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Abstract 

Whooping cough is a vaccine avoidable public health problem which is caused by 

bacterium Bordetella Pertussis and it is a highly contagious disease of the respiratory 

system. In this paper, an SIR epidemiological model of whooping cough with optimal 

control strategy was formulated to control the transmission. The model was characterized 

to obtain the disease free and the endemic equilibrium points. Finally, the simulation was 

carried out using the Forward-backward sweep method by incorporating the Runge Kutta 

method to check the validity and the result obtained was an improvement over the 

existing results. 

1. Introduction 

Pertussis commonly known as whooping cough is one of the highly communicable 

bacterial respiratory tract infections mainly caused by Bordetella Pertussis. It is a major 

global health problem characterized by a paroxysmal cough. 

Whooping cough affect all ages especially children and has caused more death than 

measles and polio combined. As one of the most deadly infectious diseases known 

worldwide, it is both an endemic and epidemic disease, responsible for significant 

morbidity and mortality especially in infants and children. WHO estimated 40 to 50 

million cases of whooping cough and approximately 297,000 to 409,000 deaths 

annually where 90% cases belong to low income countries, [2], [7]. 

Vaccination with DTP (Diphtheria-tetanus-pertussis) has largely reduced the burden 
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of this disease globally. However the number of adult cases have increased over the last 

decade and despite mass vaccination campaigns for over 50 years, and it is still 

increasing in developing countries, [9]. 

The disease typically lasts for approximately 6 to 10 weeks and the symptoms are 

more severe in infants or in individuals who have never been immunized against the 

disease. It is recognized with three stages: catarrhal, paroxysmal, and convalescent, [2]. 

The symptoms of the catarrhal stage are mild and may go unnoticed. The paroxysmal 

stage of Pertussis is characterized by episodes of coughing with a distinctive “whooping” 

sound when breathing in. This characteristic cough gives the disease its common name, 

Whooping Cough. During the convalescent stage, episodes of coughing are less frequent 

and symptoms improve. There is no seasonal pattern to outbreaks of this disease. 

Historically, mothers have been the most common source of transmission of pertussis 

to their infants, and recent studies shows that mothers are the sources of 32% of the cases 

and other family members have up to 43% source of transmission of the disease to 

infants. Human infection with Bordetelle Pertussis depends on age and host immumity. 

Infants, especially those born prematurely and patients with underlying cardiac, 

pulmonary, neuromuscular, or neurologic disease are at high risk of contracting the 

disease. Its clinical signs include hypoglycemia, reduced pulmonary capacity and high 

leukocytosis. The complications include convulsions, bronchopneumonia, 

encephalopathy, apnoea, cyanosis, pneumoria and seizures, [3]. 

Recently, there has been a resurgence of whooping cough outbreak and western 

countries are highly endemic despite high vaccination coverage of about 90%. Perhaps 

this could be that the vaccinated individuals can still become infected as a result of the 

disease mutation. The resurgence of whooping cough (pertussis) globally most especially 

in western countries with high vaccination coverage has been a concern. Hence, this work 

is based on optimal control of whooping model with two controls namely, vaccination 

and syndromic surveillance. 

Mathematical models are considered to be important tools in analyzing the 

prevalence and control of infectious disease. Several works have been done on epidemics 

models by applying optimal control theory to SIR model using Pontryagin’s Maximum 

Principle, [1]. [8] studied the optimal control treatment model of Hepatitis B Virus 

Dynamics. [5] worked on optimal control of nipah virus (NiV) infections. [12] investigate 

optimal control strategies for preventing hepatitis B infection and reducing chronic liver 

cirrhosis incidence. [6] studied the optimal control strategy for the immunotherapeutic 
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treatment of HIV infection with state constraints. [4] modelled vacine distribution in 

rabies metapopulation and optimally controled it, to mention a few, [1], [5], [8], [12], [6], 

[4]. 

However, little or less has been done on optimal control of whooping cough with 

control, hence this work is about optimal control of whooping cough model with 

vaccination and syndromic surveillance as controls. The fundamental objective of 

syndromic surveillance is to reduce the contact rate between susceptible and infectious 

individuals. The optimal control strategy was developed and characterized to minimize 

the infected class, simulation was carried out using the Forward-backward sweep method 

by incorporating RK-4 method. 

