
Earthline Journal of Mathematical Sciences 

ISSN (Online): 2581-8147  

Volume 8, Number 2, 2022, Pages 295-304 

https://doi.org/10.34198/ejms.8222.295304  
 

Received: November 18, 2021; Revised: December 9, 2021; Accepted: December 14, 2021 

2020 Mathematics Subject Classification: 49-XX, 49J15, 49K15, 49Mxx. 

Keywords and phrases: outliers, robustness, M-estimators, redescending M-estimators, efficiency. 

*Corresponding author  Copyright © 2022 the Authors 

The Performance of Redescending M-Estimators when  

Outliers are in Two Dimensional Space 

Anekwe Stella Ebele
1,*

 and Onyeagu Sidney Iheanyi
2 

1 Department of Statistics, Nnamdi Azikiwe University, Awka, Nigeria 

e-mail: stellaanekwe@gmail.com 

2 Department of Statistics, Nnamdi Azikiwe University, Awka, Nigeria 

e-mail: si.onyeagu@unizik.edu.ng 

Abstract 

M-estimators are robust estimators that give less weight to the observations that are 

outliers while redescending M-estimators are those estimators that are built such that 

extreme outliers are completely rejected. In this paper, redescending M-estimators are 

compared using both the Monte Carlo simulation method and the real life data to 

ascertain the method that is more efficient and robust when outliers are in both � and � 

directions. The results from the simulation study and the real life data indicate that 

Anekwe redescending M-estimator is more efficient and robust when outliers are in both � and � directions. 

1. Introduction 

1.1.  Redescending M-estimators 

Redescending M-estimators are estimators with their influence functions (�-

functions) redescending to zero. They are those M-estimators that reject extreme outliers. 

Some of these estimators are: 

1.1.1.  Hampel redescending M-estimator  

Hampel’s three-part redescending M-estimator was proposed by [7] in the Princeton 

Robustness study. Its �-function is given as 
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�(�)  =
⎩⎪⎨
⎪⎧ � ;  if |�| ≤  �� sign (�)          ;   if � < |�| ≤  �(��|�|)(���) � sign (�)           ;  if  � < |�| ≤  �0                           ;  if |�| > �

�                            (1)            

where �, �, � are positive constants and 0 <  � ≤  � <  � < ∞ and � are the residuals 

scaledover Median Absolute Deviation MAD.  

1.1.2. Tukey’s biweight redescending M-estimator  

[4] proposed Tukey’s biweight M-estimator and its �-function is given as 

�(�) = "�{1 − (��)&}&        ; |�|  ≤  �0            ; otherwise �                                (2)        

where � is arbitrary value known as tuning constant and � are the residuals scaled over 

MAD. For Tukey’s biweight, � = 4.685 gives 95% efficiency on normal distribution. 

1.1.3. Alarm redescending M-estimator 

[1] proposed the Alarm’s Redescending M-estimator for robust regression and outlier 

detection. Its � -function is given as  

�(�) = ./0� (12(3/5)6
 (/712(3/5)8                     ;  |�| ≤ �0                  ; |�| � � �                           (3)                                   

where � is the tuning constant and � are the residuals scaled over MAD. 

1.1.4.  Anekwe redescending M-estimator 

[3] proposed the Anekwe’s redescending M-estimator for robust regression and 

outlier detection. Its � -function is given as  

�(�)=9� :1 − ;��<&=& :1 + ;��<&=&           ; |�|  < �0        ; |�| ≥ � �                        (4)        

where � is the tuning constant for the @Aℎ observation and the variable � are the residuals 

scaled over MAD. 

2.  Simulation Design 

Monte Carlo simulation method is used to generate random data from different 
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probability distributions. We took the true parameters to be 1, 2, and 5 for CD,  C/,  and C& 

respectively. Each simulation case was replicated E = 1000 times. The estimates of each 

estimator were calculated in each of the iteration and the Mean of the M replicated 

estimates given by 

CFG = ∑ CFGIJIK/E                for L = 0, 1, 2, ⋯ , O                                    (5) 

was recorded for each estimator.  

For comparison, the parameters estimates of the Mean Square Error (MSE) and the 

absolute bias (BIAS) of the [7], [4] and [1] and the [3] redescending M-estimators are 

computed. 

Robustness of an estimator is measured using absolute bias given as Q�RS@�RTCFGU = VCG − CFGV                  for L = 0, 1, 2, ⋯ , O                              (6) 

Efficiency of an estimator is measured using the MSE (mean square error) defined 

as 

EXYTCFGU = ∑ (CG − CFGI)&JIK/ E           for L = 0, 1, 2, ⋯ , O                             (7) 

and the variance of the estimator is defined as 

[��TCFGU = EXYTCFGU − ;S@�RTCFGU<&         for L = 0, 1, 2, ⋯ , O.                    (8) 

The estimator with lowest MSE is the most efficient; the smaller the MSE the more 

efficient is the estimator. 

