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Abstract 

The goal of this project is to offer a new technique for solving integro-differential 

equations (IDEs) with mixed circumstances, which is based on the Hermite polynomial 

and the Least-Squares Technique (LST). Three examples will be given to demonstrate 

how the suggested technique works. The numerical results were utilized to demonstrate 

the correctness and efficiency of the existing method, and all calculations were carried 

out with the help of the MATLAB R2018b program. 

1. Introduction 

The authors look at the Hermit polynomial basic function and their squares, provide 

precise formulas for higher order derivatives, which can be viewed as ordinary (DE) or 

derivative polynomial, and derive explicit formulas and recurrence relations for the 

Hermit polynomial and their squares [1]. Using airfoil polynomials of the first kind, 

examines the numerical solution for a class of IDE with Cauchy kernel. Obtain a system 

of linear algebraic equations using this strategy [2]. With weakly singular kernels, a new 

collocation type approach for solving VIE of the second sort has been developed. For 

solving the VI, we employ the complex B-spline basics in collocation method. The 

findings of this technique are compared to the exact solution [3]. To obtain a trustworthy 

approximate solution to linear and nonlinear IEs and IDEs originating in ordinary life 

occurrences, a simple and effective method is used. The suggested method comprises 

solely of a series in which the undefined constants are found in the conventional manner. 

The results achieved using the method are in good agreement with the exact solution, 
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demonstrating that it both effective and simple to use [4]. The Lyapunov’s functional 

technique is used to conduct new research on the stability, asymptotically stability and 

instability of the zero solution, boundedness, integrability of solutions and integrability of 

derivatives of solutions of certain nonlinear (DIDEs). Three important Lyapunov 

functional are defined as main tools to achieve the goal of this research [5]. Several 

authors have worked semi analytical techniques such as the Taylor series expansion 

techniques [6], the Computational Methods [7], the Tau techniques [8, 9, 10], the 

Legendre wavelets method [11], the Legendre polynomials [12, 13], the Galerkin 

methods [14], the Legendre differential expressions [15], the Fourier analysis [16] for 

integral and integro-differential equations in recent. 

�(�)(�) = �(�) + 	 
(�, �)�(�)�, � ≤ �, � ≤ �,�
�

            ( 1.1) 

under the mixed conditions 

�(����(�)(ℎ) + ���
��� ����(�)(�) = �� , � =  0 , 1 , . . . , ! − 1,  [17].         (1.2) 

 

1.1. Hermite polynomial 

The Hermite polynomials '�(() are a collection of polynomials with coefficients in 

the range [0, ∞], and the basic formula is [1]. 

*+�,�,- = � '�(S)/
���

 ��
�! .                                                   (1.3) 

The first three Hermite polynomials '�(S), for 0 ≤ � ≤ 5 

'�(�) = 1,     '�(�) = 2(,      '+(�) = 4�+ − 2.   
2. Least-Square Method and Hermite Polynomial  

To solve the equations (1.1) and (1.2), we will use a novel strategy based on the 

Hermite polynomial with LST as a foundation function. 

The following is a rough solution: 

�7(�) = � 8�'�(�)7
���

� ≤ 9 ≤ �                                                  (2.1) 
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where '�(�) are the Hermite polynomial and 8� are unknown constants of degrees (�). We 

obtain equation (2.2) by replacing equation (1.1) into equation (2.1). 

� 8�'�(�)(�)7
���

= �(�) + 	 
(�, �) � 8�'�(�)7
���

��
�

.                      (2.2) 

The residual equation is as follows: 

:(�, 8�) = :;�, �7(8)< = � 8�'�(�)7
���

− =�(�) + 	 
(�, �) � 8�'�(�)7
���

��
�

>.     (2.3) 

Let 

?(8�, 8�, … , 87) = 	[:(�, 8�)]+A(�)�,           B
C

                          ( 2.4) 

where A (�) = 1, thus [18],  

?(8�, 8�, … , 87) = 	 D� 8�'�(�)7
���

− =�(�) + 	 
(�, �) � 8�'�(�)7
���

��
�

>E+ �.     (2.5)B
C

 

By decreasing the value of ?, we may obtain the values of 8� , � ≥ 0. 

G?G8� = 0, � = 0,1, … , H.                                                (2.6) 

By applying (2.6) we get: 

G?G8� = 	 D� 8�'�(�)7
���

− =�(�) + 	 
(�, �) � 8�'�(�)7
���

��
�

>E �B
C

 

× 	 D'�(�) − 	 
(�, �)'�(�)��
�

E � = 0.                                   (2.7) B
C

 

As a result, (2.7) is formed as a (H + 1) ∗ (H + 1) algebraic system of equations in 

the undefined polynomial coefficient 8� , � = 0, ⋯ , H or as a matrix: 
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Ψ =

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎛ 	 :(�, 8�)Υ��    	 :(�, 8�)Υ�� … 	 :(�, 87)Υ��B

C
B

C
B

C
	 :(�, 8�)Υ��    	 :(�, 8�)Υ�� … 	 :(�, 87)Υ��B

C
B

C
B

C ⋮                           ⋮                          ⋱                   ⋮
	 :(�, 8�)Υ7�    	 :(�, 8�)Υ7� …  	 :(�, 87)Υ7�B

C
B

C
B

C ⎠
⎟⎟
⎟⎟
⎟⎟
⎟⎞

                      (2.8) 

