Hankel Determinant Problem for q-strongly Close-to-Convex Functions

Khalida Inayat Noor ${ }^{1}$ and Muhammad Aslam Noor ${ }^{2,{ }^{*}}$
${ }^{1}$ Department of Mathematics, COMSATS University Islamabad, Islamabad, Pakistan e-mail: khalidan@gmail.com
${ }^{2}$ Mathematics Department, COMSATS University Islamabad, Islamabad, Pakistan e-mail: noormaslam@gmail.com

Abstract

In this paper, we introduce a new class $K_{q}(\alpha), \quad 0<\alpha \leq 1, \quad 0<q<1$, of normalized analytic functions f such that $\left|\arg \frac{D_{q} f(z)}{D_{q} g(z)}\right| \leq \alpha \frac{\pi}{2}$, where g is convex univalent in $E=\{z:|z|<1\}$ and $D_{q} f$ is the q-derivative of f defined as: $$
D_{q} f(z)=\frac{f(z)-f(q z)}{(1-q) z}, \quad z \neq 0 \quad D_{q} f(0)=f^{\prime}(0) .
$$

The problem of growth of the Hankel determinant $H_{n}(k)$ for the class $K_{q}(\alpha)$ is investigated. Some known interesting results are pointed out as applications of the main results.

1 Introduction and Preliminary Results

Let f be a univalent function defined for $z \in E=\{z:|z|<1\}$ by

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

[^0]Let $C(\beta), S^{*}(\beta), \quad 0 \leq \beta<1$ be the subclasses of univalent functions which are respectively convex and starlike of order β. Let $K(\beta)$ be a class of strongly close-to-convex functions of order α in the sense of Pommerenke [19].

A function f, analytic in E and given by (1.1) belongs to $K(\alpha)$, if and only if, there exists $g \in S^{*}$ such that

$$
\begin{equation*}
\left|\arg \frac{z f^{\prime} f(z)}{g(z)}\right| \leq \frac{\alpha \pi}{2}, \quad \forall z \in E, \quad \alpha \geq 0 \tag{1.2}
\end{equation*}
$$

It is obvious that $K(0)=C, \quad K(1)=K$, which is the class of close-to-convex functions introduced by Kaplan [6] and it consists of univalent functions, whereas $f \in K(\alpha), \quad \alpha>1$ may be of infinite valence, see [2].

The concept of q-derivative has been introduced and studied in [5, 7] for $0<$ $q<1$ as follows:

$$
D_{q} f(z)=\frac{f(z)-f(q z)}{(1-q) z}, \quad z \neq 0, \quad \text { and } \quad D_{q} f(0)=f^{\prime}(0)
$$

Then, from (1.1), we have

$$
\begin{equation*}
D_{q} f(z)=\frac{1}{z}\left[z+\sum_{n=2}^{\infty}[n]_{q} a_{n} z^{n}\right] \tag{1.3}
\end{equation*}
$$

where

$$
[n]_{q}=\frac{1-q^{n}}{1-q}, \quad n=2,3, \ldots
$$

When

$$
q \rightarrow 1^{-}, \quad[n]_{q} \rightarrow n, \quad \text { as } \quad \lim _{q \rightarrow 1^{-}} \frac{1-q^{n}}{1-q}=n
$$

The class S_{q}^{*} of q-starlike functions was introduced in [4] and has been studied in [7, 8, 9, 10, 12, 13, 14, 15, 16, 20, 21, 22].

Agarwal and Sahoo [1] defined and considered the class $S_{q}^{*}(\beta), \quad 0 \leq \beta<1$.

$$
f \in S_{q}^{*}(\beta), \quad \text { if } \quad\left|\frac{z D_{q} f(z)}{f(z)}-\frac{1-\beta q}{1-q}\right|<\frac{1-\beta}{1-q}, \quad z \in E
$$

If $q \rightarrow 1^{-}$, then $S_{q}^{*}(\beta)$ reduces to the class $S^{*}(\beta)$ and also $S_{q}^{*}(0)=S_{q}^{*}$.

Definition 1.1. Let f be analytic in E and be given by 1.1). Then f is said to belong to the class $K_{q}(\alpha), \quad 0<\alpha \leq 1$, if there exists $g \in C$ such that

$$
\left|\arg \frac{D_{q} f(z)}{D_{q} g(z)}\right| \leq \frac{\alpha \pi}{2}
$$

We call the class $K_{q}(\alpha)$, the class of q-strongly close-to-convex functions.
When $q \rightarrow 1^{-}$, we have the class $K(\alpha)$ of strongly close-to-convex functions, defined by 1.2 .

