntublbIntsup yfyfxf ff ⊆∈  

Moreover, by Remark 6.11, we also have ( [ ( )]).Intub yfy f∈  Therefore, we necessarily 

have ( ) ,yxf ≤  and thus ( ).Int yx f∈  Hence, by Theorem 3.4, we can see that 

( ) ( ( )) ( ( )).IntmaxIntsupInt yyyx fff =∈ ∩  

Therefore, ( ( )) ( ( )),IntmaxIntsup yy ff ⊆  and thus the required equality is also true. 
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Remark 6.15. Note that, by Theorem 3.4, for a subset A of the goset X we have 

( ) ( )AA supmax =  if and only if ( ) .sup AA ⊆  

7. Galois Type Connections between Gosets 

In [35], slightly extending the ideas of Ore [16], Schmidt [20, p. 209], Blyth and 

Janowitz [2, p. 11], and the present author [33] on Galois connections, residuated 

mappings, and increasingly normal functions, we have introduced the following 

Definition 7.1. If f  is a function on one goset X to another Y and g is a function of Y 

to X, then we say that: 

(1) f is increasingly upper g-seminormal if ( ) yxf ≤  implies ( )ygx ≤  for all 

Xx ∈  and ,Yy ∈  

(2) f is increasingly lower g-seminormal if ( )ygx ≤  implies ( ) yxf ≤  for all 

Xx ∈  and .Yy ∈  

Remark 7.2. Now, the function f may be naturally called increasingly g-normal if it 

is both increasingly upper and lower g-seminormal. 

Moreover, a function f of X to Y may, for instance, be naturally called increasingly 

normal if it is increasingly g-normal for some function g of Y to X. 

Later, we shall see that the increasingly normal functions are closely related to the 

increasing ones. Therefore, in accordance with Remark 4.2, a function f of X to Y may, 

for instance, be naturally called decreasingly normal if it is increasing normal as a 

function of X to the dual Y ′  of Y. 

In this respect, it is also worth mentioning that in [35] we have proved the following 

simple dualization principle. 

Theorem 7.3. If f is an increasingly upper (lower) g-seminormal function of one 

goset X to another Y, then g is an increasingly lower (upper) f-seminormal function of 

Y ′  to .X ′  

Proof. If f  is increasingly upper g-seminormal, then by the corresponding definitions 

it is clear that 

( ) ( ) ( ) ( ) xygygxyxfxfy ≤′⇒≤⇒≤⇒≤′  
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for all Yy ∈  and .Xx ∈  Therefore, g is increasingly lower f-seminormal as a function 

of Y ′  to .X ′  

Corollary 7.4. If f  is an increasingly g-normal function of one goset X to another Y, 

then g is an increasingly f-normal function of Y ′  to .X ′  

Remark 7.5. By Theorem 7.3, the properties of the functions g and gf �  can be 

immediately derived from those of f and .fg �  However, it is sometimes more 

convenient to apply a direct proof. 

In [35], having in mind the properties of the function ,fg �=ϕ  and slightly 

extending the ideas of Pataki [17] and the present author [33], we have also introduced 

the following 

Definition 7.6. If f is a function on one goset X to another Y and ϕ  is a unary 

operation on X, then we say that: 

(1) f  is increasingly upper ϕ -semiregular if ( ) ( )vfuf ≤  implies ( )vu ϕ≤  for all 

,, Xvu ∈  

(2) f  is increasingly lower ϕ -semiregular if ( )vu ϕ≤  implies ( ) ( )vfuf ≤  for all 

., Xvu ∈  

Remark 7.7. Now, the function f may be naturally called increasingly ϕ -regular if 

it is both increasingly upper and lower ϕ -semiregular. 

Moreover, a function f of X to Y may, for instance, be naturally called increasingly 

regular if it is increasingly ϕ -regular for some unary operation ϕ  on X. 

Analogously to Remark 7.2, a function f of X to Y may, for instance, be naturally 

called decreasingly regular if it is increasingly regular as a function of X to .Y ′  

Unfortunately, now we do not have a counterpart of Theorem 7.3. 

However, to clarify the relationship between normal and regular functions, in [35] 

we have proved the following two theorems.  

Theorem 7.8. If f is an increasingly upper (lower) g-seminormal function of one 

goset X to another Y, then fg �=ϕ  is a unary operation on X such that f is 

increasingly upper (lower) ϕ -semiregular. 
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Corollary 7.9. If f  is an increasingly g-normal function of one goset X to another Y, 

then fg �=ϕ  is a unary operation on X such that f  is increasingly ϕ -regular. 

Theorem 7.10. If f  is an increasingly upper (lower) ϕ -semiregular function of one 

goset X onto another Y and g is a function of Y to X such that ,fg �=ϕ  then f is 

increasingly upper (lower) g-seminormal. 