2. Materials and Methods 

2.1. Model formulation 

In this work, a mathematical SIR model for whooping cough transmission is 

considered. The whole population in model is divided into three: 
(�) is the susceptible 

population, �(�) is infected population and �(�) is recovered population. The following 

assumptions are imposed; 

i. The population is fixed and all births are into susceptible class.  

ii. The death rate is equal for all the three classes and the birth and death rates are 

equal so that the total population � is stationary.  

iii. � is the fixed total population, normalizing to unity, i.e., 
(�) + �(�) + �(�) = 1. 

Hence, the dynamic of whooping cough transimissionis formulated as model (A): 

�
�� = � − �
(�) − ��
(�)�(�)                                                 (1) 

���� = ��
(�)�(�) − (� + �)�(�)                                                (2) 

���� = ��(�) − ��(�)                                                            (3) 

where 


(0) = 
�,  �(0) = ��  and  �(0) = ��, 

(0) ≥ 0,  �(0) ≥ 0  and  �(0) ≥ 0. 
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The parameters used with their definitions are presented in Table 1. 

 

Figure 1: The flow diagram for the SIR model of whooping cough. 

Table 1: Parameters and Definitions. 

Parameters Definitions 

� Transmission rate coefficient 

� Recovery rate 

� Birth  rate / Death rate 

� Total population 

�(�) infected population 

�(�) recovered population 


(�) susceptible population 

3. Characterization of the Model 

The model is characterized by investigating the equilibrium points, reproduction 

number, feasibility and boundedness of the solution.  

3.1. Equilibrium point 

Two equilibrium points was considered namely; The Disease Free Equilibrium Point (� = 0) and the Endemic Equilibrium Point (� ≠ 0). 
At equilibrium the non-linear system (1)-(3) becomes;  

� − �
(�) − ��
(�)�(�) = 0                                                   (4) 

��
(�)�(�) − (� + �)�(�) = 0                                                  (5) 

��(�) − ��(�) = 0.                                                             (6) 
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The Disease Free Equilibrium (DFE) Point 

Let define the disease class as the population that are infectious. In the absence of the 

disease � = 0, then equations (4) and (5) reduces to; 

� − �
 = 0. 
Thus, 
� = 1. Since � = � − 
 − �, thus � = 0. Hence  !" = (
� , ��, ��) = (1,0,0) 

for � = 1. 
The Endemic Equilibrium Point (EEP) 

The Endemic equilibrium point is the steady state solution where the disease persists 

in the population. 

From equation (5)  

��
(�)�(�) − (� + �)�(�) = 0 

[��
(�) − (� + �)]�(�) = 0 

thus;  

� ≠ 0        or        ��
 − (� + �) = 0. 
If 

��
 − (� + �) = 0. 
It implies that;  


' = (� + �)�         for    � = 1. 
Substitute 
' = ()*+),-  into equation (4) to obtain �' , 

� − � (� + �)�� − �� .� + ��� / � = 0 

thus;  

�' = �� + � .1 − 9� + �)�� /.                                                     (7) 

And since 

� = � − 
 − � 
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� = � − � + ��� − � .�� − (� + �)��(� + �) /                                           (8) 

�' = �� + � .1 − (� + �)�� /.                                                    (9) 

Hence, the endemic equilibrium point is given by; 

""1 = (
' , �', �') = (� + �)�� , �� + � 21 − (� + �)�� 3 , �� + � 21 − (� + �)�� 3.   (10) 

3.2. The basic reproduction number (45) 

The basic reproduction number can be defined as the average number of secondary 

infections that occur when one infectious individual is introduced into a susceptible 

population with no immunity to the disease, in the absence of intervention. Therefore, 

when the basic reproduction number is less than 1 (i.e. �� < 1) then, the disease free 

equilibrium (DFE) is locally asymptotically stable while the endemic equilibrium is 

unstable, which mean that, at that point the disease dies out. But when �� > 1, it follows 

that an infectious individual will cause more than one additional infection on average, 

and thus, the disease will spread and the endemic equilibrium point is stable as a result of 

this. Whereas, when �� = 1, the disease becomes endemic (the disease remains in the 

population at a constant rate). 