Lemma 1.1. 17] Let $g \in C$. Then, $\forall q \in(0,1), z D_{q} g$ is in the class $S^{*}(\beta), \quad \beta=\left(\frac{1-q}{2(1+q)}\right)$.

Lemma 1.2. [18] Let $\theta_{1}<\theta_{2}<\ldots<\theta_{k}<\theta_{1}+2 \pi$ and $\lambda_{1}, \lambda_{2}, \ldots \lambda_{k}$ be real, $\lambda>0, \quad \lambda \geq \lambda_{j} \quad(j=1,2, \ldots, k)$. If

$$
\begin{equation*}
\Psi(z)=\Pi_{j=1}^{k}\left(1-e^{i \theta_{j}} z\right)^{-\lambda_{j}}=\sum_{n=1}^{\infty} b_{n} z^{n} \tag{1.4}
\end{equation*}
$$

then

$$
b_{n}=O(1) n^{\lambda-1}, \quad \text { as } \quad n \rightarrow \infty
$$

Lemma 1.3. [8] Let $p: p(z) 1+c_{1} z+c_{2} z^{2}+\ldots$ be analytic in E with $\operatorname{Re}\{p(z)\}>0$, $z \in E$. Then, for $z=r e^{i \theta}$,

$$
\int_{0}^{2 \pi}\left|p\left(r e^{i \theta}\right)\right| d \theta<c(\lambda) \frac{1}{(1-r)^{\lambda-1}}
$$

where $\lambda>1$ and $c(\lambda)$ is a constant depending only on λ.

2 Main Results

Theorem 2.1. Let $f \in K_{q}(\alpha)$ and be given by 1.1. Then

$$
[n]_{q} a_{n}=O(1) n^{\gamma}, \quad \gamma=2(1-\beta)+\alpha-1, \quad(n \rightarrow \infty)
$$

Proof. By Cauchy Theorem, we have

$$
\begin{align*}
{[n]_{q}\left|a_{n}\right| } & =\frac{1}{2 \pi r^{n+1}}\left|\int_{0}^{2 \pi} z D_{q} f(z) e^{i n \theta} d \theta\right|, \quad z=r e^{i \theta} \\
& \leq \frac{1}{2 \pi r^{n+1}} \int_{0}^{2 \pi}\left|z D_{q} g(z) h(z)^{\alpha}(z)\right| d \theta \tag{2.1}
\end{align*}
$$

where $g \in C, \quad \operatorname{Re}\{h(z)\}>0$.
Now, using Lemma 1.1, together with a well-known result, we can write

$$
\begin{equation*}
D_{q} g(z)=\left(\frac{G(z)}{z}\right)^{1-\beta}, \quad G \in S^{*} \tag{2.2}
\end{equation*}
$$

Thus, from (2.1) and (2.2), we have

$$
\begin{align*}
{[n]_{q}\left|a_{n}\right| } & \leq \frac{1}{2 \pi r^{n+1-\beta}} \int_{0}^{2 \pi}|G(z)|^{(1-\beta)}|h(z)|^{\alpha} d \theta \\
& \leq \frac{1}{r^{n+1-\beta}}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}|G(z)|^{(1-\beta)\left(\frac{2}{2-\alpha}\right)} d \theta\right)^{\frac{2-\alpha}{2}}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}|h(z)|^{2} d \theta\right)^{\frac{\alpha}{2}} \\
& \leq c_{1}\left(\frac{1}{1-r}\right)^{2(1-\beta)+\alpha-1}, \quad(r \rightarrow 1) \tag{2.3}
\end{align*}
$$

where we have used Holder's inequality, Lemma 1.3 and subordination for starlike functions. Taking $r=1-\frac{1}{n}$ in 2.3 , we obtain the required result.

We have the following special cases.

Corollary 2.1. For $q \rightarrow 1^{-}, f$ belongs to the class $K(\alpha)$ of strongly close-to-convex and this gives

$$
a_{n}=O(1) n^{\alpha-2}, \quad(n \rightarrow \infty)
$$

Corollary 2.2. Let $f \in K_{q}$ with $\alpha=1$. Then it follows from Theorem 2.1,

$$
a_{n}=O(1)\left[\left(\frac{1-q}{1-q^{n}}\right)\right] n^{2(1-\beta)}, \quad \beta=\frac{1-q}{2(1+q)}
$$

We now discuss the Hankel determinant problem for $f \in K_{q}(\alpha)$.
Let $f \in K_{q}(\alpha)$ be given by 1.1 . The $k^{t h}$ Hankel determinant of f is defined for $k \geq 1, n \geq 1$ by

$$
H_{k}(n)=\left|\begin{array}{cccc}
a_{n} & a_{n+1} & \ldots & a_{n+k-1} \tag{2.4}\\
a_{n+1} & \ldots & \ldots & \ldots \\
\vdots & \vdots & \vdots & \vdots \\
a_{n+k-1} & \ldots & \ldots & a_{n+2 k-2}
\end{array}\right|
$$

This problem has been solved in [18] for starlike functions and investigated by Noor [11] for the class K of close-to-convex functions.

