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Abstract

Polymers are an essential aspect of molecular biology and biochemistry.

The most significant of macromolecules involved in biological processes and

phenomena are polymers. In this article, we provide a comprehensive

summary of the proposed physical models for the configuration of polymers.

Such physical models include the freely-jointed chain, freely-rotating chain,

worm-like chain, and the Gaussian chain model. We then connect these

models to the existing models regarding the radiation biophysics of DNA

damage, as well as to the damage of RNA molecules, and provide an insight

into future areas of research in the subject areas. The conclusion is that

polymer physics and the Linear-Quadratic model can be used for future

biophysical research in cancer and neurological disorders. Through such

connections, we hope to provide a potential future insight with regards to

biophysical research in cancer and neurodegenerative disorders.

1 Introduction

1.1 A Brief Introduction to Polymers in Biology

A polymer is a molecule that consists of many repeated molecules in a “chain-like”

manner. Each one of these repeated units are called monomers ([3], [5]). In

biological processes, polymers are produced through a dehydration reaction, and
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split through the process of hydrolysis. All of nucleic acids, proteins, and

carbohydrates are polymers. Nucleic acids are made up of monomers called

nucleotides. Proteins are made up of monomers called amino acids. And

carbohydrates are made up of monomers called monosaccharides. Polymers have

a vast range of applications in biological research, including genomics, proteomics,

toxicology, and also have applications in the bioengineering industry.

1.2 Overview of DNA and RNA

Source [5] serves to give a solid overview of DNA and RNA molecules. DNA,

which fully stands for deoxyribonucleic acid, is a polymer consisting of a repeated

chain of many monomers called nucleotides. An individual nucleotide consists of

three main aspects:

1. A nitrogenous base, which can be any of Adenine (A), Thymine (T),

Cytosine (C), and Guanine (G)

2. Deoxyribose pentose sugar

3. A phosphate group

Together, the deoxyribose sugar and phosphate group serve to make up the

backbone of a nucleotide. The nucleotides are bonded to each other through

phosphodiester bonds between the sugar and phosphate in the backbones of

adjacent nucleotides, which make up the overall backbone of DNA. This proves to

be significant when discussing DNA damage and radiation biophysics in Section

3.1. In general, there are two strands of DNA that are joined together through

hydrogen bonds between the nitrogenous bases. Together, these two strands

of DNA gives the overall DNA molecule a double-helix shape. While DNA is

double-stranded, only single-stranded breaks for a DNA molecule are discussed in

this paper. RNA, which stands for ribonucleic acid, is quite similar to DNA,

but has slight differences. Perhaps the biggest difference is that RNA is a

single-stranded molecule. Therefore, only single-stranded breaks can occur in

RNA molecules. Furthermore, thymine from DNA is replaced by a nitrogenous
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base called uracil in RNA. Also, while DNA contains the deoxyribose sugar in

its backbone, RNA is made up of ribose sugar. RNA is significant in a variety of

neurodegenerative disorders ([9]), and is therefore significant in research regarding

the pathology of such disorders.

2 A Review of Core Concepts in Polymer Physics

Here, we provide a comprehensive summary, along with the derivations, of some

of the main theoretical model regarding the physics of polymers. They are best

described in sources [6], [7], and [8].

2.1 The Freely Jointed chain

The freely-joined chain (FJC) is the simplest mathematical model for a polymer.

Comprehensively, the FJC consists of N segments, each segment denoted as ~ri,

each of a fixed length b. Furthermore, ~Ri denote the position vectors for the nodes

of the polymer. From this:

~ri = ~Ri − ~Ri−1. (1)

Furthermore:

|~ri| = b. (2)

Since each position vector can point in a random direction, letting ~R denote the

overall end-to-end vector:

< ~R >=

N∑
i=1

< ~ri >= 0. (3)

Looking at the mean-squared end-to-end distance gives:

< R2 >=<

(∑
i

~ri

)∑
j

~rj

 > . (4)

Since the position vectors have a fixed magnitude b, equation (4) can then be

written as:

< R2 >=
N∑
i=1

< ~ri
2 > +

∑
i 6=j

< ~ri · ~rj >= Nb2. (5)

Earthline J. Math. Sci. Vol. 9 No. 1 (2022), 131-143



134 Archit Chaturvedi

From this, the final value is given:

R = b
√
N. (6)

From equation (6), R therefore denotes the extension of the polymer chain, a

principle known as the ideal scaling law. We now look at the FJC through a

diffusion-based point of view. Introducing a time t:

t = Nτ, (7)

where τ denotes the stepping time, the mean-squared distance is given:

< R2 >= 2dDt. (8)

Here, D denotes the diffusion constant:

D =
b2

2τ
, (9)

and d denotes the spatial dimension. In general, a polymer has correlations

between the distinct bond vectors present. However, at larger distances, the

correlation becomes void, and such polymers are referred to as ideal polymers.

