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Abstract 

In this paper we introduce a new class of operators on Hilbert space called �-power quasi 

binormal operator. We study this operator and give some properties of it. 

Introduction 

Consider �(�) be the algebra of all bounded linear operators on Hilbert space �. An 

operator � is called normal if �∗� = ��∗. Quasi normal operator was introduced by 

Brown in 1953 [1]. In [3] Campbell introduced the class binormal of operator which is 

defined as �∗���∗ = ��∗�∗�. 

In [5] Sid Ahmed generalize quasi normal operator to 
-power quasi normal 

operator. In this paper we define a new class of operators on Hilbert space as 

��(�∗���∗) = (��∗�∗�)�� called q-power quasi binormal operator and study some 

properties of it. 

1. Main Results 

Definition 1.1. Let � be bounded operator. Then � is called q-power quasi binormal 

operator if and only if ��(�∗���∗) = (��∗�∗�)�� , where � is a nonnegative integer. 

Proposition 1.2. If S is a self adjoint and q-power quasi binormal operator, then �∗ 

is a q-power quasi binormal operator. 

Proof. Since � is �-power quasi binormal operator, ��(�∗���∗) = (��∗�∗�)��.  
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Let 

(�∗)�
((�∗)∗�∗�∗(�∗)∗)� = (�∗)�(��∗�∗�),  since � is a self adjoint 

= ��(�∗���∗),  since � is �-power quasi binormal 

= (��∗�∗�)��,  since � is a self adjoint 

= (�∗(�∗)∗(�∗)∗�∗)(�∗)�. 

Hence, �∗ is �-power quasi binormal operator. 

Proposition 1.3. If S is a q-power quasi binormal operator, and if  ��� exist, then 

��� is a q-power quasi binormal operator. 

Proof. Since � is �-power quasi binormal operator, ��(�∗���∗) = (��∗�∗�)��. 

Let 

 (���)�
(���)∗������(���)∗)� =  (��)��
(�∗)��������(�∗)��)� 

= (��)��
(��∗)��(�∗�)��)� 

=  (��)��
(�∗�)(��∗)��� 

= 

(�∗���∗)������, since � is binormal 

= 

(��∗�∗�)������, 

since � is a �-power quasi binormal, 

=    
��(�∗���∗)���, since � is binormal 

=    
��(��∗�∗�)��� 

= 
(��∗�∗�)���(��)�� 

= 
(�∗�)��(��∗)���(��)�� 

= 
���(�∗)��(�∗)������(��)�� 

= 
���(���)∗(���)∗����(���)�. 

Hence, ��� is �-power quasi binormal operator. 

Definition  1.4 [4]. If �, � are bounded operator on Hilbert space �. Then �, � are 

unitary equivalent if there is an isomorphism �: � → � such that � = ���∗. 
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Proposition 1.5. If S is q-power quasi binormal operator and if � ∈ �(�) is unitary 

equivalent to S, then R is q-power quasi binormal operator. 

Proof. Since � is unitary equivalent to �, � = ���∗, (���∗)� = ����∗ and since � 

is �-power quasi binormal operator, ��(�∗���∗) = (��∗�∗�)�� . 

Let 

��(�∗���∗) = (���∗)�
(���∗)∗(���∗)(���∗)(���∗)∗� 

= (����∗) 
(��∗�∗) (���∗)(���∗)(��∗�∗) � 

= � 
��(�∗���∗)��∗, since � is �-power quasi binormal operator 

= �
(��∗�∗�)����∗ 

= �(���∗)(��∗�∗)(��∗�∗)(���∗) �(����∗) = (��∗�∗�)�� . 

Hence � is �-power quasi binormal operator. 

Theorem 1.6. The set of all q-power quasi binormal operators on H is a closed 

subset of �(�) under scalar multiplication. 

Proof. Let 

�(�) = �� ∈ �(�): �� is �-power quasi binormal operator on � 

for some nonnegative integer ��� 

Let � ∈  (�), then we have � is �-power quasi binormal operator and thus 

��(�∗���∗) = (��∗�∗�)�� . 

Let ! be a scalar, hence    

"!�#
�


(!�)∗(!�)(!�)(!�)∗� = !
�

��
!̅�∗(!�)(!�))!̅�∗� 

= !
�

!̅!!!
% ��(�∗���∗)� 

= !
�

!̅!!!
% (��∗�∗�)��� 

= 
(!�)(!�)∗(!�)∗(!�)�"!�#
�

. 

Thus !� ∈ �(�).  

Let �& be a sequence in �(�) and converge to �, then we can get that  
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‖��(�∗���∗) − (��∗�∗�)��‖ 

= )��(�∗���∗) − �&
�(�&

∗�&�&�&
∗) + (�&�&

∗�&
∗�&)�&

� − (��∗�∗�)��) 

≤ )��(�∗���∗) − �&
�(�&

∗�&�&�&
∗)) + )(�&�&

∗�&
∗�&)�&

� − (��∗�∗�)��) → 0  as / → ∞. 

Hence, ��(�∗���∗) = (��∗�∗�)�� . 

