

q-Power Quasi Binormal Operator

Alaa Hussein Mohammed

Department of Mathematics, College of Education, University of Al-Qadisiyah, Diwaniya, Iraq e-mail: alaa.hussein@qu.edu.iq

Abstract

In this paper we introduce a new class of operators on Hilbert space called q-power quasi binormal operator. We study this operator and give some properties of it.

Introduction

Consider B(H) be the algebra of all bounded linear operators on Hilbert space H. An operator S is called *normal* if $S^*S = SS^*$. Quasi normal operator was introduced by Brown in 1953 [1]. In [3] Campbell introduced the class binormal of operator which is defined as $S^*SSS^* = SS^*S^*S$.

In [5] Sid Ahmed generalize quasi normal operator to *n*-power quasi normal operator. In this paper we define a new class of operators on Hilbert space as $S^q(S^*SSS^*) = (SS^*S^*S)S^q$ called *q*-power quasi binormal operator and study some properties of it.

1. Main Results

Definition 1.1. Let *S* be bounded operator. Then *S* is called *q*-power quasi binormal operator if and only if $S^q(S^*SSS^*) = (SS^*S^*S)S^q$, where *q* is a nonnegative integer.

Proposition 1.2. If S is a self adjoint and q-power quasi binormal operator, then S^* is a q-power quasi binormal operator.

Proof. Since *S* is *q*-power quasi binormal operator, $S^q(S^*SSS^*) = (SS^*S^*S)S^q$.

Received: December 24, 2021; Accepted: February 12, 2022

²⁰¹⁰ Mathematics Subject Classification: 47B20.

Keywords and phrases: normal operator, quasi normal operator, binormal operator, Hilbert space.

Let

$$(S^*)^q[((S^*)^*S^*S^*(S^*)^*)] = (S^*)^q(SS^*S^*S), \text{ since } S \text{ is a self adjoint}$$
$$= S^q(S^*SSS^*), \text{ since } S \text{ is } q\text{-power quasi binormal}$$
$$= (SS^*S^*S)S^q, \text{ since } S \text{ is a self adjoint}$$
$$= (S^*(S^*)^*(S^*)^*S^*)(S^*)^q.$$

Hence, S^* is *q*-power quasi binormal operator.

Proposition 1.3. If S is a q-power quasi binormal operator, and if S^{-1} exist, then S^{-1} is a q-power quasi binormal operator.

Proof. Since *S* is *q*-power quasi binormal operator, $S^q(S^*SSS^*) = (SS^*S^*S)S^q$.

Let

$$(S^{-1})^{q}[(S^{-1})^{*}S^{-1}S^{-1}(S^{-1})^{*})] = (S^{q})^{-1}[(S^{*})^{-1}S^{-1}S^{-1}(S^{*})^{-1})]$$

= $(S^{q})^{-1}[(SS^{*})^{-1}(S^{*}S)^{-1})]$
= $(S^{q})^{-1}[(S^{*}S)(SS^{*})]^{-1}$
= $[[(S^{*}SSS^{*})]S^{q}]^{-1}$, since S is binormal
= $[[(SS^{*}S^{*}S)]S^{q}]^{-1}$,

since S is a q-power quasi binormal,

$$= [S^{q}(S^{*}SSS^{*})]^{-1}, \text{ since } S \text{ is binormal}$$

$$= [S^{q}(SS^{*}S^{*}S)]^{-1}$$

$$= [(SS^{*}S^{*}S)]^{-1}(S^{q})^{-1}$$

$$= [(S^{*}S)^{-1}(SS^{*})^{-1}](S^{q})^{-1}$$

$$= [S^{-1}(S^{*})^{-1}(S^{*})^{-1}S^{-1}](S^{q})^{-1}$$

$$= [S^{-1}(S^{-1})^{*}(S^{-1})^{*}S^{-1}](S^{-1})^{q}.$$

Hence, S^{-1} is *q*-power quasi binormal operator.