Proof. Suppose that Xx ∈  and .Yy ∈  Then, since [ ],XfY =  there exists Xv ∈  

such that ( ).vfy =  

Now, if f is increasingly upper ϕ -semiregular, then we can easily see that 

( ) ( ) ( ) ⇒≤⇒≤ vfxfyxf ( )vx ϕ≤ ( ) ( ) ( )( ) ( ).ygxvfgxvfgx ≤⇒≤⇒≤⇒ �  

Therefore, f  is increasingly upper g-seminormal too. 

Corollary 7.11. If f is an increasingly ϕ -regular function of one goset X onto 

another Y and g is a function of Y to X such that ,fg �=ϕ  then f is increasingly 

g-normal. 

Remark 7.12. By Theorem 7.8, it is clear that several properties of the increasingly 

normal functions can be immediately derived from those of the increasingly regular ones. 

Therefore, the latter ones have to study before the former ones. 

Moreover, from Theorem 7.10, we can see that the increasing regular functions are 

still less general objects than the increasingly normal ones. Later, we shall see that they 

are strictly between closure operations and increasingly normal functions. 

8. Some Basic Properties of Increasingly Semiregular Functions 

In [35], as some immediate consequences of the corresponding definitions, we have 

also proved the following theorems and their corollaries. 

Theorem 8.1. If f  is an increasingly upper ϕ -semiregular function of an arbitrary 

goset X to a reflexive one Y, then ϕ  is extensive, and thus it is also upper 

semiidempotent. 

Proof. Because of the reflexivity of Y, for any ,Xx ∈  we have ( ) ( ).xfxf ≤  

Hence, by using the assumed semiregularity of f, we can already infer that ( ).xx ϕ≤  

Therefore, ϕ  is extensive, and thus by Remark 5.3 it is also upper semiidempotent. 
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Corollary 8.2. If f is an increasingly upper ϕ -semiregular function of an arbitrary 

goset X to a reflexive one Y such that f  is increasing, then .ϕ≤ �ff  

Theorem 8.3. If f is an increasingly lower ϕ -semiregular function of a reflexive 

goset X to an arbitrary one Y, then .ff ≤ϕ�  

Corollary 8.4. If f is an increasingly ϕ -regular function of a reflexive goset X to a 

reflexive, antisymmetric one Y such that f  is increasing, then .ϕ= �ff  

Theorem 8.5. If f is an increasingly ϕ -regular function of a reflexive goset X to a 

transitive one Y, then ϕ  is lower semiidempotent. 

Proof. By Theorem 8.3, we have .ff ≤ϕ�  Hence, by using the corresponding 

definitions, we can infer that .2 ϕ≤ϕ �� ff  Now, by the transitivity of Y, it is clear 

that ff ≤ϕ2
�  also holds. Therefore, for any ,Xx ∈  we have ( ( )) ( ).2 xfxf ≤ϕ  

Hence, by using the increasing upper ϕ -semiregularity of f, we can already infer that 

( ) ( ).2 xx ϕ≤ϕ  

Corollary 8.6. If f  is an increasingly ϕ -regular function of a reflexive goset X to a 

proset Y, then ϕ  is a semiclosure operation on X. 

Theorem 8.7. If f  is an increasingly ϕ -regular function of a transitive goset X to a 

reflexive one Y, then f  is increasing, and thus ϕ≤ �ff  also holds. 

Proof. By Theorem 8.1, we have ( )xx ϕ≤  for all .Xx ∈  Therefore, if Xvu ∈,  

such that ,vu ≤  then by the inequality ( )vv ϕ≤  and the transitivity of X, we also have 

( ).vu ϕ≤  Hence, by using the increasing lower ϕ -semiregularity of f , we can infer that 

( ) ( ).vfuf ≤  Therefore, f  is increasing, and thus by Corollary 8.2 the required 

inequality is also true. 

Corollary 8.8. If f  is an increasingly ϕ -regular function of a proset X to a reflexive, 

antisymmetric goset Y, then .ϕ= �ff  

Theorem 8.9. If f  is an injective, increasingly ϕ -regular function of a reflexive 

goset X to a reflexive, antisymmetric goset Y such that either f is increasing or X is 

transitive, then .X∆=ϕ  
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Theorem 8.10. If f is an increasingly upper X∆ -semiregular function of an 

antisymmetric goset X to a reflexive goset Y, then f is injective. 

Corollary 8.11. If f is an increasingly ϕ -regular function f of one reflexive, 

antisymmetric goset X to another Y such that either f  is increasing or X is transitive, 

then f  injective if and only if .X∆=ϕ  

Theorem 8.12. If f  is an increasingly ϕ -regular function of one proset X to another 

Y, then ϕ  is a closure operation on X. 

Proof. By Corollary 8.6, we need only show that ϕ  is also increasing. For this, note 

that if Xvu ∈,  such that ,vu ≤  then by Theorem 8.7 we have ( ) ( ).vfuf ≤  Moreover, 

by Theorem 8.3, we have ( )( ) ( ).ufuf ≤ϕ  Thus, by the transitivity of Y, we also have 

( )( ) ( ).vfuf ≤ϕ  Hence, by using the increasing upper ϕ -semiregularity of f, we can 

already infer that ( ) ( ).vu ϕ≤ϕ  

Theorem 8.13. If ϕ  is an extensive operation on a transitive goset X, then ϕ  is 

increasingly upper ϕ -semiregular. 

