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Abstract

In this study, the shape parameter of the weighted Inverse Maxwell distribution is
estimated by employing Bayesian techniques. To produce posterior distributions, the
extended Jeffery's prior and the Erlang prior are utilised. The estimators are derived from
the squared error loss function, the entropy loss function, the precautionary loss function,
and the Linex loss function. Furthermore, an actual data set is studied to assess the
effectiveness of various estimators under distinct loss functions.

1. Introduction

The Maxwell-Boltzmann distribution, named after J.C. Maxwell and L. Boltzmann,
is a continuous probability distribution that underpins the kinetic energy of gases as well
as their indispensable characteristics such as pressure and diffusion. This distribution is
also known as the distribution of velocities, energy and magnitude of momenta of

molecules.

The probability density function (pdf) of Maxwell distribution is stated as
4 3 2
f(x;0) = —=02x%e7%%";, x>0,0>0. (1.1)
v

The related cumulative density function (cdf) is stated as
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2 3
.0 — 2 n.2).
F(x;0) \/EF(Z'QX ), x>0,0>0. (1.2)

Tyagi and Bhattacharya [8] studied this distribution for the first time as a lifetime
model and addressed the Bayes and minimum variance unbiased estimation techniques
for its parameters and reliability function.

Let X denotes a random variable from Maxwell distribution, then the transformation
X = % is said to follow inverse of Maxwell distribution having probability function (pdf)

given by

6
4

3 -
f(y;9)=\/7_195%e ¥ y>0,0>0 (1.3)

where 0 represents the scale parameter.

The associated cumulative distribution function (cdf) of (1.3) is given by

F( -9)—29r(3 9)- >0,0>0 1.4
y’ _\/E Zlyz ] y ) ()

where I'(s,y) = f;o tS~1 e~tdt denotes an upper incomplete gamma function.

Recently, Ahmad et al. [3], studied the weighted analogue of inverse Maxwell
distribution. With following probability density function

3-k
6

202 s,z
fw(@,0,k) = —F=xv“"e ¥; ¥y>0,6,k>0. (1.5)
%)
The related cumulative distribution function is given as
3-k 6
r45)
Fw(y,H,k)=W; y>0,0,k>0 (1.6)
r

2

where I'(s,y) = f;o tS~1 e~tdt denotes an upper incomplete gamma function.

Figures (1.1) and (1.2) represent some layouts of weighted inverse Maxwell
distribution for distinct values of parameters.
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Fig 1.1 pdf of WIMD under cﬁfferentvalues of parameters Fig 1.2 pdf of WIMD under cﬁfferentvalues of parameters

2. Method of Maximum Likelihood Estimation of WIMD

The estimation of parameters of weighted inverse Maxwell distribution is obtained by
using the method of maximum likelihood estimation. Suppose Y;,Y,,..., Y, be random
samples of size n from weighted inverse Maxwell distribution. Then the likelihood
function of weighted inverse Maxwell distribution is given as

L= ﬂfw(yye k) = l—[ 2(0 2 )yik_4e_yii2' (2.1)

The log likelihood function of (2.1) is given as

Inl=In ? +Zln(yl)" - Z—
n
3-k 3—
=21n2+n<62>ln9—nln1"( )+(k 4)Zln(yl Z—z
= =1 Yi

Differentiate w.r.t. 8, we get

dinl n(B—k)
0

(2.2)

Now equating (2.2), to zero, we get
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n3 —-k) 1 0
-Y 5=
20 L yi
4 n(3 —-k)
23yt

3. Bayesian Estimation of WIMD

In recent years, the Bayesian estimate technique has gained considerable
attention for evaluating failure time data, and it has generally been presented as a
substitute to the conventional techniques. By taking prior information into account,
this formula accounts for the life-time distribution’s subsequent (posterior) distribution.
From a Bayesian perspective, picking prior(s) cannot be constrained by assuming that
one’s prior(s) is more suited than others. When there is minimal interpretive information
about an unknown parameter, a non-informative prior is desirable. However, if one is
familiar with the parameter (s), it is better to utilise informative prior. Ahmad et al. [1],
investigated the estimate of parameters of a two-parameter Exponentiated gamma
distribution in this way. Mudasir and Ahmad [6], studied the Bayesian estimation of
weighted Erlang distribution. Raqab and Madi [7], studied Bayesian estimation for
Exponentiated Rayleigh distribution. Kazmi et al. [9], studied Bayesian estimation for two
component mixture of Maxwell distribution. Reshi et al. [10], studied Bayesian estimation
of size biased classical gamma distribution. Muzamil et al. [11], studied Bayesian analysis
of weighted Boltzmann-Maxwell distribution. Ahmad et al. [2], studied Bayesian
estimation of inverse Ailamujia distribution used different loss functions. Ahmad et al.
[4], investigated Bayesian estimation of the inverse Topp-Leone distribution assuming
distinct loss functions. In this paper, we obtain Bayesian estimation of parameter  of
weighted inverse Maxwell distribution under the assumption of extended Jeffrey’s prior

