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Abstract 

This study employed Lyapunov function method to examine the stability of nonlinear 

ordinary differential equations. Using direct Lyapunov method, we constructed Lyapunov 

function to investigate the stability of fifth order nonlinear ordinary differential equations. ����, a quadratic form and positive definite and ���� which is also positive definite was 

chosen such that the derivative of ���� with respect to time would be equal to the 

negative value of ����. We adopted the pre-multiplication of the given equation by �.... and 

obtained a Lyapunov function which established local and global stability of a fifth order 

differential equation. 

1. Introduction 

Lyapunov functions are useful tools in determining stability, asymptotic stability, 

uniform stability, global stability or out-right instability of differential system and 

boundedness of solution of a real scalar fourth-order differential equation [1-4]. 

Asymptotic stability is intimately linked to the existence of a Lyapunov՚s function, that 

is, a proper, non-negative function varnishing only on an invariant set and decreasing 

along those curved paths of the system not evolving in the invariant set. Lyapunov 
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theorem allows stability of linear and nonlinear system to be verified without differential 

equations solution being required. The presence of Lyapunov function implies asymptotic 

stability for linear time-invariant systems [9]. 

The concept of stability in problems arising from theory and application of 

differential equations is very important and an effective approach is the second approach 

of Lyapunov [7]. The method of Lyapunov functions was introduced by Aleksandra M. 

Lyapunov, a Russian Mathematician. The fundamental of his proof was centred on the 

established fact that the sum of energy in a system is decreasing or constant as it 

approaches state of equilibrium. Lyapunov functions have been constructed for linear 

equations on the platform that given any � that is definite positive, we have another 

definite positive function� such that  −� = �∗ and for the nonlinear case, a correlation is 

taken between the constant coefficient equations of linear and nonlinear equations which 

leads to the appropriate Lyapunov functions for the nonlinear case [1], [5], [6], [8]. 

�∗ = 
�,         (1.1) 

� ∈ �, 
 is a constant matrix and that E possessed eigen values whose real part is 

negative. Accordingly, given any quadratic positive definite form ����, we have another 

quadratic definite positive form ���� such that 

−� = �∗         (1.2) 

along the solution paths of (1.1). This result in (1.2) has been extended to hold for 

positive semi definite quadratic ���� as well. As a matter of fact, our basis for 

construction of Lyapunov function in this work would ultimately satisfy equation (1.2). 

We consider � to be definite positive function, then � must eventually decreases, and 

approaches zero. That is, for a system that is stable, all curved paths must move so that 

the values of � are diminishing. 

2. Statement of Problems, Preliminaries and Definitions 

Consider the fifth-order differential equation (2.1) 

�..... + ��.... + ��... + ��.. + ��. + � = 0      (2.1) 

where �, �, �, � and � are constants with 

� > 0,  � > 0,  � > 0,  � > 0 and � > 0.     (2.2) 
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The equation (2.1) is equivalent to the following five systems. 

�
�� = ��� = ��� = ��� = ��� = −�� − �� − �� − � − ��⎭⎪⎬

⎪⎫.      (2.3) 

The system (2.3) has negative real parts if and only if � > 0, � > 0, � > 0, � > 0 

and � > 0. There is therefore need to have a positive definite continuous quadratic 

function V and another positive quadratic form � such that 

�� = −�        (2.4) 

along the solution paths of (2.1) or (2.3). Before now, the result in equation (2.4) has 

been extended and is established to hold for positive semi definite quadratic ���� as 

well. It is our interest therefore to construct a Lyapunov function that would ultimately 

satisfy equation (2.4). 

Definition. 

(i) A continuous function ���,  !� = ���", �#,  . . . ,  �,  !� is positive definite if $%&|(|→*���, !� = 0 and there exists +�‖�‖� such that 

 ���,  !� > +�‖�‖�.           (2.5) 

(ii) A continuous function ���,  !� = ���", �#,  . . . ,  �,  !� is positive semi-definite 

if $%&|(|→*���, !� = 0 and there exists +�‖�‖� such that 

���,  !� ≥ +�‖�‖�.           (2.6) 

(iii) A continuous function ���,  !� = ���", �#,  . . . ,  �,  !� is negative definite if $%&|(|→*���, !� = 0 and there exists +�‖�‖� such that 

  ���,  !� < −+�‖�‖�.           (2.7) 

(iv) A continuous function ���,  !� = ���",  �#,  . . . ,  �,  !� is negative semi-definite 

if $%&|(|→*���,  !� = 0 and there exists +�‖�‖� such that 

  ���,  !� ≤ −+�‖�‖�.       (2.8) 

(v) A continuous function ���,  !� = ���", �#,   . . . ,  �,  !� is indefinite if it assumes 

both positive and negative values in any arbitrary neighbourhood of the origin in a 

domain 0. 