Definition 1.4 [4]. If *A*, *B* are bounded operator on Hilbert space *H*. Then *A*, *B* are *unitary equivalent* if there is an isomorphism $U: H \to H$ such that $B = UAU^*$.

Proposition 1.5. If S is q-power quasi binormal operator and if $R \in B(H)$ is unitary equivalent to S, then R is q-power quasi binormal operator.

Proof. Since *R* is unitary equivalent to *S*, $R = USU^*$, $(USU^*)^n = US^nU^*$ and since *S* is *q*-power quasi binormal operator, $S^q(S^*SSS^*) = (SS^*S^*S)S^q$.

Let

$$R^{q}(R^{*}RRR^{*}) = (USU^{*})^{q}[(USU^{*})^{*}(USU^{*})(USU^{*})(USU^{*})^{*}]$$

= $(US^{q}U^{*}) [(US^{*}U^{*}) (USU^{*})(USU^{*})(US^{*}U^{*})]$
= $U [S^{q}(S^{*}SSS^{*})]U^{*}$, since S is q-power quasi binormal operator
= $U[(SS^{*}S^{*}S)S^{q}]U^{*}$
= $[(USU^{*})(US^{*}U^{*})(US^{*}U^{*})(USU^{*})](US^{q}U^{*}) = (RR^{*}R^{*}R)R^{q}.$

Hence R is q-power quasi binormal operator.

Theorem 1.6. The set of all q-power quasi binormal operators on H is a closed subset of B(H) under scalar multiplication.

Proof. Let

 $M(H) = \{S \in B(H): S \text{ is } q \text{-power quasi binormal operator on } H$

for some nonnegative integer *q*}

Let $S \in W(H)$, then we have S is q-power quasi binormal operator and thus $S^q(S^*SSS^*) = (SS^*S^*S)S^q$.

Let θ be a scalar, hence

$$(\theta S)^{q}[(\theta S)^{*}(\theta S)(\theta S)(\theta S)^{*}] = \theta^{q} S^{q}[\bar{\theta} S^{*}(\theta S)(\theta S))\bar{\theta} S^{*}]$$
$$= \theta^{q} \bar{\theta} \theta \theta \bar{\theta} [S^{q}(S^{*}SSS^{*})]$$
$$= \theta^{q} \bar{\theta} \theta \theta \bar{\theta} [(SS^{*}S^{*}S)S^{q}]$$
$$= [(\theta S)(\theta S)^{*}(\theta S)^{*}(\theta S)](\theta S)^{q}.$$

Thus $\theta S \in M(H)$.

Let S_k be a sequence in M(H) and converge to S, then we can get that

 $\left\|S^q(S^*SSS^*)-(SS^*S^*S)S^q\right\|$

$$= \left\| S^{q}(S^{*}SSS^{*}) - S^{q}_{k}(S^{*}_{k}S_{k}S^{*}_{k}) + (S_{k}S^{*}_{k}S^{*}_{k}S_{k})S^{q}_{k} - (SS^{*}S^{*}S)S^{q} \right\|$$

$$\leq \left\| S^{q}(S^{*}SSS^{*}) - S^{q}_{k}(S^{*}_{k}S_{k}S_{k}S_{k}^{*}) \right\| + \left\| (S_{k}S^{*}_{k}S^{*}_{k}S_{k})S^{q}_{k} - (SS^{*}S^{*}S)S^{q} \right\| \to 0 \text{ as } k \to \infty.$$

Hence, $S^q(S^*SSS^*) = (SS^*S^*S)S^q$.

Therefore $S \in M(H)$. Then, M(H) is closed subset.

Theorem 1.7. If T and S are normal, q-power quasi binormal operators on H, and let S commute with T, then (ST) is q-power quasi binormal operator on H.