and Erlang distribution.

3.1. Posterior distribution of WIMD under the assumption of extended Jeffrey’s
prior

Suppose ¥y = (y1,¥2,..,Vn) denotes the n recorded values of (1.5). Then its
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likelihood function is given by

3n—-nk n _
Ly16) = Hyk 19 T e 0T

We assume the prior distribution of 8 to be extended Jeffery’s prior proposed by Al-
Kutubi [5], is given by

g(0) < [I(&)]°, c€R*

8%log f(.6)

928 is the Fisher information matrix, for the distribution

where [I1(0)] = —nE[
(1.5)
n c
g@) =K [ﬁ] .
The posterior distribution of 8 under the assumption of extended Jeffrey’s prior, i.e.,
g(0) <« — 926 is given by

h(9ly) x L(y|0)g(6)

2 1
_9 Z?:1y;j 2 -
62C

Hely) o ]_[y" o

nk—4c

HOly) = ko 2 e ORm

where K is independent of 6

©  3n—nk-4c _
K1 =f 6 7 e 03y’ dg
0
3n—nk—4c+2
K—1 — F( 2 )

3n—-nk—4c+2"

(Zl 1Yi ) 2

Therefore

3n— nk 4c+2

(Zl 1yl )

3n—-nk—4c+2
=)

K =
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Hence the posterior distribution of 8 is given by
3n—nk—4c+2

3n-nk—4c

T 2 —  ,—0T
h(@ly) = r (3n—nk—4c+2) o 2 e

2
where T = Y11, y; 2

3.2. Estimation under square error loss function

The squared error loss function is defined as l(é, 6) = (é - 9)2 for some constant

¢1. The risk function is given by
R(0,0) = E[1(0,0)]

= fool(é,e)h(my)de
0

3n—nk—4c+2
2 3n—nk—4c

=fcl(9 o) WH - e’Tdo
0 )

3n—-nk—4c+2

T 2 © 3n-nk-4c
=G r 3n—nk—4c+2 f (9 - 9)2 6 = e ®Tdo
(=) o

r ® 3n-nk-4c © 3n-nk—4c+4
snonk-ict2 | ()2 f 0 2 e Tdo+ f o =z e de]
T 2 0 0
=G 3n—nk—4c+2 O 3n-nk—act2 |
r (—2 ) 20| 67 2z e %dp
|
L 0
r 3n—nk—4c+2 3n nk— 4c+6
N o L )
3n—nk—4c+2 0 snonk—iciz T 3n nk —4c+6
=c T 2 T 2 T 2 I
- 3n—nk—4c+2 3n—-nk-4c+4
F( 2 ) _20 ( 2 ) J
3n—-nk—4c+4
T 2
~, (Bn—-nk—4c+2)3n—nk—-4c+4) _.(Bn-—nk—4c+2)
= Cl 92 + - 9 .
4T2 T
Now solve aR(g%e) = 0, we get
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5 _ (Bn—nk —4c+2)
s 2T '

3.3. Estimation under entropy loss function

CDICD)