Therefore � ∈ �(�). Then, �(�) is closed subset. 

Theorem 1.7. If 0 and � are normal, �-power quasi binormal operators on �, and 

let � commute with 0, then (�0) is �-power quasi binormal operator on �. 

Proof. Since T and S are �-power quasi binormal operators ��(�∗���∗) =
(��∗�∗�)�� and 0�(0∗000∗) = (00∗0∗0)0�, 

(�0)�((�0)∗(�0)(�0)(�0)∗) = (0���)
(0∗�∗)(�0)(�0)(0∗�∗)� 

= (0���)
0∗�∗�0 �0 0∗�∗� 

= (0���)
0∗��∗0 � 0∗0�∗� 

= (0���)
�0∗�∗0 � 0∗�∗0� 

= (0���)
�0∗0�∗ 0∗��∗0� 

= (0���)
�00∗�∗ 0∗�∗�0� 

= 0����00∗�∗ 0∗�∗�0 

= �0���00∗�∗ 0∗�∗�0 

= �0�0��0∗�∗ 0∗�∗�0 

= �00���0∗�∗ 0∗�∗�0 

⋮ 

= 
(�0)(0∗�∗)(0∗�∗)(�0)�(0���) 

= ((�0)(�0)∗(�0)∗(�0))(�0)� . 

Then (�0) is �-power quasi binormal operator. 

Theorem 1.8. Let 0�, 02, … , 0& are q-power quasi binormal operators on H. Then the 

direct sum ( 0�⨁02⨁ … ⨁0&) is q-power quasi binormal operator on �. 

Proof. Since every operator of 0�, 02, … , 0& is �-power quasi binormal,  
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05
�(05

∗0505�∗)  

= (0505
∗05

∗05)05
�
  for all 6 = 1,2, … , / 

= (0�⨁02⨁ … ⨁0&)�
(0�⨁02⨁ … ⨁0&)∗(0�⨁02⨁ … ⨁0&) 

× (0�⨁02⨁ … ⨁0&)(0�⨁02⨁ … ⨁0&)∗� 

= ( 0�
�⨁02

�⨁ … ⨁0&
�)
( 0�

∗⨁02
∗⨁ … ⨁0&

∗)(0�⨁02⨁ … ⨁0&) 

× (0�⨁02⨁ … ⨁0&)( 0�
∗⨁02

∗⨁ … ⨁0&
∗)� 

= 0�
�(0�

∗0�0�0�
∗)⨁02

�(02
∗020202

∗)⨁ … ⨁0&
�(0&

∗0&0&0&
∗) 

= (0�0�
∗0�

∗0�)0�
�⨁(0202

∗02
∗02)02

�⨁ … ⨁(0&0&
∗0&

∗0&)0&
� 

= 
(0�⨁02⨁ … ⨁0&)(0�⨁02⨁ … ⨁0&)∗(0�⨁02⨁ … ⨁0&)∗(0�⨁02⨁ … ⨁0&) � 

× (0�⨁02⨁ … ⨁0&)� 

Thus, (0�⨁02⨁ … ⨁0&) is �-power quasi binormal operator on �. 

Theorem 1.9. Let 0�, 02, … , 0& are �-power quasi binormal operators on �. Then the 

tenser product ( 0�⨂02⨂ … ⨂0&) is �-power quasi binormal operator on �.   

Proof. Since every operator of ��, �2, … , �& is a �-power quasi binormal,    

05
�(05

∗0505�∗)   

= (0505
∗05

∗05)05
�
  for all 6 = 1,2, … , / 

= (0�⨂02⨂ … ⨂0&)�
(0�⨂02⨂ … ⨂0&)∗(0�⨂02⨂ … ⨂0&) 

× (0�⨂02⨂ … ⨂0&)(0�⨂02⨂ … ⨂0&)∗�(;<⨂;=⨂ … ⨂;>) 

= ( 0�
�⨂02

�⨂ … ⨂0&
�)
( 0�

∗⨂02
∗⨂ … ⨂0&

∗)(0�⨂02⨂ … ⨂0&) 

× (0�⨂02⨂ … ⨂0&)( 0�
∗⨂02

∗⨂ … ⨂0&
∗)�(;<⨂;=⨂ … ⨂;>) 

= 0�
�(0�

∗0�0�0�
∗);<⨂02

�(02
∗020202

∗);=⨂ … ⨂ 0&
�(0&

∗0&0&0&
∗);> 

= 
0�
�(0�

∗0�0�0�
∗)�;<⨂
(0202

∗02
∗02)02

��;=⨂ … ⨂ 
(0&0&
∗0&

∗0&)0&
��;> 

= 
(0�⨂02⨂ … ⨂0&)(0�⨂02⨂ … ⨂0&)∗(0�⨂02⨂ … ⨂0&)∗(0�⨂02⨂ … ⨂0&) � 

× (0�⨂02⨂ … ⨂0&)�(;<⨂;=⨂ … ⨂;>). 

Thus (0�⨂02⨂ … ⨂0&) is �-power quasi binormal operator. 
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