Patrick O. Aye, D. Jayeola and David O. Oyewola 

http://www.earthlinepublishers.com 

316

At a glance we have  

 ��0� = 0,  ���� = 0, for  � ≠ 0 (Positive semi-definite) 

 ��0� = 0,  ���� > 0, for  � ≠ 0 (Positive definite) 

 ��0� = 0,  ���� ≤ 0, for  � ≠ 0 (Negative semi-definite) 

 ��0� = 0,  ���� < 0, for  � ≠ 0 (Negativedefinite)  

 ‖�‖ → ∞,  ���� → ∞ (Radially unbounded) 

Given a set of nonlinear first order differential equations 

 ��2 = 32��",  �#,  . . . ,  �� for % = 1,  2, . . . ,  6,     (2.9) 

where �2 = �2�!� for some ! and ��2 stands for the time derivative of �2 for % =1,  2, . . . ,  6. Whereas 32 are analytic functions such that 32�0, . . . ,  0� = 0 for % =1,  2, . . . ,  6 so that the origin � = 0 is an equilibrum point. 

Lyapunov Test Function: For a function, ����, where � = ��", �#,  . . . , ��, if the 

following conditions are satisfied: 

(i) ���� and 
787(9 are continuous, for all � ∈ ��:

 and ,...,,2,1 ni =  not necessarily 

at the origin. 

(ii) ( ) .00 =V  

Then we say that ( )xV  is a possible Lyapunov test function for system (2.9). 

Theorem 2.1 (Lyapunov՚s Direct Method). Using an appropriate Lyapunov test 

function, it may be possible to investigate the stability of an equilibrium point of the 

system of nonlinear differential equation (2.9), as explained by Parks [10] by examining 

the rate of change with respect to time of ���� calculated as the Lyapunov derivative: 

   ���� = ∑ 787(9
<(9<= = ∑ 787(9 32���.2>"2>"

                           

(2.10) 

We can then interpret stability from � as follows:  

Stable: If ���� > 0 for � ≠ 0 and �� ��� ≤ 0, then we say that ���� is positive 

definite and the origin �0, 0� of the system of ordinary differential equations (2.9) is 

stable. 
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Asymptotically stable: If ���� > 0 for � ≠ 0 and �� ��� < 0, then we say that ���� 

is positive definite and the origin �0,  0� of the system of ordinary differential equations 

(2.9) is asymptotically stable. 

Unstable: If �� ��� > 0, then we say that �� ��� is positive and the origin �0,  0� of the 

system of ordinary differential equations (2.9) is unstable. 

Theorem 2.2 (Lassale՚s Invariant Principle). Assume that ���� is a Lyapunov 

function of (2.9) on a subset ? ⊂ �,  6 ≥ 1. Define A = B� ∈ ?C : ���� = 0E, where ?C  is 

the closure of ?. Let F be the maximal invariant subset A. Then for ! ≥ 0, every bounded 

trajectory of (2.9) that remains in G approaches the set M as ! → +∞. 
3. Methodology and Discussions 

The system under investigation is 

�..... + ��.... + ��... + ��.. + ��. + � = 0 

G� = HG =
⎝
⎜⎛

0 1 0 0 00 0 1 0 00 0 0 1 00 0 0 0 1−� −� −� −� −�⎠
⎟⎞

⎝
⎜⎛

����� ⎠
⎟⎞,     (3.1) 

where �, �, �, �, � >  0 for the system to have a negative real path. Consider 

2� = P"�# + P#�# + PQ�# + PR�# + PS�# + 2PT�� + 2PU�� + 2PV�� 

+2PW�� + 2P"*�� + 2P""�� + 2P"#�� + 2P"Q�� + 2P"R�� + 2P"S��.   (3.2) 

There is need to obtain the derivative of (3.2) with respect to ! 

