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Abstract

In this paper, we introduce a new class Kq(α), 0 < α ≤ 1, 0 < q < 1,

of normalized analytic functions f such that
∣∣ arg

Dqf(z)
Dqg(z)

∣∣ ≤ απ2 , where g is

convex univalent in E = {z : |z| < 1} and Dqf is the q-derivative of f defined

as:

Dqf(z) =
f(z)− f(qz)

(1− q)z
, z 6= 0 Dqf(0) = f ′(0).

The problem of growth of the Hankel determinant Hn(k) for the class

Kq(α) is investigated. Some known interesting results are pointed out as

applications of the main results.

1 Introduction and Preliminary Results

Let f be a univalent function defined for z ∈ E = {z :| z |< 1} by

f(z) = z +

∞∑
n=2

anz
n. (1.1)
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Let C(β), S∗(β), 0 ≤ β < 1 be the subclasses of univalent functions which

are respectively convex and starlike of order β. Let K(β) be a class of strongly

close-to-convex functions of order α in the sense of Pommerenke [19].

A function f, analytic in E and given by (1.1) belongs to K(α), if and only if,

there exists g ∈ S∗ such that∣∣arg zf ′f(z)

g(z)

∣∣ ≤ απ

2
, ∀z ∈ E, α ≥ 0. (1.2)

It is obvious that K(0) = C, K(1) = K, which is the class of close-to-convex

functions introduced by Kaplan [6] and it consists of univalent functions, whereas

f ∈ K(α), α > 1 may be of infinite valence, see [2].

The concept of q-derivative has been introduced and studied in [5, 7] for 0 <

q < 1 as follows:

Dqf(z) =
f(z)− f(qz)

(1− q)z
, z 6= 0, and Dqf(0) = f ′(0).

Then, from (1.1), we have

Dqf(z) =
1

z

[
z +

∞∑
n=2

[n]qanz
n

]
, (1.3)

where

[n]q =
1− qn

1− q
, n = 2, 3, ...

When

q → 1−, [n]q → n, as lim
q→1−

1− qn

1− q
= n.

The class S∗q of q-starlike functions was introduced in [4] and has been studied in

[7, 8, 9, 10, 12, 13, 14, 15, 16, 20, 21, 22].

Agarwal and Sahoo [1] defined and considered the class S∗q (β), 0 ≤ β < 1.

f ∈ S∗q (β), if

∣∣∣∣zDqf(z)

f(z)
− 1− βq

1− q

∣∣∣∣ < 1− β
1− q

, z ∈ E.

If q → 1−, then S∗q (β) reduces to the class S∗(β) and also S∗q (0) = S∗q .
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Definition 1.1. Let f be analytic in E and be given by (1.1). Then f is said to

belong to the class Kq(α), 0 < α ≤ 1, if there exists g ∈ C such that∣∣argDqf(z)

Dqg(z)

∣∣ ≤ απ

2
.

We call the class Kq(α), the class of q-strongly close-to-convex functions.

When q → 1−, we have the class K(α) of strongly close-to-convex functions,

defined by (1.2).

Lemma 1.1. [17] Let g ∈ C. Then, ∀q ∈ (0, 1), zDqg is in the class

S∗(β), β =
( 1−q
2(1+q)

)
.

Lemma 1.2. [18] Let θ1 < θ2 < .... < θk < θ1 + 2π and λ1, λ2, ...λk be real,

λ > 0, λ ≥ λj (j = 1, 2, ..., k). If

Ψ(z) = Πk
j=1

(
1− eiθjz

)−λj
=
∞∑
n=1

bnz
n, (1.4)

then

bn = O(1)nλ−1, as n→∞.

Lemma 1.3. [8] Let p : p(z)1+c1z+c2z
2+... be analytic in E with Re{p(z)} > 0,

z ∈ E. Then, for z = reiθ,∫ 2π

0

∣∣p(reiθ)∣∣dθ < c(λ)
1

(1− r)λ−1
,

where λ > 1 and c(λ) is a constant depending only on λ.