By using a modified version of Pommerenke method [18], the rate of growth of $H_{k}(n)$ for the class $K_{q}(\alpha)$ will be discussed.

Remark 2.1. From Definition 1.1 and Lemma 1.1, it follows that for $f \in K_{q}(\alpha)$, we can write

$$
\begin{equation*}
z D_{q} f(z)=(G(z))^{1-\beta} h^{\alpha}(z), \quad G \in S^{*}, \quad \operatorname{Re}\{h(z)\}>0, \quad \beta=\frac{(1-q)}{2(1+q)}, \quad \alpha \in(0,1] . \tag{2.5}
\end{equation*}
$$

Also, $G \in S^{*}$ can be represented as

$$
G(z)=z \exp \left[\int_{0}^{2 \pi} \log \frac{1}{\left(1-z e^{i t}\right)} d \mu(t)\right]
$$

where $\mu(t)$ is an increasing function and $\mu(2 \pi)-\mu(0)=2$.
Let $\alpha_{1} \geq \alpha_{2} \geq \ldots$, be the jumps of $\mu(t)$ and $t=\theta_{1}, \theta_{2}, \ldots$ be the values at which these jumps occur. We may assume that $\theta_{1}=0$. Then $\alpha_{1}+\alpha_{2}+\ldots \leq 2$ and $\alpha_{1}+\alpha_{2}+\ldots .+\alpha_{n}=2$, for some k, if and only if, G is of the form

$$
\begin{equation*}
G(z)=z \Pi_{j=1}^{k}\left(1-e^{i \theta_{j}} z\right)^{\frac{-2}{k}} \tag{2.6}
\end{equation*}
$$

In [18], the following there cases are considered and for each case η_{m} are defined as:
(i) $0 \leq \alpha_{1} \leq 1$, and $\eta_{m}=\alpha_{m+1}(m=0,1,2, \ldots)$.
(ii) $1<\alpha_{1}<\frac{3}{2}$ and $\eta_{0}=\alpha_{1}, \quad \eta_{1}=\max \left(\alpha_{1}-1, \alpha_{2}\right), \quad \eta_{2}=\max \left(\alpha_{1}-\right.$ $\left.1, \alpha_{2}\right), \quad \eta_{m}=\alpha_{3} \quad$ for $\quad m \geq 3$.
(iii) $\frac{3}{2} \leq \alpha_{1} \leq 2$ and $\eta_{0}=\alpha_{1}, \quad \eta_{1}=\max \left(\alpha_{1}-1, \alpha_{2}\right), \quad \eta_{m}=\alpha_{m}(m \geq 2)$.

We first prove the following.
Theorem 2.2. Let $f \in K_{q}(\alpha), \quad \alpha \in\left(\frac{1}{2}, 1\right)$. Then, for $m=0,1,2, \ldots$, there are numbers γ_{m} and $c_{m \mu}(\mu=0,1, \ldots, m)$ that satisfy $\left|c_{c 0}\right|=\left|c_{m m}\right|=1$, and

$$
\begin{equation*}
\sum_{\nu=0}^{\infty} \gamma_{\nu} \leq 3, \quad 0 \leq \gamma_{m} \leq \frac{2}{m+1} \tag{2.7}
\end{equation*}
$$

such that

$$
\sum_{\mu=0}^{\infty}[n]_{q} c_{m \mu} a_{n+\mu}=O(1) n^{\left\{\gamma_{m}(1-\beta)+\alpha-1\right\}}, \quad(n \rightarrow \infty)
$$

where G in equation 2.5 is of the form equation 2.6 and $\beta=\frac{1-q}{2(1+q)}$. The bounds (2.7) are the best possible, see [18].