Ε =

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎛ 	{�(�)}Υ��   B

C
	{�(�)}Υ��    B
C ⋮
	{�(�)}Υ7�   B
C ⎠

⎟⎟
⎟⎟
⎟⎟
⎟⎞

                                                                                                 (2.9) 

where, 

Υ� = '�(�)(�) − 	 
(9, \)'�(�)��
�

                                         (2.10) 

:(�, 8�) = � 8�'�(�)7
���

− =�(�) + 	 
(�, �) � 8�'�(�)7
���

��
�

>,                  (2.11) 

Ψ] = Ε   or   ] =   [Ψ: Ε].                                                     (2.12) 

Another variant of (2.12) can be described by using the conditions as follows: 

[_� : ��], � = 0 , … , ! − 1 

where,  

_� = [`��`��`�+   ….     `��], � = 0 , … , ! − 1.                     (2.13) 

Another solution can be obtained by substituting the matrices of the row (2.13) with 

the last rows (m) of the matrix form (2.12), [19].  
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aΨb: Εcd =

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎛ 	 :(s, c�)Υ�ds                    	 :(s, c�)Υ�ds            …     	 :(s, ch)Υ�dsB

i
    ;   Ε�

B

i

B

C
	 :(s, c�)Υ�ds                    	 :(s, c�)Υ�ds          …      	 :(s, ch)Υ�dsB

i

B

i

B

i
;    Ε�

              ⋮                                        ⋮                         ⋱                               ⋮                      ⋮   
	 :(s, c�)Υ7 �kds                 	 :(s, c�)Υ7�lds   …    	 :(s, ch)Υ7�mds

B

n
      ;     Εh�o

B

i

B

i u��u��u�o                            ;          β�⋮                                       ⋮                         …             ⋮                           ⋮            ⋮
u(h��)�u(h��)�                        …              u(h��)o               ;          βo�� ⎠

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎞

 

] = Ψb ��Ε.b  

As a result, the matrix ] can only be determined once. In addition, there is only one 

solution to the equation (1.1) given conditions (1.2). 

3. Analyze Convergence 

Now, using the numerical methods established in (2), we will review an estimate of 

the error above and show that as H, the approximate solution �7(�) will converge to the 

precise solution �(�) of (1). 

Theorem [1]. For H ≥ 0, the Hermite polynomial '7(�) and their derivatives '7r (�) satisfy 

'�r (�) = 0, '7r (�) = 2H'7��(�).                                  (3.1) 

4. Illustrative Problems 

In this paragraph, we have investigated the combination of LST for solving linear 

IDEs with Hermite polynomial as the basis function. The problems are solved to explain 

them precisely, and time of accomplishment of the method. The absolute error has been 

defined  

Error= |�(�) − �7(�)|,          � ≤ � ≤ �, H = 1,2, … 

where �7(�) and �(�) are the approximate solutions andaccurate solution. 
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Problem 4.1 [17]. Consider the following integro-differential equations, 

�rr(�) = −15� + 	 	 ���(�)���
�

�
�  

with the initial condition,  �(0) = 1, �r(0) = 0, the exact solution of this problem �(�) = 1 − v+ �w. 
We can see that �v(�) corresponds to the exact solution. 

 

Figure 4.1. Approximate values and Exact, Problem 4.1. 

Problem 4.2 [20]. Consider the following integro-differential equations 

�r(�) = 8� + 54 �+ + 	 	 (1 − ��)�(�)��,�
�

�
�  

with the initial condition, �(0) = 2, the exact solution of this problem �(�) = 2 + 6�+. 
We can see that �v(�) corresponds to the exact solution. 
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Figure 4.2. Approximate values and Exact, Problem 4.2. 

In Figure 4.1-4.2, the exact solution is compared to the approximate solution derived 

via the suggested method for H =  5, the numerical and precise answers are quite 

consistent. When H =  5 is used, an approximate solution is obtained that is valid for all 

Hermite polynomials. 

Problem 4.3 [21]. Consider the following integro-differential equations 

�r(�) = − 23 *�� − 23 � + �*�+ + *�+ + 	 (� − �)�(�)��
� + 	 (� + ��)�(�)�,�

�  

with the initial condition, �(0) = �w, the exact solution of this problem �(�) = �w *��. 
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Table 4.1. Exact, approximate solutions and the absolute errors, Problem 4.3.  

CLSCM [10] Hermite Poly.  

Exact solution 

 9 Error Error Approximate 

0 0 0.3333 0.3333 0 

0.012 0.0043 0.3059 0.3016 0.1 

0.0228 0.007 0.2799 0.2729 0.2 

0.0078 0.0084 0.2553 0.2469 0.3 

0.0059 0.0087 0.2321 0.2234 0.4 

0.0118 0.0081 0.2103 0.2022 0.5 

0.0112 0.007 0.1899 0.1829 0.6 

0.0023 0.0055 0.1710 0.1655 0.7 

0.0107 0.0036 0.1534 0.1498 0.8 

0.0235 0.0018 0.1373 0.1355 0.9 

0.0061 0 0.1226 0.1226 1 

 

Figure 4.3. Approximate values and Exact, Problem 4.3. 
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 Figure 4.3, the exact solution is compared to the approximate solution derived via 

the suggested method for H =  2, shows the exactness and correctness of the proposed 

method. When H =  2 is used, an approximate solution is obtained that is valid for all 

Hermite polynomial. 

5. Conclusions 

In this research, suggested a technique for solving integro-differential equations using 

the Least-Squares Technique (LST) and Hermite polynomial. Three problems were 

solved using the proposed technique. The accuracy and efficiency of the technique used 

were obtained by solving the problems. 
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