The entropy loss function is defined as [(§) = b[6 — log(6) —1];b > 0,6 = he
risk function is given by
R(8,6) = E[1(8)]
= f (&) h(B|y)de
0
= f b[§ — log(6) — 1] h(B|y)d6
0
3n—nk—4c+2 =N ~
b T 2 ."00 [Z] ; 0 1 93n—nk—4c —or g
= ———————— —_—— — p— 2
r (3n—nk—4c+2) o 2] 09 0 e
2
. [® 3n-nk-sc-2 or 3n nk—4c or
3n—-nk-4c+2 - -
Ll efo 6 z e Tdo- log(B)f deo
=b 3n—nk—4c+2 I 0 D 3n-nk-4c I
r(—2 )l+f log(9)9 e 0T do — f 6 2z e 9Tdp |
0 0
~ 1 (3n—nk—4
Y L S— (9)+F(m; ),
“ P 3n—nk—4c %9 r (371‘”"‘45)
i 2
_ul 20T log(8) + (3n—nk—dey
- |3n — nk — 4c °q 11’( 2 )
where 1'(.) denotes the digamma function
Now solve aR(g%e) = 0, we get
5 _ (3n — 3k — 4c¢)
¢ 2T '
3.4. Estimation under precautionary loss function
The entropy loss function is defined as 1(9 9) —) The risk function is given by
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R(9,6) = E[1(9,6)]

= fwl(é,e)h(ely)de
0

3n— nk 4c+2

T (9 9) 3n nk ac
(3n -nk—4c+2 f o dé

r

3n nk 4c+2

0 3n nk—ac 1 ® 3n-nk-4ct+4
f e 9T do + Tf o 2z e fT de]
0 0 0

,___|

3n—-nk— 4c+2 © 3n-nk—4c+2 |
( 2 f 6 z e %Tdo |
_las (B3n—nk—4c+2)(3n—nk —4c + 4) (Bn—nk—4c+2)
B 40T T '
Now solve aRg%'e) = 0, we get

. J(Bn—3k—4c+2)(3n—3k —4c+4)
6, = T .

3.5. Estimation under Linex loss function

The Linex loss function is defined as l(é,@) = exp{bl(é - 9)} - bl(é - 9) - 1.

The risk function is given by
R(0,0) = E[1(0,0)]

= fwl(é,e)h(my)de
0

3n— nk 4c+2

T 3n-nk-4ct2
—r (3n —— f [exp{b1(0—0)}—b(B—0)—1]6" z e 9Tdo
3n 3n—nk—4c+2 |[eb1 1 J‘OO 3n+k_4ce—9(b1+T) do — b1 J‘w63n —nk-—tc —QTde—i
— 0
1_,(3n nk2 4c+2) Il+b1 J‘OO 3n— nk2 4c+2 —gng 3 J‘w93n nk—4c —gng JI
0
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3n-nk—4c+2

3 T 2 ~ (Bn—nk—4c+2)
= b, 6 — b0 b -1
¢ (bl n T) 104 by 2T
Now solve aR(g%e) = 0, we get

él::

2b, T

3.6. Posterior distribution of WIMD under the assumption of Erlang prior

(Bn—nk—4c+2) b, +T
log( )

Suppose ¥y = (y1,¥2, -, Yn) denotes the n recorded values of (1.5). Then its

likelihood function is given by

3n—-nk

n
n
2 ]
Lo10) = | —= | [ [0
r(5)) i

We assume the prior distribution of 6 to be Erlang prior.

-2
e_g Z?=1yl' .

The posterior distribution of 8 under the assumption of Erlang prior i.e. g(8) «

a® ob-1,-a6 ;.
rb)H e is given by

h(@ly) x< L(y|6)g(6)

3n—-nk+2b

hOly) = k6T g0 (a2 37

where K is independent of 8

K1 =f ew*e*(aﬂ?ﬂyiﬂ) do
0

r (3n—712k+2b)

-1 _
K 3n—-nk+2b *

(a+2?=1yi_2) ?
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Therefore

3n— nk+2b

(a+21 1yl )

r (3n nZk+2b)

Hence the posterior distribution of 8 is given by

3n-nk+2b

(a+T) = 3n-nk+2b_
_— 2

r (3n—nzk+2b)

h(8ly) = Tem0@+D

where T = Y11, y; 2

3.7. Estimation under square error loss function

The squared error loss function is defined as l(é, 9) = (9 - 9)2 for some constant

c¢1. The risk function is given by
R(8,0) = E[1(8,0)]

= fwl(é,e)h(my)de
0

3n— nk+2b

(a+T) 3n-nk+2b

=c1—F (3n — f (6-06)"6" = tefagg

DO 3n—nk+2b+4

3n— nk+2b rer esm_r;ﬂ—le—g(a+T) do +f HT—le—G(a+T) do
(a+T) 0 0

-i
=C1W| [ sn-nk+zb+z_, |
E) | [ e |

0

|

_ . |g2 4 Bn =k +2b)Bn —nk+2b+2) 6(3n — nk + 2b)
-a 2 ¥ T) @+
aRr(9,0)
Now solve 7 = 0, we get