Proof. We write

$$
\phi_{m}(z)=\sum_{\mu=0}^{m} c_{m \mu} z^{m-\mu}
$$

and

$$
\begin{equation*}
\phi_{m}(z)\left(z D_{q} f(z)\right)=\sum_{n=1}^{m} b_{m n} z^{m+n}+\sum_{n=1}^{\infty}[n+m]_{q} a_{m n} z^{m+n} \tag{2.8}
\end{equation*}
$$

where

$$
\begin{aligned}
b_{m n} & =\sum_{\nu=0}^{n}[n+\nu]_{q} c_{m-\nu} a_{n-\nu} \\
a_{m n} & =\sum_{\mu=0}^{m} c_{m \mu} a_{n+\mu}, \quad\left|c_{m 0}\right|=\left|c_{m m}\right|=1
\end{aligned}
$$

We shall consider the case, where g in (2.5) is of the form given in 2.6), that is, $\alpha_{1}+\alpha_{2}+\ldots+\alpha_{k}=2 \quad$ with $\quad \gamma_{m}=\eta_{m}$. It follows that $\gamma_{m}=\frac{2}{m+1}, \quad \gamma_{0}+\gamma_{1}+$ $\ldots+\gamma_{k} \leq 3$ and $\gamma_{m}=\frac{2}{m+1}$ implies that $m=k-1, \quad \alpha_{1}=\alpha_{2}=\ldots+\alpha_{k}$.

Now, from (2.5), 2.8), Cauchy integral formula and $z=r e^{i \theta}$, we have

$$
\begin{align*}
{[n+m]_{q}\left|a_{m n}\right| } & \leq \frac{1}{2 \pi r^{n+m}} \int_{0}^{2 \pi}\left|\phi_{m}(z) G(z)^{1-\beta)} h^{\alpha}(z)\right| d \theta \\
& \leq \frac{(4)^{\beta}}{r^{n+m+\beta}}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\phi(z) G(z) h^{\alpha}(z)\right| d \theta\right) \tag{2.9}
\end{align*}
$$

where we have used the well-known distortion result for the starlike function G.
Applying Schwartz inequality, it follows from (2.9) that

$$
\begin{equation*}
[n+m]\left|a_{m n}\right| \leq \frac{(4)^{\beta}}{r^{n+m+\beta}}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\phi_{m}(z) G(z)\right|^{2} d \theta\right)^{\frac{1}{2}}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}|h(z)|^{2 \alpha} d \theta\right)^{\frac{1}{2}} \tag{2.10}
\end{equation*}
$$

When, we write $\left[\phi_{m}(z) G(z)\right]^{2}$ in the form 1.4, the exponent $\left(-\lambda_{j}\right)$ satisfies $\lambda_{j} \leq 2(1-\beta) \gamma_{m} \quad(j=1,2, \ldots, k)$. Hence by using Lemma 1.2, we have

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|\phi_{m}(z) G(z)\right|^{2} d \theta \leq c_{1} n^{\left\{2(1-\beta) \gamma_{m}-1\right\}} \tag{2.11}
\end{equation*}
$$

From (2.11, 2.10 and Lemma 1.3 , we have

$$
[n+m]_{q}\left|a_{m n}\right| \leq c_{2} n^{\left\{\gamma_{m}(1-\beta)+\alpha-1\right\}}, \quad(n \rightarrow \infty)
$$

where c_{1} and c_{2} are constants. This proves the result.

The following result for the Hankel determinant $H_{k}(n)$ can now easily be proved.

Theorem 2.3. Let $f \in K_{q}(\alpha), \quad \alpha \in\left(\frac{1}{2}, 1\right], \quad q \in(0,1)$. Then

$$
H_{k}(n)=O(1)\left[\left(\frac{1-q}{1-q^{n}}\right)^{k}\right] n^{\{2(1-\beta)-k(1-\alpha)\}}, \quad k \geq 1
$$

where G in 2.5 is of the form (2.6).

Following well-known results can obtained as special cases of Theorem 2.3.
(i) When $q \rightarrow 1^{-}, \quad H_{k}(n)=O(1) n^{2\{2-k(2-\alpha)\}}$.
(ii) With $\alpha=1, \quad q \rightarrow 1^{-}, \quad f \in K$, we have $H_{k}(n)=O(1) n^{(2-k)}$, $(n \rightarrow \infty)$. This result has been proved in [11].
(iii) Also, for $k=2, \quad q \rightarrow 1^{-}$, we have $H_{2}(n)=O(1) n^{2(\alpha-1)}$.

Conclusion

In this paper, we have introduced a new class $K_{q}(\alpha)$ of q-strongly close-to-convex functions using the q-differential operator. We have investigated the problem of the rate of growth of the Hankel determinant for the class $K_{q}(\alpha)$. Several special cases are discussed as applications of the derived results. The ideas and techniques of this paper may stimulate further research in this interesting field.