2�� = 2P"��� + 2P#��� + 2PQ��� + 2PR��� + 2PS��� + 2PT���� + ���� 

+2PU���� + ���� + 2PV���� + ��� � + 2PW���� + ���� + 2P"*���� + ���� 

+2P""���� + ��� � + 2P"#���� + ���� + 2P"Q���� + ��� � + 2P"R���� + ���� 

+2P"S���� + ����,                                                                                   (3.3) 

�� = P"��� + P#��� + PQ��� + PR��� + PS��� + 2PT���� + ���� 

+PU���� + ���� + PV���� + ��� � + PW���� + ���� + P"*���� + ���� 

+P""���� + ��� � + P"#���� + ���� + P"Q���� + ��� � + P"R���� + ���� 

+P"S���� + ����.                                                                                              (3.4) 
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But from equation (2.3) 

�� = P"�� + P#�� + PQ�� + PR�� + PS��−�� − �� − �� − �� − ��� + PT��� + ��� 

+PU��� + ��� + PV��� + ��� + PWX�� + ��−�� − �� − �� − �� − ���Y 

+P"*��� + ��� + P""��� + ��� + P"#X�� + ��−�� − �� − �� − �� − ���Y 

+P"Q��� + ��� + P"RX�� + ��−�� − �� − �� − �� − ���Y 

+P"SX�� + ��−�� − �� − �� − �� − ���Y.                                                        (3.5)
 

Expanding (3.5), we have 

�� = P"�� + P#�� + PQ�� + PR�� − PS��# − PS��� − PS��� − PS��� − PS���
 +�#PT + ��PT + ��PU + ��PU + ��PV + ��PV + ��PW −���PW − ���PW − ���PW − ���PW − ��#PW + �#P"* + ��P"* +��P"" + ��P"" + ��P"# − ���P"# − ���P"# − ���P"# − ��#P"# −���P"# + �#P"Q + ��P"Q + ��P"R − ���P"R − ���P"R − ��#P"R −���P"R − ���P"R + �#P"S − ���P"S − ��#P"S − ���P"S − ���P"S 

−���P"S                                                                                                           (3.6)
 

bringing the terms and respective coefficients of (3.6) 

Terms  Coefficients 
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Next is to determine ��  such that one of the following conditions hold: 

�
�%� �� ≤ −Z�#
�%%� �� ≤ −Z�#
�%%%� �� ≤ −Z�#
�%[� �� ≤ −Z�#
�[� �� ≤ −Z�#
�[%� �� ≤ −Z��# + �# + �# + �# + �#�⎭⎪⎪

⎬
⎪⎪⎫.                       (3.8) 

For the realization of any of these cases, one is required to impose conditions by 

realization of any of these terms as follows: 

PW = 0, (3.9a) 

�PS − P"S = 0, (3.9b) 

P"Q − �P"S = 0, (3.9c) 

P"* − �P"R = 0, (3.9d) 

PT − �P"# > 0, (3.9e) 

P"S = �PS,   from equation  (3.9b) 

P"Q = �P"S ⇒ P"Q = ��P, (3.10) 

Since PW = 0 and from equation (3.7) 

P" = �P"#, (3.11a) 

PT = �P"R, (3.11b) 

PU = �P"S, (3.11c) 

PV = �PS, (3.11d) 

P# = �P"R − PU + �, (3.11e) 

P"* = �P"S − PV + �, (3.11f) 

P"" = �PS + �, (3.11g) 

P"Q = �P"R + �PS − P"#, (3.11h) 

PQ = �P"S + �P"R − P"", (3.11m) 

PR = �P"S + �PS − P"R. (3.11n) 
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Recall that one interest is on equation (3.9e) 

PT − �P"# > 0. 
In (3.11b),  PT = �P"R,  thus 

�P"R − �P"# > 0.        (3.12) 

In (3.11g), 

P"" = �PS + �P"#. 
In (3.11h), 

P"Q = �P"R + �PS − P"#. 
But  P"Q = ��PS, thus 

��PS = �P"R + �PS − P"#, 
P"# = �P"R + �P" − ��PS.       (3.13) 