In order to determine the basic reproduction number, consider (2);  

8. 9.        ���� = ��
(�)�(�) − (� + �)�(�) 

���� = [��
(�) − (� + �)]�(�).                                       (11) 

 Thus, 

:  ��� = :  [��
(�) − (� + �)]�� 

ln�(�) = [��
(�) − (� + �)]� + = 

with initial condition � = 0 and �(0) = �� we have; 

�(�) = ��9[,->?()*+)]@. 
Hence, the endemic equilibrium point occur when;  
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��
 − (� + �) > 0 

��
 > (� + �) 

therefore,  

��
� + � > 1 

Hence, 

�� = ��(� + �)         for        
 = 1 

Therefore, the Endemic Equilibrium Point can be written in term of the reproduction 

number �� as; 

 !" = (
' , �' , �') = 1�� , �� + � .1 − 1��/ , �(� + �) .1 − 1��/              (12) 

3.3. Optimal control of pertussis model dynamics  

Two controls namely vaccination and syndromic surveillance were incorporated into 

the model A to have model B as;  

�
�� = � − �
(�) − (1 − AB)��
(�)�(�) − AC
(�)                            (13) 

���� = (1 − AB)��
(�)�(�) − (� + �)�(�)                                     (14) 

���� = ��(�) − ��(�) + AC
(�)                                                   (15) 

where AC is a fraction of susceptible vaccinated per unit time and AB is a reduction in 

contact rate due to surveillance.The total population size � = 
(�) + �(�) + �(�), 

implies that; 

���� = � − ��. 
4. Optimality of the System 

Optimal control problem involving two controls AC(�) and AB(�) was developed. 

Where AC(�)
(�) is some amount of susceptible individuals that are vaccinated and 
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AB(�)��
(�)�(�) is the reduction in contact rate between the susceptible and Infected 

individuals. It is assumed that all susceptible population that is vaccinated is directly 

transferred to recovered class. The objective is to minimize infected individuals, hence 

we seek an optimal control strategy that minimizes the infected population and the cost 

associated with controls. Let D be a positive constant, EC and EB be weights factors act as 

cost associated with controls AC and AB.  

Hence the problem is;  

Minimize       F(AC, AB) = G  HI� [J�(�) + CB [ECACB(�) + EBABB(�)]] 
Subject to  

�K�� = � − LK(�) − (1 − AB)��
� − AC
 

���� = (1 − AB)��
� − (� + �)�) 

���� = �� − �� + AC
 

where 


(0) ≥ 0,    �(0) ≥ 0,    � ≥ 0 


MNOP = �MNOP = �MNOP = QR99. 
Let  

S(�, AC, AB) = J�(�) + 12 [ECACB(�) + EBABB(�)] 
where S is the lagrangian and the Hamiltonian of the system is given as 

T(�, AC, AB, UV, UW , UX) = S + UV(�)
′(�) + UW(�)�′(�) + UX�′(�) 

where UV, UW , UX are adjoint variables  

T(�, AC, AB, UV, UW , UX) = J�(�) + 12 [ECACB(�) + EBABB(�)] + !C + !B + !Z 

where 

!C = U>(�)(� − LK(�) − (1 − AB)��
� − AC
), 

!B = UW(�)((1 − AB)��
� − (� + �)�), 
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!Z = UX(�)(�� − �� + AC
). 
The associated adjoints equations are;  

U>′ = − .[T[
 / = U>(� + (1 − AB)��� + AC) − UW(1 − AB)��� − UXAC 

UW′ = − .[T[� / = −[D − U>(1 − AB)��
 + UW[(1 − AB)��
 − (� + �)] + UX�] 
UX′(�) = − .[T[�/ = UX�. 