Acknowledgement

The authors are grateful to the referee and the Editor-in-Chief for their very constructive suggestions, editing and comments.

References

[1] S. Agarwal and K. Shoo, A generalization of starlike functions of order alpha, Hokkaido Math. J. 46 (2017), 15-27.
https://doi.org/10.14492/hokmj/1498788094
[2] A. W. Goodman, On class-to-convex functions of higher order, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 15 (1972), 17-30.
[3] W. K. Hayman, On functions with positive real part, J. London Math. Soc. 36 (1961), 34-38.
[4] M. E. H. Ismail, E. Merkes and D. Styer, A generalization of starlike functions, Complex Variables Theory Appl. 14 (1990), 77-84.
https://doi.org/10.1080/17476939008814407
[5] F. H. Jackson, On q-functions and certain differential operator, Trans. Roy. Soc. Edinb. 46 (1908), 253-281. https://doi.org/10.1017/S0080456800002751
[6] W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1 (1952), 169-185. https://doi.org/10.1307/mmj/1028988895
[7] V. Koc and P. Cheung, Quantum Calculus, Springer, New York, 2001.
[8] K. I. Noor, On generalized q-close-to-convexity, Appl. Math. Inform. Sci. 11 (2017), 1383-1388. https://doi.org/10.18576/amis/110515
[9] K. I. Noor, Some classes of analytic functions associated with q-Ruscheweyh differential operator, Facta Univ. Ser. Math. Inform. 33 (2018), 531-538.
[10] K. I. Noor and S. Riaz, Generalized q-starlike functions, Studia Sci. Math. Hungar. 54(4) (2017), 509-522. https://doi.org/10.1556/012.2017.54.4.1380
[11] K. Inayat Noor, On the Hankel determinant of close-to-convex univalent functions, Int. J. Math. Math. Sci. 3 (1980), 447-481.
https://doi.org/10.1155/S016117128000035X
[12] K. I. Noor, Some classes of q-alpha starlike and related analytic functions, J. Math. Anal. 8(4) (2017), 24-33.
[13] K. I. Noor, S. Riaz and M. A. Noor, On q-Bernardi integral operator, TWMS J. Pure Appl. 8(1) (2017), 2-11.
[14] K. I. Noor and M. A. Noor, Linear combination of generalized q-starlike functions, Appl. Math. Inform. Sci. 11(3) (2017), 7045-7048.
https://doi.org/10.18576/amis/110314
[15] K. I. Noor, M. Nasir and M. A. Noor, On q-quasi convexity related with strongly Jankowski function, J. Advan. Math. Stud. 14(2) (2021), 251-256.
[16] K. I. Noor, M. A. Noor and H. M. Mohamed, Quantum approach to starlike functions, Appl. Math. Inform. Sci. 15(4) (2021), 437-441.
https://doi.org/10.18576/amis/150405
[17] K. Piejko and J. Sokol, On convolution and q-calculus, Bol. Soc. Mat. Mex. 26 (2020), 349-359. https://doi.org/10.1007/s40590-019-00258-y
[18] Ch. Pommerenke, On the coefficients of Hankel determinant of univalent functions, J. London Math. Soc. 41 (1965), 111-122.
https://doi.org/10.1112/jlms/s1-41.1.111
[19] Ch. Pommerenke, On close-to-convex analytic functions, Trans. Amer. Math. Soc. 114 (1965), 176-186. https://doi.org/10.1090/S0002-9947-1965-0174720-4
[20] S. A. Shah and K. I. Noor, Study on the q-analogue of a certain family of linear operators, Turkish J. Math. 43 (2019), 2707-2714.
https://doi.org/10.3906/mat-1907-41
[21] H. E. O. Ucar, Coefficient inequality for q-starlike functions, Appl. Math. Comput. 276 (2016), 122-126. https://doi.org/10.1016/j.amc.2015.12.008
[22] H. E. O. Ucar, O. Mert and Y. Polatoglu, Some properties of q-close-to-convex functions, Hacettepe J. Math. Stat. 46 (2017), 1105-1112.

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted, use, distribution and reproduction in any medium, or format for any purpose, even commercially provided the work is properly cited.

[^0]: Received: November 11, 2021; Accepted: January 3, 2022
 2010 Mathematics Subject Classification: 30C45, 30C50.
 Keywords and phrases: q-derivative, convolution operator, starlike functions, close-to-convex functions, Hankel determinant.

 * Corresponding author