Corollary 8.14. A unary operation ϕ  on a proset X is extensive if and only if it is 

increasingly upper ϕ -semiregular.  

Theorem 8.15. If ϕ  is a lower semimodification operation on a transitive goset X, 

then ϕ  is increasingly lower ϕ -semiregular. 

Corollary 8.16. If ϕ  is a closure operation on transitive goset X, then ϕ  is 

increasingly ϕ -regular. 

Theorem 8.17. For a unary operation ϕ  on a proset X, the following assertions are 

equivalent: 

(1) ϕ  is a closure operation,  (2) ϕ  is increasingly ϕ -regular, 

(3) there exists an increasingly ϕ -regular function f  of X to a proset Y. 

Corollary 8.18. For a function f  of one proset X to another Y and a unary operation 

ϕ  on X, the following assertions are equivalent: 
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(1)  f  is increasingly ϕ -regular, 

(2) ϕ  is a closure operation and .OrdOrd f=ϕ  

Remark 8.19. Note that, by the corresponding definitions, fOrdOrd =ϕ  means 

only that, for any ,, Xvu ∈  we have ( ) ( )vu ϕ≤ϕ if and only if ( ) ( ).vfuf ≤  

9. Some Basic Properties of Increasingly Seminormal Functions 

From the corresponding results of Section 8, by using Theorem 7.8 and its corollary, 

we can immediately derive the following assertions. 

Theorem 9.1. If f is an increasingly upper g-seminormal function of an arbitrary 

goset X to a reflexive one Y, then fg �  is extensive and upper semiidempotent. 

Corollary 9.2. If f is an increasingly upper g-seminormal function of an arbitrary 

goset X to a reflexive one Y such that f  is increasing, then .fgff ��≤  

Theorem 9.3. If f  is an increasingly lower g-seminormal function of a reflexive 

goset X to an arbitrary one Y, then .ffgf ≤��  

Corollary 9.4. If f  is an increasingly g-normal function of a reflexive goset X to a 

reflexive, antisymmetric one Y such that f  is increasing, then .fgff ��=  

Theorem 9.5. If f  is an increasingly g-normal function of a reflexive goset X to a 

transitive one Y, then fg �  is lower semiidempotent. 

Corollary 9.6. If f  is an increasingly g-normal function of a reflexive goset X to a 

proset Y, then fg �  is a semiclosure operation on X. 

Theorem 9.7. If f  is an increasingly g-normal function of a transitive goset X to a 

reflexive one Y, then f  is increasing and .fgff ��≤  

Corollary 9.8. If f  is an increasingly g-normal function of a proset X to a reflexive, 

antisymmetric goset Y, then .fgff ��=  

Theorem 9.9. If f  is an injective, increasingly g-normal function of a reflexive goset 

X to a reflexive, antisymmetric one Y such that either f is increasing or X is transitive, 

then ,Xfg ∆=�  and thus g is onto X. 
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Now, by using Corollaries 9.4 and 9.8, we can also easily prove 

Theorem 9.10. If f  is an increasingly g-normal function of a reflexive goset X onto a 

reflexive, antisymmetric one Y such that either f is increasing or X is transitive, then 

,Ygf ∆=�  and thus g is injective. 

Proof. By Corollaries 9.4 and 9.8, we have ( )( )( ) ( )xfxfgf =  for all .Xx ∈  

Hence, by using ( ),XfY =  we can infer that ( )( ) yygf =  for all .Yy ∈  

Moreover, from Theorem 8.12, by Corollary 7.9, it is clear that we also have 

Theorem 9.11. If f  is an increasingly g-normal function of one proset X to another 

Y, then fg �  is a closure operation. 

Now, as a partial converse to Theorems 9.1 and 9.7, we can also prove 

Theorem 9.12. If f  is an arbitrary function of a transitive goset X to an arbitrary 

one Y and g is an increasing function of Y to X such that fg �  is extensive, then f is 

increasingly upper g-seminormal. 

Proof. If Xx ∈  and Yy ∈  such that ( ) ,yxf ≤  then by the increasingness of g we 

also have ( ) ( ) ( ).ygxfg ≤�  Moreover, by the extensiveness of the operation ,fg �  

we also have ( ) ( ).xgfx �≤  Hence, by the transitivity of X, it follows that ( ).ygx ≤  

Therefore, the required assertion is also true. 

From this theorem, by Theorem 9.1, it is clear that in particular we also have 

Corollary 9.13. If f  is an arbitrary function of a transitive goset X to a reflexive one 

Y and g is an increasing function of Y to X, then fg �  is extensive if and only if f is 

increasingly upper g-seminormal. 

Finally, we note that as some immediate consequences of Theorems 9.1 and 9.12, we 

can also state the following two theorems. 

Theorem 9.14. If ϕ  is an increasingly upper ϕ -seminormal operation on a reflexive 

goset X, then ϕ  is upper semiinvolutive. 

