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Abstract

In this paper we introduce a new class of operators on Hilbert space called g-power quasi

binormal operator. We study this operator and give some properties of it.

Introduction

Consider B(H) be the algebra of all bounded linear operators on Hilbert space H. An
operator S is called normal if $*S = S5*. Quasi normal operator was introduced by
Brown in 1953 [1]. In [3] Campbell introduced the class binormal of operator which is
defined as $*SSS* = S§*S*S.

In [5] Sid Ahmed generalize quasi normal operator to nm-power quasi normal
operator. In this paper we define a new class of operators on Hilbert space as
S9(5*SS5*) = (8§87S*S)S? called g-power quasi binormal operator and study some

properties of it.

1. Main Results

Definition 1.1. Let S be bounded operator. Then S is called g-power quasi binormal
operator if and only if S9(S*SSS™) = (5§5*S*S)S9, where q is a nonnegative integer.

Proposition 1.2. If S is a self adjoint and g-power quasi binormal operator, then S*

is a g-power quasi binormal operator.

Proof. Since S is g-power quasi binormal operator, S9(§*SSS*) = (§5*5*5)S14.
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Let
(SHUS™)*S*S* (S]] = (§M)9(55*S*S), since S is a self adjoint
= 59(5*SSS™), since S is g-power quasi binormal
= (§57S5*5)S4, since S is a self adjoint
= ($7($M) (S SM(SHA.
Hence, S* is g-power quasi binormal operator.

Proposition 1.3. If S is a g-power quasi binormal operator, and if S™1 exist, then

S~Yis a g-power quasi binormal operator.
Proof. Since S is g-power quasi binormal operator, S7(§*SSS*) = (§5*5*5)S14.
Let
(STHUE™STISTHE™HI = SDTHEHTISTISTHED) ™I
= (SDTESSHTHS™H)™H]
SHTHEHESSHIT

[[(S*S55*)]S9]71, since S is binormal

[[(SS*S*$)]s~,
since S is a g-power quasi binormal,

[S9(S*SSS*)]71, since S is binormal

[S9(SS*S*S)] !
[($S*S*)]H(SDH™

= [(5"$)7H(SSHTED T
=[STHS)THSHTISTHESD !
= [STHSTH(STHSTHSTHY
Hence, S~ is g-power quasi binormal operator.

Definition 1.4 [4]. If A, B are bounded operator on Hilbert space H. Then A, B are
unitary equivalent if there is an isomorphism U: H = H such that B = UAU™.
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Proposition 1.5. If S is g-power quasi binormal operator and if R € B(H) is unitary
equivalent to S, then R is g-power quasi binormal operator.

Proof. Since R is unitary equivalent to S, R = USU*, (USU™)" = US™U" and since S
is g-power quasi binormal operator, S(S*SSS™) = (§S*S*5)S4.

Let
RAY(R*RRR™) = (USUMHI[(USU)*(USU)(USU*)(USU™)"]
= (US1U™) [(US*U*) (USU")(USU"HWUS'U") ]
= U [S9(S*SSS*)|U", since S is g-power quasi binormal operator
= U[(S§S*S*S)S1|U*
= [(USU*(US*U")(US*U*)(USU*) |(USTU*) = (RR*R*R)RA.
Hence R is g-power quasi binormal operator.

Theorem 1.6. The set of all g-power quasi binormal operators on H is a closed
subset of B(H) under scalar multiplication.

Proof. Let
M(H) = {S € B(H): S is g-power quasi binormal operator on H
for some nonnegative integer q}

Let S € W(H), then we have S is g-power quasi binormal operator and thus
S9(S*SS5*) = (§§*5*5)S4.

Let 0 be a scalar, hence
(65)7[(65)"(6S)(6S)(65)"] = 6" SU[05"(6S)(65))85"]
= 079000[S9(5*5S5™)]
=0"0006] (5575*S)s1]
= [(65)(6S)* (65)*(65)](65)".
Thus 6S € M(H).