Therefore, the overall sum of these correlations converges to a finite value when

taken to infinity. Therefore, this gives:

< R2 >= b2
N∑
i=1

N∑
j=1

< cos(θij) >= CxNb
2 (10)

lim
x→∞

CxNb
2 → C∞Nb

2. (11)

Here, C∞ is Flory’s characteristic ratio, and has been determined experimentally

for many ideal polymers. Next, defining a value L:

L = N · b. (12)

It can be written:

< R2 >= N · b2 = b · L. (13)

From this, the Kuhn Length for polymers is defined:

b =
< R2 >

L
, (14)

N =
L2

< R2 >
. (15)
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2.2 Freely Rotating Chain

In the freely-rotating chain (FRC) model, both the monomer length and bond

angle are kept constant. Therefore:

< ~ri · ~rj >= b2 cos(θ)|j−i|. (16)

Due to the fact that cos(θ) < 1, the series therefore decays in an exponential

manner. This can be denoted as:

e
− b|j−i|

lp , (17)

where lp denote the persistence length, the scale over which the correlations

between the bond vectors decay:

lp = − b

ln(cos(θ))
. (18)

Therefore, the exponential decay can be used to find the mean-squared end-to-end

distance for the vector. Through mathematical calculations, this mean end-to-end

distance can be written as:

< R2 >= b2N + b2
N∑
i=1

(
i−1∑
k=1

(cos(θ))k +
N−i∑
k=1

(cos(θ))k

)
. (19)

Since at larger distances, the correlation is decayed essentially entirely, k can be

taken to infinity, giving the infinite series:
∞∑
k=1

(cos(θ))k. (20)

Since this is simply a geometric series, the formula a
1−r is applied, giving the sum:

cos(θ)

1− cos(θ)
. (21)

This yields to the final mean-squared end-to-end distance:

< R2 >= Nb2
(

1 + cos(θ)

1− cos(θ)

)
. (22)

Therefore, the extension of the FRC finally becomes:

R = b

√
N
(

1+cos(θ)
1−cos(θ)

)
. (23)
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2.3 Worm-Like Chain

In the limit θ → 0, the persistance length and Flory’s characteristic ratio both

diverge. Therefore, the Worm-Like Chain (WLC) model is defined in such cases.

The mean-square end-to-end distance of the WLC is calculated through the

exponential decay of correlations between tangent vectors in the polymer chain:

< R2 >= b2
∑
j

∑
i

e
− b|j−i|

lp . (24)

Taking this in the continuum limit gives:∫ L

0
du

∫ L

0
e
−|u−v|

lp dv. (25)

Solving the absolute-value integral through adding the integral with regards to

both sides of the absolute value gives:∫ L

0
du

∫ u

0
e

v−u
lp dv +

∫ L

0
du

∫ L

u
e

u−v
lp dv, (26)

which finally gives the final solution to be:

< R2 >= 2lpL− 2l2p

(
1− e

−L
lp

)
. (27)

Therefore, the extension of the WLC is given to be:

R =

√
2lpL− 2l2p

(
1− e

−L
lp

)
. (28)

2.4 Bending Elasticity of Polymers

The bending energy of a polymer is denoted as:

Epolymer = Y I
2

∫ Lc

0

[
∂~u
∂s

]2
ds. (29)

Here, ~u denotes the unit vector for ~b:

~u =
~b

|~ri|
. (30)
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Y is Young’s Modulus, and I denotes the moment of inertia:

I =

∫
y2dA. (31)

Above, y denotes the distance in the direction of curvature, and dA denotes the

area. Together, I and Y give the bending resistance (also known as flexural

rigidity) of the polymer.