Theorem 9.15. If ϕ  is an increasing, upper semiinvolutive operation on a transitive 

goset X, then ϕ  is increasingly upper ϕ -seminormal. 
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Hence, by Theorem 9.7, it is clear that in particular we also have 

Corollary 9.16. A unary operation ϕ  on a proset X is increasingly upper 

ϕ -seminormal if and only if it is increasing and upper semiinvolutive. 

10. Some Further Properties of Increasingly Seminormal Functions 

From the corresponding results of Section 9, by using Theorem 7.3 and its corollary, 

we can immediately derive the following assertions. 

Theorem 10.1. If f is an increasingly lower g-seminormal function of a reflexive 

goset X to an arbitrary one Y, then gf �  is intensive and lower semiidempotent. 

Proof. From Theorem 7.3, we can see that g is now an increasingly upper 

f-seminormal function of Y ′  to .X ′  Moreover, we can note that X ′  is also reflexive. 

Therefore, by Theorem 9.1, gf �  is an extensive and upper semiidempotent operation 

on .Y ′  Hence, by the corresponding definitions, it is clear gf �  is an intensive and 

lower semiidempotent operation on Y. 

Corollary 10.2. If f is an increasingly lower g-seminormal function of a reflexive 

goset X to an arbitrary one Y such that g is increasing, then .ggfg ≤��  

Theorem 10.3. If f is an increasingly upper g-seminormal function of an arbitrary 

goset X to a reflexive one Y, then .gfgg ��≤  

Corollary 10.4. If f is an increasingly g-normal function of a reflexive, 

antisymmetric goset X to a reflexive one Y such that g is increasing, then .gfgg ��=  

Theorem 10.5. If f  is an increasingly g-normal function of a transitive goset X to a 

reflexive one Y, then gf �  is upper semiidempotent. 

Corollary 10.6. If f  is an increasingly g-normal function of a proset X to a reflexive 

goset Y, then gf �  is a semiinterior operation. 

Theorem 10.7. If f  is an increasingly g-normal function of a reflexive goset X to a 

transitive one Y, then g is increasing and .ggfg ≤��  

Corollary 10.8. If f is an increasingly g-normal function of a reflexive, anti-

symmetric goset X to a proset Y, then .gfgg ��=  
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Theorem 10.9. If f is an increasingly g-normal function of a reflexive, anti-

symmetric goset X to a reflexive one Y such that g is injective and either g is increasing 

or Y is transitive, then ,Ygf ∆=�  and thus f  is onto Y. 

Theorem 10.10. If f is an increasingly g-normal function of a reflexive, anti-

symmetric goset X to a reflexive one Y such that g is onto X and either g is increasing or 

Y is transitive, then ,Xfg ∆=�   and thus f  is injective. 

Theorem 10.11. If f  is an increasingly g-normal function of one proset X to another 

Y, then gf �  is an interior operation on Y. 

Theorem 10.12. If f  is an increasing function of an arbitrary goset X to a transitive 

one Y and g is an arbitrary function of Y to X such that gf �  is intensive, then f is 

increasingly lower g-seminormal. 

Corollary 10.13. If f  is an increasing function f  on a reflexive goset X to a 

transitive one Y and g is an arbitrary function of Y to X, then gf �  is intensive if and 

only if f  is increasingly lower g-seminormal. 

Now, combining Theorems 9.12 and 10.12, we can also state 

Theorem 10.14. If f  is an increasing function of one transitive goset X to another Y 

and g is an increasing function of Y to X such that the operation fg �  is extensive and 

the operation gf �  is intensive, then f  is increasingly g-normal. 

Moreover, as an immediate consequence of Theorems 9.1, 9.7, 10.1, 10.7 and 10.14, 

we can also state 

Theorem 10.15. For a function f  on one proset X to another Y and a function g on Y 

to X, the following assertions are equivalent: 

(1)  f  is increasingly g-normal, 

(2)  f  and g are increasing, fg �  is extensive and gf �  is intensive. 

Remark 10.16. Note that assertion (2) is just a dual of Ore’s classical definition of 

Galois connexions [16]. 

Finally, we note that from Theorems 9.14 and 9.15, by using Theorem 7.3, we can 

immediately derive the following two theorems. 
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Theorem 10.17. If ϕ  is an increasingly lower ϕ -seminormal operation on a 

reflexive goset X, then ϕ  is lower semiinvolutive. 

Theorem 10.18. If ϕ  is an increasing, lower semiinvolutive operation on a 

transitive goset X, then ϕ  is increasingly lower ϕ -seminormal. 

Hence, it is clear that in particular we also have 

Corollary 10.19. A unary operation ϕ  on a proset X is increasingly lower 

ϕ -seminormal if and only if it is increasing and lower semiinvolutive. 

11. Characterizations of Increasingly Seminormal Functions 

The following theorems and their corollaries have also been proved in [35]. 

Theorem 11.1. For a function f  of one goset X to another Y and a function g of Y to 

X, the following assertions are equivalent: 

(1) ( )( ) ( )yyg fIntlb ⊆  for all ,Yy ∈  

(2)  f  is an increasingly lower g-seminormal. 