Let S, be a sequence in M(H) and converge to S, then we can get that
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|IS9(S*SSS*) — (55*S*$)S1||
= ||S9(S*SSS™) — ST (SkSkSkSk) + (SkSkSkSk)Sy — (S5*S*S)S4||

< ||S9(S*SS5S*) — SE(SkSkSkSk)

+ || Sk SkSeSi)SE — (55*575)S|| > 0 as k - .
Hence, S9(S*SSS*) = (SS*S*S)S1.
Therefore S € M(H). Then, M (H) is closed subset.

Theorem 1.7. If T and S are normal, q-power quasi binormal operators on H, and

let S commute with T, then (ST) is q-power quasi binormal operator on H.

Proof. Since T and S are g-power quasi binormal operators S?(S*SSS*) =
(55*S*$)S9 and TY(T*TTT*) = (TT*T*T)TY,
ETYIST)*(STHSTI(ST)™) = (TISHT*S)(STI(STI(T*S™)]

= (T9S[T*S*ST ST T*S*]
= (TISD[T*SS*T S T*TS*]
= (TISY[ST*S*T ST*S*T]
= (TISD[ST*TS* T*SS*T]
= (T9SY)[STT*S* T*S*ST]
=T4SSITT*S* T*S*ST
= STISITT*S* T*S*ST
= STITSIT*S* T*S*ST

= STTIS9T*S* T*S*ST

= [(STY(T*S*)(T*S")(STH(TIS)
= ((STY(ET)*(ST)*(ST))(ST)?.
Then (ST) is g-power quasi binormal operator.

Theorem 1.8. Let Ty, T, ..., T, are g-power quasi binormal operators on H. Then the
direct sum (T, ®T,® ... ®Ty) is g-power quasi binormal operator on H.

Proof. Since every operator of Ty, T, ..., Ty, is g-power quasi binormal,
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T (T; T;T;S™)

= (T;T{T;THT foralli=12,...k

= (T\®To® ... T [(T, BT, ® ... BT} (T, TP ... BTy)
X (1T, ... ®T)) (T1OT,D ... ®T;)*]

= (T, 1® .. T D[( T, T, D ... T ) (T, BT, ® ... ®Ty)
X (T1®OT,® ... T ) (T, OT,'D ... ®T, )]

=T, 9T, Ty Ty Ty BT, (T, Ty To Ty D .. ©T (T T T Tie )

= (T Ty Ty THTAD(TL,T, Ty, T T D .. (T Ty Tre " Ti ) Tre

= [(T1®T,® ... ®T) (T, BT, D ... ®T))* (T, BT, ® ... BT, (T1OT,D ... ®Ty) ]
X (T, T, ... ®T;)?

Thus, (T;®T,® ... ®T}) is g-power quasi binormal operator on H.

Theorem 1.9. Let Ty, T,, ..., Ty are q-power quasi binormal operators on H. Then the

tenser product (T1QT,Q ... QTy) is q-power quasi binormal operator on H.
Proof. Since every operator of Sy, S5, ..., S is a g-power quasi binormal,
T (T T,T;S*)
= (I;T{T{THT foralli=12,..,k
= (T1®2® ... T [(T1 TR ... ®Ty.) (11 BT, ® ... ®Ty)
X (T1®T2® ... Ty ) (T1 BT, ® ... @Ty) | (¥1 X2 ® ... ®x)
= (T'®N'® .. Ty D[(T, ' ®T'® ... Ty, ) (11 QT ® ... ®Ty)
X (T1®T,Q ... Ty ) (T QT ® ... ®T;. )] (1 @%2® ... ®xy,)
=T, 9Ty Ty T )% QT (T To T T )%, ® . @ Ty (Ty T Ty Ty ™) X
= [ (T T T T )] ®(TR T2 T2 )T 1%, ® . ®  [(Ti Ty T Ti) T 1%
= [(T1®T2® ... Ty ) (T1 BT ® ... ®Ty) (T1 BT ® ... Ty, ) (T1 ®T2® ... Ty) |
X (T1QT,Q ... QT)1(x1Qx,® ... ®xy).

Thus (T; ®T,Q ... ®T}) is g-power quasi binormal operator.
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