Proof. Since T and S are q-power quasi binormal operators $S^q(S^*SSS^*) = (SS^*S^*S)S^q$ and $T^q(T^*TTT^*) = (TT^*T^*T)T^q$,

$$(ST)^{q}((ST)^{*}(ST)(ST)(ST)^{*}) = (T^{q}S^{q})[(T^{*}S^{*})(ST)(ST)(T^{*}S^{*})]$$

$$= (T^{q}S^{q})[T^{*}S^{*}ST ST T^{*}S^{*}]$$

$$= (T^{q}S^{q})[T^{*}SS^{*}T S T^{*}S^{*}T]$$

$$= (T^{q}S^{q})[ST^{*}S^{*}T S T^{*}S^{*}T]$$

$$= (T^{q}S^{q})[STT^{*}S^{*} T^{*}S^{*}ST]$$

$$= ST^{q}S^{q}TT^{*}S^{*} T^{*}S^{*}ST$$

$$= ST^{q}S^{q}T^{*}S^{*} T^{*}S^{*}ST$$

$$= STT^{q}S^{q}T^{*}S^{*} T^{*}S^{*}ST$$

$$:$$

$$= [(ST)(T^{*}S^{*})(T^{*}S^{*})(ST)](T^{q}S^{q})$$

$$= ((ST)(ST)^{*}(ST)^{*}(ST))(ST)^{q}.$$

Then (ST) is *q*-power quasi binormal operator.

Theorem 1.8. Let $T_1, T_2, ..., T_k$ are q-power quasi binormal operators on H. Then the direct sum $(T_1 \oplus T_2 \oplus ... \oplus T_k)$ is q-power quasi binormal operator on H.

Proof. Since every operator of $T_1, T_2, ..., T_k$ is *q*-power quasi binormal,

 $T_i^q(T_i^*T_iT_iS^*)$

 $= (T_{i}T_{i}^{*}T_{i}^{*}T_{i})T_{i}^{q} \text{ for all } i = 1, 2, ..., k$ $= (T_{1}\oplus T_{2}\oplus ...\oplus T_{k})^{q} [(T_{1}\oplus T_{2}\oplus ...\oplus T_{k})^{*}(T_{1}\oplus T_{2}\oplus ...\oplus T_{k})$ $\times (T_{1}\oplus T_{2}\oplus ...\oplus T_{k})(T_{1}\oplus T_{2}\oplus ...\oplus T_{k})^{*}]$ $= (T_{1}^{q}\oplus T_{2}^{q}\oplus ...\oplus T_{k}^{q})[(T_{1}^{*}\oplus T_{2}^{*}\oplus ...\oplus T_{k}^{*})(T_{1}\oplus T_{2}\oplus ...\oplus T_{k})$ $\times (T_{1}\oplus T_{2}\oplus ...\oplus T_{k})(T_{1}^{*}\oplus T_{2}^{*}\oplus ...\oplus T_{k}^{*})]$ $= T_{1}^{q}(T_{1}^{*}T_{1}T_{1}T_{1}^{*})\oplus T_{2}^{q}(T_{2}^{*}T_{2}T_{2}T_{2}^{*})\oplus ...\oplus T_{k}^{q}(T_{k}^{*}T_{k}T_{k}T_{k}^{*})$ $= (T_{1}T_{1}^{*}T_{1}^{*}T_{1})T_{1}^{q}\oplus (T_{2}T_{2}^{*}T_{2}^{*}T_{2})T_{2}^{q}\oplus ...\oplus (T_{k}T_{k}^{*}T_{k}^{*}T_{k})T_{k}^{q}$ $= [(T_{1}\oplus T_{2}\oplus ...\oplus T_{k})(T_{1}\oplus T_{2}\oplus ...\oplus T_{k})^{*}(T_{1}\oplus T_{2}\oplus ...\oplus T_{k})^{*}(T_{1}\oplus T_{2}\oplus ...\oplus T_{k})^{*}]$

Thus, $(T_1 \oplus T_2 \oplus ... \oplus T_k)$ is q-power quasi binormal operator on H.