Theorem 11.2. For a function f  of one goset X to another Y and a function g of Y to 

X, the following assertions are equivalent: 

(1) ( ) ( )( )ygyf lbInt ⊆  for all ,Yy ∈  

(2) ( ) ( ( ))yyg fIntub∈  for all ,Yy ∈  

(3)  f  is an increasingly upper g-seminormal. 

Corollary 11.3. For a function f  of one goset X to another Y and a function g of Y to 

X, the following assertions are equivalent: 

(1)  f  is an increasingly g-normal,  (2) ( ) ( )( )ygyf lbInt =  for all .Yy ∈  

Theorem 11.4. If f is an increasingly lower g-seminormal function of a reflexive 

goset X to an arbitrary one Y, then for any Yy ∈  we have 

( ) ( ).Int yyg f∈  



Galois and Pataki Connections on Generalized Ordered Sets 

Earthline J. Math. Sci. Vol. 2 No. 2 (2019), 283-323 

311 

Corollary 11.5. If f  is an increasingly g-normal function of a reflexive goset X to an 

arbitrary one Y, then for any Yy ∈  we have 

(1) ( ) ( ( )),Intmax yyg f∈    (2) ( ) ( ) ( )( ).lbInt ygyyg f ⊆∈  

Remark 11.6. Note that if in addition X is antisymmetric, then by Theorem 3.5 we 

may write ( ) ( ( ))yyg fIntmax=  in assertion (1). 

Theorem 11.7. If f is an increasing function of an arbitrary goset X to a transitive 

one Y and g is a function of Y to X such that 

( ) ( )yyg fInt∈  

for all ,Yy ∈  then f  is increasingly lower g-seminormal. 

Corollary 11.8. For an increasing function f  on a reflexive goset X to a transitive 

one Y and an arbitrary function g of Y to X, the following assertions are equivalent: 

(1) ( ) ( )yyg fInt∈  for all ,Yy ∈  

(2)  f  is increasingly lower g-seminormal. 

Theorem 11.9. For a function f  of one proset to another Y and a function g of Y to 

X, the following assertions are equivalent: 

(1)  f  is increasingly g-normal, 

(2)  f  is increasing and ( ) ( ( ))yyg fIntmax∈  for all .Yy ∈  

Remark 11.10. Note that if in particular X is a poset, then by Theorem 3.5 we may 

write ( ) ( ( ))yyg fIntmax=  for all Yy ∈  in assertion (2). 

From the above results, we can immediately derive several characterizations of upper 

and lower semiinvolutive operations. 

For instance, from Theorem 11.9, by using Theorems 9.16 and 10.9, we can 

immediately derive the following 

Theorem 11.11. For an increasing operation ϕ  on proset X, the following 

assertions are equivalent: 

(1) ( ) ( ( ))xx ϕ∈ϕ Intmax  for all ,Xx ∈  

(2) ϕ  is both upper and lower semiinvolutive. 
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Remark 11.12. Note that if in particular X is a poset, then in (2) we may simply 

write that ϕ  is involutive. 

From the above results, by using the Axiom of Choice, we can also immediately 

derive several useful characterizations of increasingly upper and lower seminormal 

functions. 

For instance, from Theorem 11.9 we can immediately derive the following 

Theorem 11.13. For a function f of one proset X to another Y, the following 

assertions are equivalent: 

(1)  f  is increasingly normal, 

(2)  f  is increasing and ( ( )) ∅≠yfIntmax  for all .Yy ∈  

Hence, it is clear that in particular we also have 

Corollary 11.14. For a function f  of a max-complete proset X to an arbitrary one Y, 

the following assertions are equivalent: 

(1)  f  is increasingly normal, 

(2)  f  is increasing and [ ]xF  is descending in Y. 

Now, more specially we can also state 

Corollary 11.15. For a function f  of a max-complete proset X onto an arbitrary one 

Y, the following assertions are equivalent: 

(1)  f  is increasing,   (2)  f  is increasingly normal. 

12. Some Further Characterizations of Increasingly Normal Functions 

In this section, we shall extend the results of [31, Section 7] to the present more 

general setting of increasingly normal functions. 

For this, it is convenient to start with the following striking property of increasingly 

normal functions which also fails to hold for the increasing ones. 

Theorem 12.1. If f  is an increasingly normal function of one goset X to another Y, 

then for any XA ⊆  we have 

( )( )[ ] [ ]( )( ).ublbublb AfAf ⊆  
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Proof. If ( )( )[ ],ublb Afy ∈  then there exists ( )( )Ax ublb∈  such that ( ).xfy =  

Moreover, if [ ]( ),ub Afv ∈  then for any Aa ∈  we have ( ) .vaf ≤  Hence, by using that 

f is increasingly g-normal, for some function g of Y to X, we can infer that ( ).vga ≤  

Therefore, ( ) ( ),ub Avg ∈  and thus because of ( )( )Ax ublb∈  we have ( ).vgx ≤  Hence, 

by using the increasing g-normality of f , we can infer that ( ) ,vxf ≤  and thus .vy ≤  

Therefore, [ ]( )( )Afy ublb∈  also holds. 