Simulated data were generated (including percentage mixtures of contaminated and 

uncontaminated data) in simple and multiple regressions, using two sample sizes, ^ = 20 

and 200. The choices of the distributions used and the range choices for each distribution 

were chosen to use the idea of [13].  

Results and Discussions from the Simulation Study  

The Simulated results for the Hampel, Bisquare (Biweight), Alarm and Anekwe’s 

redescending M-estimators are discussed as follows: 

Discussion of stimulated results for data with outliers in both _ and ` directions.   

At 10% outliers for both � and �  axes in a simple regression, the result from Table 1 
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indicates that the Anekwe’s estimator takes the lead as the most efficient and robust 

method but followed closely by the Alarm estimator. The Hampel and Bisquare 

estimators performed badly in this category. 

Since M-estimators cannot perform very well when outliers are in the �-direction, the 

results of Hampeland Bisquare estimators got worse by the increase of outliers at both 

axes, that is, 15% outliers for both � and �axes in a simple regression as shown in Table 

2. The Anekwe estimator is still the best with respect to efficiency and robustness but 

followed closely by the Alarm estimator. 

At 20% outliers in both axes in a simple regression as shown in Table 3, the Anekwe 

and Alarm estimators are more efficient and robust compared to other estimators. All the 

estimators do not perform very well in this category with Bisquare estimator on the lead. 

Table 4 presents the result for 10% outliers in both axes in a multiple regression 

model. The Anekwe estimator is more efficient and robust compared to other estimators. 

Alarm and Hampel estimator follow closely as the second and third best estimators 

respectively. The Bisquare estimator has high parameters estimates for C/. 
Furthermore, the Anekwe estimator takes the lead as the most efficient and robust 

estimator as shown in Table 5 for 15% outliers for both � and �  axes in a multiple 

regression. Alarm estimator came second while Hampel’s estimator was the third most 

efficient and robust estimator. The Bisquare estimator is also the least efficient and robust 

estimator in this category. 

Lastly, Table 6 presents the result for 20% outliers in both axes in a multiple 

regression model. The Anekwe estimator outperformed other estimators as the most 

efficient and robust estimator. The second most efficient and robust estimator is the 

Alarm estimator which performs better than Hampel and Bisquare estimators. 
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Table 1: Simulated MSE and BIAS on simple regression for 10% outliers in � and �-axes 

Sample 

Size  

Beta Criteria Bisquare Hampel Alarm Anekwe 

   20 ab   BIAS 0.0084 0.0913 0.0297 0.0130 

 ab   MSE 0.1651 0.1832 0.0903 0.0870 

   20 ac   BIAS 1.9782 1.9831 0.3536 0.3026 

 ac   MSE 3.9194 3.9387 0.9525 0.8435 

 200 ab   BIAS 0.0138 0.0733 0.0204 0.0092 

 ab   MSE 0.0161 0.0224 0.0079 0.0072 

 200 ac   BIAS 1.9747 1.9812 0.0072 0.0064 

 ac   MSE 3.9000 3.9256 0.0252 0.0242 

 

Table 2: Simulated MSE and BIAS on simple regression for 15% outliers in � and �-axes 

Sample 

Size  

Beta Criteria Bisquare Hampel Alarm Anekwe 

   20 ab   BIAS 0.0344 0.1965 0.0539 0.0203 

 ab   MSE 0.1939 0.2917 0.1469 0.1302 

   20 ac   BIAS 1.9850 1.9965 0.5903 0.5300 

 ac   MSE 3.9452 3.9912 1.5426 1.3790 

 200 ab   BIAS 0.0310 0.1949 0.0634 0.0290 

 ab   MSE 0.0216 0.0636 0.0138 0.0100 

 200 ac   BIAS 1.9875 1.9983 0.0163 0.0270 

 ac   MSE 3.9504 3.9936 0.0649 0.0816 
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Table 3: Simulated MSE and BIAS on simple regression for 20% outliers in � and �-axes 

Sample 

Size  

Beta Criteria Bisquare Hampel Alarm Anekwe 

   20 ab   BIAS 0.0809 0.5218 0.1471 0.0571 

 ab   MSE 0.2606 0.9700 0.2870 0.2245 

   20 ac   BIAS 1.9939 2.0231 1.0304 0.9843 

 ac   MSE 3.9797 4.0984 2.5685 2.3292 

 200 ab   BIAS 0.0916 0.4125 0.1772 0.0743 

 ab   MSE 0.0354 0.2180 0.0547 0.0247 

 200 ac   BIAS 1.9970 2.0180 0.3748 0.6731 

 ac   MSE 3.9885 4.0727 0.8216 1.4156 

Table 4: Simulated MSE and BIAS on multiple regression for 10% outliers in � and �-