~  (3n—nk+2b)
ST 2(a+T)
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3.8. Estimation under entropy loss function

The

CDICD)

The entropy loss function is defined as [(§) = b[§ — log(5§) —1];b > 0,6 =

risk function is given by

R(8,6) = E[1(8)]
= f:l((S) h(8|y)de

=fﬂu5_mm®—1wwwwe
0

( )3n—nk+2b ~ ~
a+T 2 “lg 2] 3n— nk+zb_1
= b1 arany f [— —log (—) - 1] 0 e %@ Ndg
3n—nk+2b 0 0
r(=5es) b

3n—nk+2b -2 3n nk+2b

-1 —6(a+T) de — log(e).f —_—1 —6(a+T) de]

3n-nk+2b

o o
n—nk+2b
(a n T)3 +2 9
- "1 3n nk+2b

r (— f log(@) 6~ =2

—1 —9(a+T) do — f w—le—ﬂ(a+ﬂ do Jl

20(a+T) 1og(0) + ,<3n—nk+2b) .
@n-nk+20—-2) 9 v 2 '
Now solve ————= (9) = 0, we get

5 _ (@Bn-—nk+2b-2)
e 2(a+T)

3.9. Estimation under precautionary loss function

The entropy loss function is defined as l(@ 9) 9) . The risk function is given
by
R(0,0) = E[1(8,0)]
= f 1(6,0) h(Bly)de
0
3n—-nk+2b

- 2 o0 2 n—n.
- Lf 9+ 09 gt 0@ gg
r (3n—nk+2b) 0 3]
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3n-— nk+2b rgf Qw—l —6(a+T) 49 4+ 1[ ew 1o-6(a+T) de]
(a +7) | 0 6J,

- 3n-nk 2b © 3n-nm
r==) Il—z J 6" 5 o0 gg JI
0
_los (B3n—nk+2b)(3n—nk + 2b + 2) (3n —nk + 2b)
B 46(a +T)? (a+T)
Now solve aRg%'e) = 0, we get

5 - J(3n —nk + 2b)(3n — nk+2b+2)
¢ 2(a+T)

3.10. Estimation under Linex loss function

The Linex loss function is defined as l(é,@) = exp{bl(é - 6)} - bl(é - 6) - 1.

The risk function is given by
R(8,0) = E[1(8,0)]

= fwl(é,e)h(ely)de
0

3n—-nk+2b
(a + T) 3n-nk+ _
= f [exp{b1(6—0)} - b (6 —0)—1]6" 2z e 0@ Dap
r==5)
_ D 3n-nk+2b X 3n-nk+2b
3n-nk+2b eblelf HT—le—G(b1+a+T) de — bléf 9——1 —9(a+T)d9
r - 0 0

= 3n—-nk+2b 0 3n-nk+2b @O 3n- nk+zb
d (T) Il+b1 f 0~z e f@Nqg - f o~ 2 ‘e 9@tNqg
0 0

3n—-nk+2b

_ b1§< a+T ) 2 bd+b (3n —nk + 2b)
¢ b vax+rT ! L 2@+
Now solve aR(g%e) = 0, we get
~ (3Bn—nk+2b) b +a+T
9l= lO ( )
2bq a+T
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4. Application

This section provides an application that assesses the efficacy of estimators and the

posterior risk of various loss functions. The following is the data set.

Data:-The data represents a COVID-19 data set from Canada that spans 36 days,
from 10 April to 15 May 2020, as shown in the URL (https://covid19.who.int/). These

data is based on the famine fatality rate. The information is as follows:

0.2240, 0.2189, 0.2105, 0.2266,0.0987, 0.1147, 0.3353, 0.2563, 0.2466, 0.2847, 0.2150,
0.1821, 0.1200, 0.4206, 0.3456, 0.3045, 0.2903, 0.3377, 0.1639, 0.1350, 0.3866, 0.4678,
0.3515, 0.3232

The Bayes estimates and posterior risks of the posterior distribution employing
different loss functions are as below, with the posterior risk in parentheses