From this theorem, by Theorem 3.3, it is clear that in particular we also have 

Corollary 12.2. If f  is an increasingly normal function of one goset X to another Y, 

then for any XA ⊆  we have 

( )[ ] [ ]( )( ).ublbsup AfAf ⊆  

Hence, by using Theorem 6.14, we can immediately derive the following 

Corollary 12.3. If f  is an increasingly normal function of one goset X to another Y, 

then for any Yy ∈  we have 

( ( )) ( ( )).IntsupIntmax yy ff =  

However, it is now more important to note that from Theorem 12.1, by using 

Theorems 3.3 and 4.8, we can also easily get the following 

Theorem 12.4. If f  is an increasing, increasingly normal function of one goset X to 

another Y, then for any XA ⊆  we have  

( )[ ] [ ]( ).supsup AfAf ⊆  

Proof. By Theorems 3.3, 4.8 and 12.1, we have 

( )[ ] ( ) ( )( )[ ] ( )[ ] ( )( )[ ]AfAfAAfAf ublbubublbubsup ∩∩ ⊆=  

[ ]( ) [ ]( )( ) [ ]( ).supublbub AfAfAf =⊆ ∩  

Now, as an immediate consequence of Theorems 9.7 and 12.4, we can also state 

Corollary 12.5. If f  is an increasingly normal function of a transitive goset X to a 

reflexive one Y, then ( )[ ] [ ]( )AfAf supsup ⊆  for all .XA ⊆  

Hence, by Theorem 3.5, it is clear that in particular we also have 
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Corollary 12.6. If f  is an increasingly normal function of a sup-complete, transitive 

goset X to a reflexive, antisymmetric one Y, then ( )( ) [ ]( )AfAf supsup =  for all .XA ⊆  

Now, to have some partial converses of the above results, we can also easily prove 

the following 

Theorem 12.7. For a function f  of a sup-complete proset X to an arbitrary one Y, 

the following assertions are equivalent: 

(1)  f  is increasingly normal, 

(2) ( )[ ] [ ]( )AfAf supsup ⊆  for all ,XA ⊆  

(3)  f  is increasing and ( ( )) ( )yy ff IntIntsup ⊆  for all ,Yy ∈  

(4)  f  is increasing and ( ( )) ( ( ))yy ff IntsupIntmax =  for all ,Yy ∈  

(5)  f  is increasing and ( )[ ] [ ]( )( )AfAf ublbsup ⊆  for all ,XA ⊆  

(6)  f  is increasing and ( )( )[ ] [ ]( )( )AfAf ublbublb ⊆  for all .XA ⊆  

Proof. From Theorems 9.7 and 12.1, we can see that (1) implies (6). Moreover, from 

Theorem 3.3, we can see that ( ) ( )( ),ublbsup AA ⊂  and thus ( )[ ] ( )( )[ ].ublbsup AfAf ⊆  

Therefore, (6) also implies (5). 

Furthermore, from Theorem 6.14, we can see that (5) implies (4). Moreover, if (4) 

holds, then by the assumed sup-completeness of X we have ( ( )) ∅≠yfIntmax  for all 

.Yy ∈  Therefore, by Theorem 11.13, assertion (1) also holds. 

On the other hand, from Corollary 12.5, we can see that (1) also implies (2). 

Moreover, if (2) holds, then from Corollary 4.9 and Theorem 3.3 we can see that (5) also 

holds. Finally, by Theorem 3.4, it is clear that (3) and (4) are also equivalent. 

Now, by using Theorem 3.5, we can easily establish the following two corollaries of 

Theorem 12.7. 

Corollary 12.8. For a function f of a sup-complete poset X to a proset Y, the 

following assertions are equivalent: 

(1)  f  is increasingly normal, 

(2) ( )( ) [ ]( )AfAf supsup ∈  for all ,XA ⊆  
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(3)  f  is increasing and ( )( ) [ ]( )( )AfAf ublbsup ∈  for all .XA ⊆  

Corollary 12.9. For a function f of a sup-complete proset X to a poset Y, the 

following assertions are equivalent: 

(1)  f  is increasingly normal, 

(2) ( )[ ] [ ]( )AfAf supsup =  for all .XA ⊆  

Remark 12.10. Note that, if in addition X is also a poset, then by Theorem 3.5 we 

may again write ( )( )Af sup  in place of ( )[ ].sup Af  

13. Characterizations of Increasingly Semiregular Functions 

The following theorems and its corollaries have also been proved in [35]. 

Theorem 13.1. For a function f  of one goset X to another Y and a unary operation 

ϕ  on X, the following assertions are equivalent: 

(1) ( )( ) ( )xx f
1Ordlb −⊆ϕ  for all ,Xx ∈  

(2)  f  is increasingly lower ϕ -semiregular . 