Theorem 1.9. Let $T_1, T_2, ..., T_k$ are q-power quasi binormal operators on H. Then the tenser product $(T_1 \otimes T_2 \otimes ... \otimes T_k)$ is q-power quasi binormal operator on H.

Proof. Since every operator of $S_1, S_2, ..., S_k$ is a *q*-power quasi binormal,

 $T_i^q(T_i^*T_iT_iS^*)$

 $= (T_i T_i^* T_i^* T_i) T_i^q$ for all i = 1, 2, ..., k

 $= (T_1 \otimes T_2 \otimes \dots \otimes T_k)^q [(T_1 \otimes T_2 \otimes \dots \otimes T_k)^* (T_1 \otimes T_2 \otimes \dots \otimes T_k)]$

 $\times (T_1 \otimes T_2 \otimes ... \otimes T_k) (T_1 \otimes T_2 \otimes ... \otimes T_k)^*] (x_1 \otimes x_2 \otimes ... \otimes x_k)$

 $= (T_1^{\ q} \otimes T_2^{\ q} \otimes \dots \otimes T_k^{\ q}) [(T_1^{\ *} \otimes T_2^{\ *} \otimes \dots \otimes T_k^{\ *})(T_1 \otimes T_2 \otimes \dots \otimes T_k)]$

 $\times (T_1 \otimes T_2 \otimes \dots \otimes T_k) (T_1^* \otimes T_2^* \otimes \dots \otimes T_k^*)] (x_1 \otimes x_2 \otimes \dots \otimes x_k)$

 $= T_1^{q} (T_1^* T_1 T_1 T_1^*) \mathbf{x_1} \otimes T_2^{q} (T_2^* T_2 T_2 T_2^*) \mathbf{x_2} \otimes \dots \otimes T_k^{q} (T_k^* T_k T_k T_k^*) \mathbf{x_k}$

 $= [T_1^{q}(T_1^{*}T_1T_1T_1^{*})]\mathbf{x_1} \otimes [(T_2T_2^{*}T_2^{*}T_2)T_2^{q}]\mathbf{x_2} \otimes ... \otimes [(T_kT_k^{*}T_k^{*}T_k)T_k^{q}]\mathbf{x_k}$

 $= [(T_1 \otimes T_2 \otimes \dots \otimes T_k)(T_1 \otimes T_2 \otimes \dots \otimes T_k)^* (T_1 \otimes T_2 \otimes \dots \otimes T_k)^* (T_1 \otimes T_2 \otimes \dots \otimes T_k)]$

 $\times (T_1 \otimes T_2 \otimes \ldots \otimes T_k)^q (x_1 \otimes x_2 \otimes \ldots \otimes x_k).$

Thus $(T_1 \otimes T_2 \otimes ... \otimes T_k)$ is *q*-power quasi binormal operator.

References

- [1] A. Brown, On a class of operators, *Proc. Amer. Math. Soc.* 4 (1953), 723-728. https://doi.org/10.1090/S0002-9939-1953-0059483-2
- [2] S. K. Berberian, *Introduction to Hilbert Space*, 2nd ed., Chelsea Publishing Co., New York, 1976.
- [3] Stephen L. Campbell, Linear operators for which T*T and TT* commute, Proc. Amer. Math. Soc. 34 (1972), 177-180. https://doi.org/10.2307/2037922
- [4] J. B. Conway, A course in functional analysis, Graduate Texts in Mathematics, 96, Springer-Verlag, New York, 1985. https://doi.org/10.1007/978-1-4757-3828-5
- [5] Ould Ahmed Mahmoud Sid Ahmed, On the class of *n*-power quasi-normal operators on Hilbert space, *Bull. Math. Anal. Appl.* 3(2) (2011), 213-228.

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted, use, distribution and reproduction in any medium, or format for any purpose, even commercially provided the work is properly cited.