~

6 = Square error loss function, 6, = Estimation under Entropy,
ép = Estimation under Precautionary, 6; = Estimation under LINEX
Table 4.1: Bayes estimation and posterior risks using Jeffery’s prior.
6 k C 0, 0, 0, 0,

bl =0.1 bl = 0.5

1.0 0.5 0.5 0.0498 0.0481 0.0506 0.0004 0.0124
(8.2e-05) (6.383) (2.385) (4.1e-07) (1.03e-05)

1.0 0.0481 0.0465 0.0489 0.0004 0.0120
(7.9¢-05) (6.382) (2.307) (3.9¢-07) (9.9¢-06)

1.5 0.0465 0.0448 0.0473 0.0004 0.0120
(7.7¢-05) 6.381) | (2.229) (3.8¢-07) (9.6e-06)

2.0 1.5 0.5 0.0298 0.0282 0.0307 0.0002 0.0074
(4.9¢-05) (6.370) (1.447) (2.4e-07) (6.2e-06)

1.0 0.0282 0.0265 0.0290 0.0002 0.0070
(4.6e-05) (6.368) (1.369) (2.3e-07) (5.8e-06)

1.5 0.0265 0.0249 0.0273 0.0002 0.0066
(4.4e-07) (6.366) (1.291) (2.2-07) (5.5e-06)

3.0 2.0 0.5 0.0199 0.018 0.0207 0.0001 0.0049

(3.3e-05) (6.354) (0.978) (1.6e-07) (4.1-06)

1.0 0.0182 0.016 0.019 0.0001 0.0045

Earthline J. Math. Sci. Vol. 8 No. 1 (2022), 189-203
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(3.0e-05) (6.349) | (0.899) (1.5e-07) (3.7-06)
1.5 0.0160 0.0149 | 0.0174 0.0001 0.0045
(2.7e-05) 6.343) | (0.821) (1.3e-07) (3.4-06)

Table 4.2: Bayes estimation and posterior risks using Erlang prior.

0 k a b b, B Op 6,

b, =0.1 b, =0.5

1.0 | 05 0.5 0.5 0.0506 8.1e-05 0.0514 0.0005 0.0126
(8.3e-05) (6.418) (2.424) (4.e-07) (1.e-07)

1.0 0.7 0.0509 8.1e-05 0.0517 0.0005 0.0127

(8.4e-05) (6.418) (2.438) (4.6-07) (1.e-05)

1.5 1.0 0.0513 8.2e-05 0.0521 0.0005 0.0128

(8.5¢-05) (6.419) (2.461) (4.e-07) (1.e-05)

2.0 1.5 0.5 0.5 0.0306 4.8e-05 0.0315 0.0003 0.0076
(8.0e-05) (6.429) (1.486) (2.e-07) (6.e-06)

1.0 0.7 0.0310 4.8e-05 0.0318 0.0003 0.0077

(5.1e-05) (6.430) (1.501) 2.e-07) (6.e-06)

1.5 1.0 0.0314 4.9e-05 0.0322 0.0003 0.0078

(5.2e-05) (6.430) (1.523) 2.e-07) (6.e-06)

30 | 20 | 05 0.5 0.0207 3.1e-05 0.0215 0.0002 0.0051
(3.4e-05) (6.444) (1.016) (1.e-07) (4.e-07)

1.0 0.7 0.0210 3.2e-05 0.0218 0.0002 0.0052

(3.4e-05) (6.444) (1.032) (1.e-07) (4.e-06)

1.5 1.0 0.0215 3.2e-05 0.0223 0.0002 0.0053

(3.5¢-05) (6.444) (1.055) (1.e-07) (4.e-06)

Among other loss functions, it is evident from Table 4.1 and Table 4.2. That the
Linex error loss function shows smaller Bayes posterior risk under the both assumptions
(extended Jeffery’s prior and Erlang prior). According to decision rule of less Bayes
posterior risk, we accomplish that Linex error loss function is more useful than others.

5. Conclusion

In this research, we first achieved the Bayes posterior distribution and parameter
estimate of the weighted inverse Maxwell distribution by utilising both informative and
non-informative priors. We have examined several loss functions, with the Linex error
loss function offering the least Bayes posterior risk. The effectiveness of the estimators
was subsequently attained by an application.
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