Theorem 13.2. For a function f  of one goset X to another Y and a unary operation 

ϕ  on X, the following assertions are equivalent: 

(1) ( ) ( )( )xxf ϕ⊆− lbOrd 1  for all ,Xx ∈  

(2) ( ) ( ( ))xx f
1Ordub −∈ϕ  for all ,Xx ∈  

(3)  f  is increasingly upper ϕ -semiregular . 

Corollary 13.3. For a function f  of one goset X to another Y and a unary operation 

ϕ  on X, the following assertions are equivalent: 

(1)  f  is increasingly ϕ -regular,   (2) ( ) ( )( )xxf ϕ=− lbOrd 1  for all .Xx ∈  

Theorem 13.4. If f  is an increasingly lower ϕ -semiregular function of a reflexive 

goset X to an arbitrary one Y, then for any Xx ∈  we have 

( ) ( ).Ord 1 xx f
−∈ϕ  
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Corollary 13.5. If f  is an increasingly ϕ -regular function of a reflexive goset X to 

an arbitrary one Y, then for any Xx ∈  we have 

(1) ( ) ( ( )),Ordmax 1 xx f
−∈ϕ   (2) ( ) ( ) ( )( ).lbOrd 1 xxx f ϕ⊆∈ϕ −  

Remark 13.6. Note that if in addition X is antisymmetric, then by Theorem 3.5 we 

may write ( ) ( ( ))xx f
1Ordmax −=ϕ  in assertion (2). 

Theorem 13.7. If f  is an increasing function of an arbitrary goset X to a transitive 

one Y and ϕ  is a unary operation on X such that 

( ) ( )xx f
1Ord−∈ϕ  

for all ,Xx ∈  then f  is increasingly lower ϕ -semiregular. 

Corollary 13.8. For an increasing function f  of a reflexive goset X to a transitive 

one Y and a unary operation ϕ  on X, the following assertions are equivalent: 

(1) ( ) ( )xx f
1Ord−∈ϕ  for all ,Xx ∈  

(2)  f  is increasingly lower ϕ -semiregular . 

Theorem 13.9. For a function f  of one proset X to another Y and a unary operation 

ϕ  on X, the following assertions are equivalent: 

(1)  f  is increasingly ϕ -regular, 

(2)  f  is increasing and ( ) ( ( ))xx f
1Ordmax −∈ϕ  for all .Xx ∈  

Remark 13.10. Note that if in particular X is a poset, then by Theorem 3.5 we may 

write ( ) ( ( ))xx f
1Ordmax −=ϕ  in assertion (2). 

From the above results, by using the Axiom of Choice, we can immediately derive 

several useful characterizations of increasingly lower and upper semiregular functions. 

For instance, from Theorem 13.9, it is clear that we have the following 

Theorem 13.11. For a function f of one proset X to another Y, the following 

assertions are equivalent: 
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(1)  f  is increasingly regular, 

(2)  f  is increasing and ( ( )) ∅≠− xf
1Ordmax  for all .Xx ∈  

Now, by using Corollary 7.9 and Theorems 13.11 and 11.13, we can also prove 

Corollary 13.12. For a function f of one proset X onto another Y, the following 

assertions are equivalent: 

(1)  f  is increasingly regular,  (2)  f  is increasingly normal. 

Proof. If (1) holds, then by Theorem 13.11 we can see that f is increasing and 

( ( )) ∅≠− xf
1Ordmax  for all .Xx ∈  Moreover, by using Theorem 6.9, we can see that 

( ( )( )) (( ) ( )) ( ( )) ∅≠== − xxfxf fff
1OrdmaxIntmaxIntmax �  

for all .Xx ∈  Hence, by using that [ ],XfY =  we can already infer that 

( ( )) ∅≠yfIntmax  for all .Yy ∈  Thus, by Theorem 11.13, assertion (2) also holds. The 

converse implication (2) ⇒ (1) is immediate from Corollary 7.9. 

By using this corollary, from the results of Section 12 we can immediately derive 

some useful supremum properties of increasingly regular functions. 

For instance, from Theorem 12.7, by using Corollary 13.12 and Theorem 6.9, we can 

immediately derive the following partial generalization of [31, Corollary 8.2]. 

Theorem 13.13. For a function f  of a sup-complete proset X to an arbitrary one Y, 

under the notation [ ],XfZ =  the following assertions are equivalent: 

(1)  f  is increasingly regular, 

(2) ( )[ ] [ ]( )AfAf Zsupsup ⊆  for all ,XA ⊆  

(3)  f  is increasing and ( ( )) ( )xx ff
11 OrdOrdsup −− ⊆  for all ,Xx ∈  

(4)  f  is increasing and ( ( )) ( ( ))xx ff
11 OrdsupOrdmax −− =  for all .Xx ∈  

Hence, by using Theorem 8.17, we can immediately derive the following partial 

generalization of Theorem 5.10. 