axes 

Sample 

Size  

Beta Criteria Bisquare Hampel Alarm Anekwe 

  20 ab BIAS 0.0007 0.0384 0.0131 0.0051 

 ab MSE 0.1750 0.1096 0.1054 0.1072 

  20 ac BIAS 1.7762 0.3924 0.3628 0.3328 

 ac MSE 3.5352 1.0484 0.9481 0.9278 

  20 ad BIAS 0.0162 0.0138 0.0021 0.0044 

 ad MSE 0.1574 0.1004 0.0893 0.0100 

  200 ab BIAS 0.0154 0.0286 0.0107 0.0049 

 ab MSE 0.0146 0.0109 0.0069 0.0064 

  200 ac BIAS 1.7170 0.5577 0.0656 0.0343 

 ac MSE 3.0553 0.9027 0.0718 0.0473 

  200 ad BIAS 0.0246 0.0274 0.0036 0.0043 

 ad MSE 0.0131 0.0120 0.0052 0.0049 
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Table 5: Simulated MSE and BIAS on multiple regression for 15% outliers in � and �-

axes 

Sample 

size  

Beta Criteria Bisquare Hampel Alarm Anekwe 

  20 ab BIAS 0.0680 0.1109 0.0407 0.0182 

 ab MSE 0.5347 0.2455 0.1569 0.1462 

  20 ac BIAS 1.9679 0.5967 0.4631 0.4363 

 ac MSE 4.0595 1.6517 1.2286 1.1852 

  20 ad BIAS 0.1498 0.1103 0.0369 0.0132 

 ad MSE 0.4868 0.3000 0.1460 0.1378 

  200 ab BIAS 0.0122 0.1560 0.0297 0.0117 

 ab MSE 0.0208 0.0553 0.0116 0.0091 

  200 ac BIAS 1.8639 1.3730 0.2419 0.0741 

 ac MSE 3.5381 2.7039 0.3560 0.0787 

  200 ad BIAS 0.0999 0.2670 0.0148 0.0020 

 ad MSE 0.0294 0.1325 0.0104 0.0063 

 

Table 6: Simulated MSE and BIAS on multiple regression for 20% outliers in � and �-

axes 

Sample 

size  

Beta Criteria Bisquare Hampel Alarm Anekwe 

  20 ab BIAS 0.3308 0.6816 0.1465 0.0603 

 ab MSE 1.0812 1.9598 0.4146 0.2479 

  20 ac BIAS 1.9990 1.0853 0.8032 0.6188 

 ac MSE 4.1447 3.3236 1.9788 1.6481 

  20 ad BIAS 0.5267 0.5560 0.1276 0.0440 



Anekwe Stella Ebele and Onyeagu Sidney Iheanyi 

http://www.earthlinepublishers.com 

302

 ad MSE 1.5443 1.6220 0.4391 0.2376 

  200 ab BIAS 0.1171 0.8758 0.1856 0.0510 

 ab MSE 0.0476 1.0360 0.0847 0.0192 

  200 ac BIAS 1.9319 1.9476 0.8974 0.2640 

 ac MSE 3.7705 4.0105 1.8030 0.3753 

  200 ad BIAS 0.2784 1.0724 0.2496 0.0205 

 ad MSE 0.1216 1.4194 0.1884 0.0161 

3.  Real-life Data 

For comparison, we applied the redescending M-estimators to real-life data and the 

dataset had been extensively used by other researchers in the area of robust regression. 

The Hawkins, Bradu, and Kass data 

[8] generated artificial data for testing the performance of robust estimators. The data 

contains 75 observations in four dimensions (one response and three explanatory 

variables). The first 10 observations are bad leverage points, and the next four points are 

good leverage points (i.e., their _e are outlying, but the corresponding `e fit the model 

quite well).  

Table 7: Estimates of the model parameters for Hawkins, Bradu and Kass data 

Parameter Hampel Biweight Alarm Proposed 

�b -0.181 -0.946 -0.181 -0.181 

�c 0.081 0.145 0.082 0.081 

�d 0.040 0.197 0.040 0.040 

�f -0.052 0.180 -0.052 -0.052 

Data points used 65 71 65 65 

Residual 

standard error 

0.77 0.63 0.56 0.56 
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The summary of the results for estimates of the model parameters for Hawkins, 

Bradu and Kass data for the estimators are presented in Table 7. Alarm, Hampel and 

Anekwe’s method detected 10 outliers in the robust fit while Biweight estimator detected 

4 outliers in the analysis. 

Conclusion 

Simulation studies were done to ascertain the effectiveness of the redescending M-

estimators when outliers are in both x and y directions. Mean square error (MSE) and 

BIAS were used for comparison under two different sample sizes. 

From the stimulated results, it was obvious that when outliers are both in the leverage 

points and the response, the Anekwe estimator is the most efficient and robust estimator 

compared to the Hampel, Alarm and Bisquare estimators. 
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