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Abstract 

This paper focuses on finding the solution of some nonlinear partial differential equations 

with initial and boundary conditions. This is achieved using the homotopy perturbation 

method. The solutions obtained are said to be analytic approximate in nature. The 

applications basically are on inhomogeneous partial differential equations. 

1. Introduction 

Nonlinear physical processes play a pivotal role in field of science such as Physics, 

Mathematics and Engineering. Most life occurrences are nonlinear in nature. Linear 

problems are solved analytically but unfortunately it is quite difficult to solve nonlinear 

problems analytically. The analytic methods are fast developing, but still have some 

deficiencies [15]. Homotopy perturbation method was first introduced by He [13-14]. 

The method has been applied by many authors to solve linear and nonlinear problems [8-

12]. The homotopy perturbation method is a combination of classical perturbation 

technique and the homotopy map used in topology [5]. This technique was used by [17] 

to obtain solution of system of Volterra integral equations. [20] investigated the solution 

of fourth order nonlinear parabolic equation using Homotopy Perturbation Method. The 

HPM is an efficient method for solving ordinary, partial and coupled differential 

equation. The HPM yields a very rapid convergence of the solution series in most cases, 

usually only in a few [21]. The aim of this paper is to extend the application of the He’s 

HPM to advection equation in one or two dimensions. The advection equation governs 
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the motion of conserved scalar field as it is transported by a notable velocity vector field. 

We shall illustrate the HPM introduction by [14].  

2. Homotopy Perturbation Method  

Consider a nonlinear differential equation  

���� − ���� = 0,    � ∈ 
                                      (2.1)  

with boundary conditions  

��, ��
��

= 0;    � ∈ �                                         (2.2)  

where � is a differential operator, � is boundary operator, ���� is known analytic 

function, � is the boundary of the domain Ω. The operator � can be divided into linear 

part � and a nonlinear part �; Therefore Equation (2.2) is written as:  

���� + ���� − ���� = 0.                                     (2.3)  

He [2] constructs a homotopy of Equation (2.1), ���,  �� = 
 × �0,  1� →   which 

satisfies  

!��,  �� = �1 − ������� − ���"�� + ������ − ����� = 0  � ∈ �0,  1�,  � ∈ 
    (2.4)  

which is equivalent to  

!��,  �� = ���� − ���"� + ������ − ����� = 0,                       (2.5)  

where [ ]1,0∈p  
is an embedded parameter and 0v  is and initial guess approximation of 

Equation (2.1) which satisfies the boundary conditions. It follows from Equation (2.4) 

and (2.5) that  

!��,  0� = ���� − ���"� = 0                                      (2.6)  

!��,  1� = #��� − ���� = 0.                                      (2.7)  

Hence, the changing process of � from zero to unity is just that of ���,  �� from �"��� to 

( )rv  
in topology, this is called deformation and ���� − ���"� and ���� − ���� are said 

to be homotopic. Assuming that the solution of Equation (2.3) can be written as a power 

series in � 

� = �" + ��$ + �%�% + ⋯ 

setting 1=p , the approximate solution of Equation (2.1) is obtained readily  

� = '()
*→$

� = �" + �$ + �% + ⋯.                                         (2.8)  
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3. Applications  

Example 1. Consider the nonhomogeneous advection problem in one-dimension  

�+ − ��, = �% + -+.,                                               (3.1) 

��/,  0� = -.,.                                                     (3.2)  

We construct a homotopy for the PDE as  

!��,  �� = �+ − ��"�+ − ����, + �% + -+.,� 

substituting the value of the initial condition, we have  

�+ − �-.,�+ = ����, + �% + -+.,�.                                 (3.3)  

Then,  

�+ = ����, + �% + -+.,�                                      (3.4)  

let,  

� = ��"�" + �$�$ + �%�% + ⋯ �                                  (3.5)  

it follows that,  

��"�" + �$�$ + �%�% + ⋯ � 

= ����" + �$ + �% + ⋯ ���" + �$ + �% + ⋯ �, + ��" + �$ + �% + ⋯ �% + -+.,�.  (3.6)  

Given that, 

��/,  0� = -., 

��"�" + �$�$ + �%�% + ⋯ ��/,  0� = -.,                          (3.7)  

so, �" = -.,, �$ = 0, �% = 0 and so on.  