2.5 Gaussian Chain Model

The Gaussian Chain Model (GCM) serves to give the comprehensive probability

distribution for a polymer, making use of the FJC model, and it therefore

represents a random walk model for the polymer chain. Letting our chain still

have N units, this therefore gives the probability distribution for the segments to

be:

P (~r1, ~r2... ~rN ) =

N∏
i=1

1

4πb2
δ(|~ri| − b). (32)

From this, the probability distribution for the end-to-end vector can be written

as:

P (~R) =
N∏
i=1

∫
P (~r1, ~r2, ... ~rN )δ(~R−

N∑
i=1

~ri)d~ri. (33)

In the above, equation, it should be noted:

δ(~R−
N∑
i=1

~ri) =
1

(2π)3

∫
ei
~k(~R−

∑
~ri)d~k, (34)

is the Fourier integral for the delta function, and is required in order to solve the

integral. From this, the end-to-end distribution now becomes:

P (~R) =
1

(2π)3

∫
ei
~k ~Rd~k

[∫
e−i

~k~ri
1

4πb2
δ(|ri| − b)d~ri

]N
. (35)

Solving the integral inside the brackets gives:∫
e−i

~k~ri
1

4πb2
δ(|ri|−b)d~ri =

1

4πb2

∫ ∞
0

~ri
2d~ri

∫ 2π

0
dφ

∫ 1

0
e−i

~k~ricos(θ)δ(~ri−b)d(cosθ).

(36)
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Solving equation (36) further yields:

sin(kb)

kb
. (37)

The overall equation now becomes:[
sin(kb)

kb

]N
. (38)

Taking the limit of N to infinity gives:

e−
N~k2b2

6 , (39)

which therefore gives the end-to-end distribution to be:

P (~R) =
1

(2π)3

∫
ei
~k ~Re−

N~k2b2

6 d~k, (40)

which represents the Gauss integral. Therefore, the final end-to-end distribution

for the GCM is given to be:

P (~R) =
(

3
2πNb2

) 3
2 exp

(
− 3~R2

2b2N

)
. (41)

The free energy of the chain can be written to be:

G =
3~R2kBT

2b2N
+ c, (42)

where c is simply a constant. Assuming that the polymer chain is a Hookean

Spring, the potential energy of the chain can be written as:

U =
1

2
kx2, (43)

where k denotes the spring constant. Therefore, the free energy for the polymer

chain can now be denoted as:

G =
1

2
kx2 + c. (44)

From this, the spring constant for the chain can be denoted as:

kchain = 3kBT
Nb2

, (45)

and for a single bond:

kbond = 3kBT
b2

. (46)
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3 Potential Applications of Polymer Physics to

Radiation Biophysics

3.1 Linear-Quadratic Model of DNA Damage

The Linear-Quadratic Model is a model for the damage of certain critical

molecules in a cell, which in our case, is double-stranded DNA molecules.

Source [1] serves to provide a detailed explanation of the model with regards to

single-stranded and double-stranged breaks in molecules of DNA. In the model,

radiation serves to damage the molecules of DNA, known as lesions. Suppose

that we have n1 bonds in the first strand of a DNA molecule, and n2 bonds in the

second strand of the DNA molecule, where n1 = n2. Furthermore, let k denote

the probability of bond rupture per bond per unit dose of radiation, and let f1 and

f2 denote the unrestored fraction of bonds in the first strand and second strand

respectively. Letting q denote the number of bonds broken per cell, the number

of broken bonds on strand 1 per cell, q1, is given to be:

q1 = f1n1[1− e−kD(1−∆)], (47)

where D denotes the dose of radiation, and ∆ denotes the fraction of dose D due

to which both strands are broken by one event. From q1, the number of broken

bonds in strand 2 is equal to:

q1 = f2n2[1− e−kD(1−∆)]. (48)

While the source focuses on double-stranded breaks in the DNA molecules present

in a cell, it would be more reasonable to look at each DNA strand individually,

since the physical models described for polymers are for one chain individually

([2]). We now provide potential applications of the physical models for polymers

discussed previously to such breaks in DNA strands due to radiation.