Corollary 13.14. For a unary operation ϕ  on a sup-complete proset X, under the 
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notation [ ],XY ϕ=  the following assertions are equivalent: 

(1) ϕ  is a closure operation, 

(2) ( )[ ] [ ]( )AA Y ϕ⊆ϕ supsup  for all ,XA ⊆  

(3) ϕ  is increasing and ( ( )) ( )xx 11 OrdOrdsup −
ϕ

−
ϕ ⊆  for all ,Xx ∈  

(4) ϕ  is increasing and ( ( )) ( ( ))xx 11 OrdsupOrdmax −
ϕ

−
ϕ =  for all .Xx ∈  

Remark 13.15. Note that if in particular X is a sup-complete poset, then in (2) we 

may simply write ( )( ) [ ]( ).supsup AA Y ϕ=ϕ  

14. Directions to Some Further Reasonable Investigations 

Some results of this paper can also be generalized to relator spaces of the form 

( ) ( ) ( )( ),,,, RR YXYX =  where X and Y are sets and R  is a relator (family of 

relations) on X to Y. (For the origins of these concepts, see [22] and the references 

therein.) 

Note that relator spaces of the simpler type ( ) ( ) ( )RR XXX ,=  are already 

substantial generalizations of ordered sets [7] and uniform spaces [9]. However, they are 

insufficient to include context spaces [10, p. 17] (which are simple relator spaces of the 

form ( ) ( ) ( ) { }( )RYXRYX ,, =  where R is a relation on X to Y), and also to naturally 

express continuity properties of functions and relations on one relator space to another 

[26, 37, 50]. 

If ( ) ( )RYX ,  and ( ) ( )SWZ ,  are relator spaces, and □  is a direct unary operation 

for relators, then according to the ideas of [40, 39, 42] a relator F  on X to Z may, for 

instance, be naturally called increasingly upper □ -G -seminormal, for some relator G  

on W to Y, if 

( ) (( ) ) .1 □□□□□□
RGFS ��

−⊂  

That is, the pair ( )GF ,  is upper □ -semicontinuous by a straightforward generalization 

of [26, Definition 4.1] from relations to relators. 

Here, □  is a function of the class of all relator spaces such that, for any relator R  
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on X to Y, the value ( ) ( )( )R□RR
□□ YXXY ,==  is a relator on X to Y. Moreover, the 

inversion and composition for relators are defined elementwise. 

Note that the inversion −1, defined by { }RR ∈= −− RR :11  for every relator R  

on X to Y, is a nondirect unary operation for relators. While, the complementation c, 

defined by { }RR ∈= RRcc :  for every relator R  on X to Y, is already a direct unary 

operation for relators. 

Of course, if we restrict ourselves only to relator spaces of the simpler form ( ),RX  

then −1 would be a direct operation for relators. Moreover, the modifications ∞ and ∂, 

defined by 

{ }RR ∈= ∞∞ RR :         and        { }RR ∈⊆= ∞∂ SXS :2  

for any relator R  on X, would also be direct unary operations for relators. Concerning 

the latter operations, it is worth noticing that ∞ is an increasingly ∂-normal function, and 

thus ∂∞ is a closure operation on the family of all relators on X. 

However, it is now more important to note that, for instance, the proximal closure #, 

defined by 

[ ] [ ]{ }ASARRXAYXSR ⊆∈∃⊆∀×⊆= :::#
R  

for every relator R  on X to Y, and its dual cc#O# =  are also important direct unary 

operations for relators. 

Namely, if R  is a relator on X to Y, then by defining 

( ) { }RBARXAB ⊂×∈∃⊂= ::Lb RR  

and 

( ) [ ]{ }BARRXAB ⊂∈∃⊂= ::Int RR  

for all ,YB ⊆  it can be shown that #
RS =  ( )O#RS =  is the largest relator on X to Y 

such that RS IntInt =  ( ).LbLb RS =  

For this, it is enough to use only some basic facts on increasingly regular functions 

of one power set to another [17, 30], and the curious fact that ,IntLb c C
RR �=  where 
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( ) BYB \=C  for all .YB ⊆  The latter equality, proved first in [27], establishes a similar 

connection between analysis and algebra as the famous Euler formula does between 

exponential and trigonometric functions [21, p. 227] . 

From the results of [30], it has become completely clear that, to unitedly treat the 

several basic structures derived from relators [27] and their associated closure and 

modification operations [37], it is necessary to investigate first increasingly seminormal 

and semiregular functions of one power set to another. Therefore, these functions have to 

be studied at least three stages of generality. Firstly for posets, secondly for power sets, 

and thirdly for relator spaces. 

To study increasingly normal and regular function of one power set ( )XP  to a goset 

Y, in an immediate continuation of this paper, for a function F on a power set ( )XP  to a 

goset Y we shall carefully investigate the set-valued functions FG  and ,FΦ  defined by 

( ) ( ){ }yxFXxyGF ≤∈= :   and  ( ) ( ) ( ){ }AFxFXxAF ≤∈=Φ :  

for all Yy ∈  and .XA ⊆  (Note that, here by identifying singletons with their elements, 

we have again written x in place of { }x  for all .Xx ∈ ) Thus, we also have 

.FGFF �=Φ  Moreover, we may naturally look for some necessary and sufficient 

conditions in order that F could be increasingly upper and lower FG -seminormal and 

FΦ -semiregular, respectively. 
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