2 Main Results

Theorem 2.1. Let f ∈ Kq(α) and be given by (1.1). Then[
n
]
q
an = O(1)nγ , γ = 2(1− β) + α− 1, (n→∞).
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Proof. By Cauchy Theorem, we have

[n]q
∣∣an∣∣ =

1

2πrn+1

∣∣∣∣ ∫ 2π

0
zDqf(z)einθdθ

∣∣∣∣, z = reiθ

≤ 1

2πrn+1

∫ 2π

0

∣∣∣∣zDqg(z)h(z)α(z)

∣∣∣∣dθ, (2.1)

where g ∈ C, Re{h(z)} > 0.

Now, using Lemma 1.1, together with a well-known result, we can write

Dqg(z) =

(
G(z)

z

)1−β
, G ∈ S∗. (2.2)

Thus, from (2.1) and (2.2), we have

[n]q
∣∣an∣∣ ≤ 1

2πrn+1−β

∫ 2π

0

∣∣G(z)
∣∣(1−β)∣∣h(z)

∣∣αdθ
≤ 1

rn+1−β

(
1

2π

∫ 2π

0

∣∣G(z)
∣∣(1−β)( 2

2−α )dθ

) 2−α
2 ( 1

2π

∫ 2π

0

∣∣h(z)
∣∣2dθ)α

2

≤ c1

(
1

1− r

)2(1−β)+α−1
, (r → 1), (2.3)

where we have used Holder’s inequality, Lemma 1.3 and subordination for starlike

functions. Taking r = 1− 1
n in (2.3), we obtain the required result.

We have the following special cases.

Corollary 2.1. For q → 1−, f belongs to the class K(α) of strongly

close-to-convex and this gives

an = O(1)nα−2, (n→∞).

Corollary 2.2. Let f ∈ Kq with α = 1. Then it follows from Theorem 2.1,

an = O(1)
[
(

1− q
1− qn

)
]
n2(1−β), β =

1− q
2(1 + q)

.
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We now discuss the Hankel determinant problem for f ∈ Kq(α).

Let f ∈ Kq(α) be given by (1.1). The kth Hankel determinant of f is defined

for k ≥ 1, n ≥ 1 by

Hk(n) =

∣∣∣∣∣∣∣∣∣∣
an an+1 . . . an+k−1

an+1 . . . . . . . . .
...

...
...

...

an+k−1 . . . . . . an+2k−2

∣∣∣∣∣∣∣∣∣∣
. (2.4)

This problem has been solved in [18] for starlike functions and investigated by

Noor [11] for the class K of close-to-convex functions.

By using a modified version of Pommerenke method [18], the rate of growth

of Hk(n) for the class Kq(α) will be discussed.

Remark 2.1. From Definition 1.1 and Lemma 1.1, it follows that for f ∈ Kq(α),

we can write

zDqf(z) =
(
G(z)

)1−β
hα(z), G ∈ S∗, Re{h(z)} > 0, β =

(1− q)
2(1 + q)

, α ∈ (0, 1]. (2.5)

Also, G ∈ S∗ can be represented as

G(z) = zexp
[ ∫ 2π

0
log

1

(1− zeit)
dµ(t)

]
,

where µ(t) is an increasing function and µ(2π)− µ(0) = 2.

Let α1 ≥ α2 ≥ ..., be the jumps of µ(t) and t = θ1, θ2, ... be the values at

which these jumps occur. We may assume that θ1 = 0. Then α1 + α2 + .... ≤ 2

and α1 + α2 + ....+ αn = 2, for some k, if and only if, G is of the form

G(z) = zΠk
j=1

(
1− eiθjz

)−2
k . (2.6)

In [18], the following there cases are considered and for each case ηm are defined

as:

(i) 0 ≤ α1 ≤ 1, and ηm = αm+1(m = 0, 1, 2, ....).

Earthline J. Math. Sci. Vol. 8 No. 2 (2022), 227-236



232 K. Inayat Noor and M. Aslam Noor

(ii) 1 < α1 < 3
2 and η0 = α1, η1 = max(α1 − 1, α2), η2 = max(α1 −

1, α2), ηm = α3 for m ≥ 3.

(iii) 3
2 ≤ α1 ≤ 2 and η0 = α1, η1 = max(α1 − 1, α2), ηm = αm(m ≥ 2).