3.2 Connecting Polymer Physics and Radiation-Based DNA

Damage and RNA Damage

From 3.1, the number of bonds that are broken in a DNA strand due to radiation

is given mathematically. Such broken bonds in the DNA strands can result in
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an alteration of the DNA strand’s shape, which can be linked to a number of

diseases and disorders, the primary one being cancer ([4]). Therefore, using the

physical models of polymers discussed in Section 2 would allow to mathematically

determine the alterations in the shape of the DNA strands affected, which then

lead to cancer. Upon being exposed to radiation, the affected DNA strand would

be broken into two or more segments, due to the fact that the bond between the

nucleotides are broken. Therefore, equation (6) can be used to approximate the

change in the extension of the segments of the DNA strand due to the broken

bonds. This would therefore allow researchers to gain a further insight into the

changes of the extension of the DNA strand in certain types of cancers. From

equation (10), setting a correlation between the distinct bonds in the affected

DNA strand could allow to mathematically determine Flory’s characteristic ratio

for the broken segments of the DNA strand, since the value of Nb2 can be found by

simply finding the square of the strand’s extension. Fixing the angle in the affected

strand would allow researchers to use the FRC model for polymers discussed in

2.2, which would allow for an alternative solution to approximate the extension

of the affected strand. In the case for θ → 0, the WLC model can also be used,

which would also provide a means to determine the extension for the segments of

the broken DNA strand. The bending elasticity of the segments can be calculated

through equation (29), and the spring constants for each of the overall segments

can be calculated through equation (45). Comprehensively, connecting the

polymer physics discussed in Section 2 to the radiation biophysics

of DNA damage would give a further insight into the mathematical

and theoretical aspects regarding the physics of disorders such as

cancer. The polymer physics can also be used to determine mathematical and

theoretical alterations in the shape of RNA molecules upon damage. RNA is

essential to many biological processes, the main ones being transcription and

translation in central dogma. RNA is susceptible to damage from a variety of

endogenous and exogenous sources. Agents including reactive oxygen species

and alkylating chemicals can lead to RNA damage. Such RNA damage has

potential roles in a variety of neurodegenerative disorders, and can also have

detrimental effects on the overall fitness of a cell ([9]). Therefore, using the
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physical models of polymers could give an insight into the polymer biophysics of

such neurodegenerative disorders, as well as into the effects of different chemical

substances on the physical properties of RNA molecules. Finally, the GCM,

discussed in 2.5, could potentially allow for the stochastic modeling of the

configuration of DNA strands during cancer, as well as of RNA molecules in

a variety of neurodegenerative diseases. The derivation laid out for the GCM can

be used for an exhaustive derivation of the end-to-end distribution with regards to

the spatial orientation of DNA and RNA strands in such disorders. In general,

the physical models of polymers could give an insight into the physics

of a variety of neurodegenerative disorders, and their correlation to

the spatial arrangements and configurations of various nucleic acid

molecules. It would also allow researchers to determine the impact of

certain chemical substances on the configuration of RNA strands, which

marks future applications to research in biochemistry and biophysics.

4 Concluding Remarks

The physical models of polymers, reviewed in Section 2, serve to provide

theoretical means for researchers to denote the configurations and spatial

orientations of polymers in space. Furthermore, the Linear-Quadratic Model

serves as a mathematical means to denote the damage to strands of DNA

molecules by radiation. The radiation biophysics of DNA gives an insight into

the biophysical mechanisms of disorders such as cancer. Therefore, connecting

polymer physics to the Linear-Quadratic Model would give a mathematical,

and therefore theoretical insight as to how the physical orientation of polymers

is altered in cancer, and can also allow to determine the values for physical

quantities of the segments of a broken DNA strand in cancer, such as extension,

Flory’s characteristic ratio, Kuhn length, bending elasticity, and the entropic

spring constant. Polymer physics can also have applications to the biophysical

research of a variety of neurodegenerative disorders, which are marked by RNA

damage. Mathematically and theoretically modeling the changes in the physical

orientation and quantitave physical values of the original RNA molecules in
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such neurodegenerative disorders can give future researchers an insight with

regards to how the configuration of RNA polymers could potentially be linked

to the pathology of such disorders, further marking a biophysical application

of the polymer physics discussed. Finally, the Gaussian Chain Model can be

used for the stochastic modeling of a variety of cancers and neurodegenerative

disorders as discussed, since equation (41) provides the probability distribution

of the end-to-end vector in a polymer chain. Comprehensively, the physical

models of polymers have multitudinous applications in research regarding

radiation biophysics, cancer, neuroscience, mathematical/theoretical biophysics,

biochemistry, and a variety of other fields in biological research.
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