From (3.11f), 

P"* = �P"S − PV + �P"#.       (3.14) 

From (3.11d), 

PV = �PS. 
From (3.9d), 

P"* − �P"R = 0 ⇒ P"* = �P"R, 
P"R = ]^_` .         (3.15) 

Substituting (3.11d) into (3.14), we have 

P"* = �P"S − �PS + �P"#.        (3.16) 

From (3.9b), 

P"S = �PS. 
Substituting (3.9b) into (3.16), we have 

P"* = ��PS − �PS + �P"#, 
P"R = a<]bcd]bef]^g` ,        (3.17) 
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P"# = � h��PS − �PS + �P"#� i + �PS − ��PS, 
P"# = �#�PS − ��PS + ��P"# + �#PS − ���PS� , 

P"# = jagacade`gcaf`k`caf PS,       (3.18) 

Let   l = jagacade`gcaf`k`caf , 
P"# = lPS.         (3.19) 

From (3.12)   

�P"R − �P"# > 0. 
From (3.1) and (3.9b) 

� h��PS − �PS + �lPS� i − �lPS > 0,
 ���PS − �#PS + ��lPS − ��lPS > 0, 

���� − �# + ��l − ��l�PS > 0, 

�

P" = �P"# = �lPSP# = a<g]b` − d<]b` + f<m]b` − ��PS + �lPS
PQ = ��PS + af<]b` − fd]b` + fgm]b` − �PS + �lPS
PR = �#PS + �PS − a<]b` + d]b` − fm]b`PU = �P"S = ��PSPV = �PSPW = 0P"* = ��PS − �PS + �lPSP"" = �PS + �lPSP"# = lPSP"Q = ��PSP"R = "̀ ���PS − �PS + �l�PSP"S = �PS ⎭⎪

⎪⎪
⎪⎪
⎪⎪
⎬
⎪⎪
⎪⎪
⎪⎪
⎪⎫

.    (3.20) 

Ploughing (3.20) back into equation (3.12) gives 

2� = PS�l�# + PS h��� − ��� + ��l� − �� + �li �# 
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+PS n�� + ���� − ��� + �#l� − � + �lo �# 

+PS h�# + � − ��� + �� − �l� i �# + �# 

+2PS���� − �# + ��l� 1� �� + 2PS���� + 2PS��� 

+2PS��p − � + �l��� + 2PS�� + �l��� + 2PSl�� + 2PS����  

+2PS��� − � + �l� "̀ �� + 2PS���.                                                      (3.21) 

By setting PS = 1 in (3.21) and dividing both sides by 2, we have 

� = �2 l�# + 12 h��� − ��� + ��l� − �� + �li �# 

+ 12 n�� + ���� − ��� + �#l� − � + �lo �# 

+ 12 h�# + � − ��� + �� − �l� i �# + 12 �# 

+���� − �# + ��l� 1� �� + ���� + ��� 

+��� − � + �l��� + �� + �l��� + l�� + 2PS���� 

+��� − � + �l� "̀ �� + ���.  

                

(3.22) 

This is positive definite provided that �� > � and � > �� and if we so choose that � = � = � = � = � > 1. This is an indication of positive definiteness and the 

corresponding time derivative. 

�� = −���� − �# + ��l − ��l��#.           (3.23) 

Since equation (3.23) satisfies � defined by equation (3.22) satisfies equation (2.4) if � is 

replaced by ���� − �# + ��l − ��l��#, then � define by (3.22) is a Lyapunov function 

for the fifth order system (2.1). The existence of Lyapunov function guarantee the 

stability of nonlinear ordinary differential equations and by Lasalle’s theorem on stability 

of a system in (Theorem 2.2), the system is locally and globally asymptotically stable. 
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4. Conclusion 

The study applied Lyapunov direct method to construct a Lyapunov function to 

investigate the stability of fifth order nonlinear differential equations. An appropriate 

quadratic form and positive definite ���� and also positive definite ���� was chosen 

such that the derivative of ���� with respect to time along the solution paths of the five 

scales system is equal to the negative ����, that is, � = −�. The existence of Lyapunov 

function for the fifth order nonlinear system guarantee local and global asymptotic 

stability of the system as corroborated by Lassale՚s Invariant theorem 
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