Transversality conditions  

U>(NO) = UW(NO) = UX(NO) = 0. 
The optimality conditions of the system are;  

\]\^_ = 0,      AC′ = (`a?`b)>c_  

and  

\]\^d = 0,    ABe = (`f?`a)cd ��
�. 
Thus (g∗, AC∗ , AB∗ ) is an optimal solution of the optimal control problem for g =  (
, �, �), 
0 ≤ Aj ≤ 1,8 = 1,2. 

Thus 

AC∗ = k0       if mC∗ ≤ 0mC ∗    if 0 < mC∗ < 1,1       if mC∗ ≥ 1 n 
where mC∗ = (`a?`b)>c_  

and  

AB∗ = k0       if mB∗ ≤ 0,mB ∗    if 0 < mB∗ < 11       if mB∗ ≥ 1 n 
where mB∗ = (`f?`a),->Wcd . 
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5. Numerical Implication 

In this section, numerical simulations of the whooping cough model was described 

for more understanding of the system. The concept of forward-backward sweep method, 

[10] was used to solve the optimality system consisting of six (6) ordinary differential 

equations arriving from the state and adjoint equations coupled with the two controls. The 

parameters used for simulationswere chosen based on literature, [11]. 

5.1. Forward-backward sweep method 

To solve an optimal control problem  

F = min(^) :  @_
@p

Q(�, q(�), A(�))�� 

Subject to  

qr(�) = s(�, q(�), A(�)) 

and q(��) = t 

Ur(�) = − .uTuq / = −MQv(�, q, A) + U(�)(sv(�, q, A))PU(�C) = 0  

0 = uTuA = (Q̂ w^∗(�, q, A)) + U(�)Ms^w^∗(�, q, A)P, 
where last equation is employed to find A∗ in terms of � and q and U and when this 

representation is substituted back into the ODEs for q and U the above two equations 

form a two-point boundary value problem, we partition the time interval [��, �C] into 

usually equally spaced points �� = xC, xB, x,, x,*C = �C. The approximation will be a 

vector Ay⃗ = (AC, AB, AZ, , A,*C), where Aj ≈ A(xj). 

5.2. Simulation of whooping cough model 

The simulation of the whooping cough model was carried out and the results was 

shown graphically in Figures 5.1-5.4 using ℎ =  0.01, � =  0.04, � =  24 and �� = 123. 
(0) = 0.24, �(0) = 0.007 and �(0) = 0.753, some of the parameter values were 

from [11].  
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Figure 5.1: The Susceptible proportion of whooping cough model versus Time with and 

without controls. 

 

Figure 5.2: The Infected proportion of whooping cough model versus Time with and 

without controls. 

 

Figure 5.3: The Recovered proportion of whooping cough model versus Time with and 

without controls. 
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Figure 5.4: The optimal control model of whooping cough. 

 

Figure 5.5: The optimal control model versus Time by varying the weight factors EB. 

5.3. Interpretation of results 

The results obatined from the simulation show that the infected population can be 

reduced significantly in the presence of control, Figures 5.1-5.5. 

Figure 5.1 shows the simulation of the susceptible proportion versus time, susceptible 

population is decreased with application of control. Susceptible population without 

control was represented by blue line while with control was represented by green line.  

Figure 5.2 shows the simulation of the infected population versus time. Infected 

population is also significantly reduced with the application of optimal control. 

Figure 5.3 shows the simulation of the recovered population versus time. Recovered 

population with optimal control is increased. 

Figure 5.4 represent the optimal control variables AC and AB at time � which play a 

significant role in minimizing the infected population in the host population. 
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Figure 5.5 shows the simulation of the control versus time but varied values of 

weight factor EB through the values 0.001, 0.004, 0.008 and 0.012. Simulations reveal 

that when we increase the weight factor EB the amount of the control decreases. 

6. Conclusion   

In this work, optimal control model of whooping cough was characterized in an 

attempt to minimize the infected population. An optimal control strategy was developed, 

simulations of the optimal control problem demonstrates that under the impact of external 

controls susceptible and infected populations are decreased while recovered population 

increased. Thus pertussis disease can be minimized through the introduction of the 

optimal control stategies. 
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