We first prove the following.

Theorem 2.2. Let f ∈ Kq(α), α ∈ (12 , 1). Then, for m = 0, 1, 2, ..., there are

numbers γm and cmµ(µ = 0, 1, ...,m) that satisfy
∣∣cc0∣∣ =

∣∣cmm∣∣ = 1, and

∞∑
ν=0

γν ≤ 3, 0 ≤ γm ≤
2

m+ 1
(2.7)

such that

∞∑
µ=0

[
n
]
q
cmµan+µ = O(1)n{γm(1−β)+α−1}, (n→∞),

where G in equation (2.5) is of the form equation (2.6) and β = 1−q
2(1+q) . The

bounds (2.7) are the best possible, see [18].

Proof. We write

φm(z) =

m∑
µ=0

cmµz
m−µ,

and

φm(z)
(
zDqf(z)

)
=

m∑
n=1

bmnz
m+n +

∞∑
n=1

[
n+m

]
q
amnz

m+n, (2.8)

where

bmn =
n∑
ν=0

[
n+ ν

]
q
cm−νan−ν ,

amn =
m∑
µ=0

cmµan+µ,
∣∣cm0

∣∣ =
∣∣cmm∣∣ = 1.
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We shall consider the case, where g in (2.5) is of the form given in (2.6), that is,

α1 + α2 + ...+ αk = 2 with γm = ηm. It follows that γm = 2
m+1 , γ0 + γ1 +

...+ γk ≤ 3 and γm = 2
m+1 implies that m = k − 1, α1 = α2 = ...+ αk.

Now, from (2.5), (2.8), Cauchy integral formula and z = reiθ, we have

[
n+m

]
q

∣∣amn∣∣ ≤ 1

2πrn+m

∫ 2π

0

∣∣φm(z)G(z)1−β)hα(z)
∣∣dθ

≤ (4)β

rn+m+β

(
1

2π

∫ 2π

0

∣∣φ(z)G(z)hα(z)
∣∣dθ), (2.9)

where we have used the well-known distortion result for the starlike function G.

Applying Schwartz inequality, it follows from (2.9) that

[
n+m

]∣∣amn∣∣ ≤ (4)β

rn+m+β

(
1

2π

∫ 2π

0

∣∣φm(z)G(z)
∣∣2dθ) 1

2
(

1

2π

∫ 2π

0

∣∣h(z)
∣∣2αdθ) 1

2

. (2.10)

When, we write
[
φm(z)G(z)

]2
in the form 1.4, the exponent (−λj) satisfies

λj ≤ 2(1− β)γm (j = 1, 2, ..., k). Hence by using Lemma 1.2, we have∫ 2π

0

∣∣φm(z)G(z)
∣∣2dθ ≤ c1n{2(1−β)γm−1}. (2.11)

From (2.11), (2.10) and Lemma 1.3, we have[
n+m

]
q

∣∣amn∣∣ ≤ c2n{γm(1−β)+α−1}, (n→∞).

where c1 and c2 are constants. This proves the result.

The following result for the Hankel determinant Hk(n) can now easily be

proved.

Theorem 2.3. Let f ∈ Kq(α), α ∈ (12 , 1], q ∈ (0, 1). Then

Hk(n) = O(1)

[( 1− q
1− qn

)k]
n{2(1−β)−k(1−α)}, k ≥ 1,

where G in (2.5) is of the form (2.6).
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Following well-known results can obtained as special cases of Theorem 2.3.

(i) When q → 1−, Hk(n) = O(1)n2{2−k(2−α)}.

(ii) With α = 1, q → 1−, f ∈ K, we have Hk(n) = O(1)n(2−k),

(n→∞). This result has been proved in [11].

(iii) Also, for k = 2, q → 1−, we have H2(n) = O(1)n2(α−1).

Conclusion

In this paper, we have introduced a new class Kq(α) of q-strongly close-to-convex

functions using the q-differential operator. We have investigated the problem of

the rate of growth of the Hankel determinant for the class Kq(α). Several special

cases are discussed as applications of the derived results. The ideas and techniques

of this paper may stimulate further research in this interesting field.
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