To obtain 0u  

�": ��"�+ = 0                                                   (3.8)  

�" = 1�/�,  �"�/,  0� = -., 

⇒ 1�/� = -., 

�" = -.,                                                      (3.9)  

To obtain ,1u  

�$: ��$�+ − �"��"�, − �"
% − -+., = 0                                   (3.10) 
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��$�+ = -.,�-.,�, + �-.,�% + -+., = 0                                 (3.11) 

��$�+ = −-.%, + -.%, + -+.,                                       (3.12) 

��$�+ = -+.,                                                      (3.13) 

integrating with respect to 4  

�$ = -+., + 1�/�                                                   (3.14) 

but �$�/,  0� = 0 

�$�/,  0� = -., + 1�/� = 0                                        (3.15) 

⇒ 1�/� = −-., 

�$ = -+., − -.,.                                                 (3.16) 

To obtain 2u  

�%: ��%�+ − �"��$�, − �$��"�, − 2�"�$ = 0                        (3.17) 

��%�+ = -.,�-+., − -.,� − �-+., − -.,��-.,�, − 2-.,�-+., − -.,�   (3.18) 

��%�+ = 0 

integrating  

�% = 1�/�,   �%�/,  0� = 0 

⇒ 1�/� = 0 

��%� = 0                                                       (3.19) 

Likewise �6 = 0, �7 = 0 and so on.  

The exact solution  

��/,  4� = �" + �$ + �% + ⋯                                     (3.20) 

= -., + -+., − -., + 0 + ⋯ 

= -+.,. 

The required solution is  

��/,  4� = -+.,.                                               (3.21)  
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Example 2. Consider a nonlinear advection equation in two-dimension  

�,, − �88 + ��, − /                                      (3.22)  

��0,  9� = 1:; 9                                         (3.23)  

�,�/,  0� = 1.                                            (3.24)  

By Homotopy technique we construct a homotopy for the PDE  

!��,  �� = �,, − ��"�,, − �<�88 + ��, − /=                       (3.25)  

substituting the initial condition, we have:  

�,, − �1:; 9�,/ = �<�88 + ��, − /=.                           (3.26)  

Then we have  

�,, = �<�88 + ��, − /=.                                     (3.27)  

Let,  

� = ��"�" + �$�$ + �%�% + ⋯ �                              (3.28)  

substituting Equation (3.28) into Equation (3.22) we have,  

��"�" + �$�$ + �%�% + ⋯ �,, 

+�<��" + �$ + �% + ⋯ �88 + ��" + �$ + �% + ⋯ ���" + �$ + �% + ⋯ �, − /=. (3.29)  

Given that 

��0,  9� = 1:; 9 

��"�" + �$�$ + �%�% + ⋯ ��0,  9� = 1:; 9.                         (3.30)  

It then follows that, 

�" = 1:; 9 ;  �$ = 0;  �6 = 0. 

To obtain �": 

�": ��"�,, = 0                                                  (3.31)  

��"�, = 1$�/�                                                   (3.32)  

but  

��"�,�/,  0� = 1 
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from our initial condition  

⇒ 1�/� = 1 

��"�, = 1                                                     (3.33)  

�" = / + 1%�/�                                                (3.34)  

�"�0,  9� = 1:; 9                                            (3.35)  

⇒ 1%�/� = 1:; 9 

�" = / + 1:; 9.                                              (3.36)  

To obtain �$  

�$: ��$�,, = ��"�88 + �"��"�, − /                          (3.37)  

��$�,, = �/ + 1:; 9�88 + �/ + 1:; 9��/ + 1:; 9�, − /                  (3.38)  

��$�,, = − 1:; 9 + �/ + 1:; 9� − / = 0                          (3.39)  

integrating   

��$�, = 1$�/�;  ��$�,�/,  0� = 0 

�$ = 0.                                                    (3.40)  

To obtain �%  

�% = ��%�,, = ��%�88 + �"��$�, + �$��"�,                  (3.41)  

��%�,, = �0�88 + �/ + 1:; 9��0�, + 0�/ + 1:; 9�             (3.42)  

�% = 0.                                                   (3.43)  

Likewise �6 = 0, �7 = 0and so on.   

The exact solution is   

��/,  9� = �" + �$ + �% + �6 + ⋯                                                 (3.44)  

= / + 1:; 9 + 0 + 0 + 0 = / + 1:; 9 

Our required solution is   

��/,  9� = / + 1:; 9.                                         (3.45)  

Conclusion       

In this work, we have successfully implemented the HPM for solving the advection 
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equation with specific boundary and initial conditions. A clear conclusion can be drawn 

from our solution that the HPM provides highly accurate semi-analytical solutions for 

nonlinear equations. The obtained results show that HPM is simple and easy to 

implement. 
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