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Abstract

In this paper, we consider a new system of absolute value variational

inclusions. Some interesting and extensively problems such as absolute value

equations, difference of monotone operators, absolute value complementarity

problem and hemivariational inequalities as special case. It is shown that

variational inclusions are equivalent to the fixed point problems. This

alternative formulation is used to study the existence of a solution of the

system of absolute value inclusions. New iterative methods are suggested

and investigated using the resolvent equations, dynamical system and

nonexpansive mappings techniques. Convergence analysis of these methods

is investigated under monotonicity. Some special cases are discussed as

applications of the main results.

1 Introduction

Variational inclusions contain a wealth of new ideas and techniques, which can be

viewed as a novel extension and generalization of the variational inequalities and

variational principles. Variational inclusion theory has applications in industry,

physical, regional, social, pure and applied sciences. This theory provides us
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with a unified, natural, novel, innovative and general technique to study a wide

class of problems arising in different branches of mathematical and engineering

sciences and can be viewed as novel extensions of the variational inequalities. See

[23, 24, 25, 26, 27, 38, 41, 43, 45, 46] and the references therein.

One of the most difficult and important problems in variational inclusions

is the development of efficient numerical methods. Several numerical methods

have been developed for solving the variational inclusions and their variant

forms. These methods have been extended and modified in numerous ways. This

alternative formulation has allowed us to consider the existence of a solution,

iterative schemes, sensitivity analysis, merit functions and other aspects of the

variational inclusions.

Equally important is the area of the resolvent equations, which is mainly due

to Noor [21]. Using the resolvent operator methods, it can be shown that the

variational inclusions are equivalent to the resolvent equations. It well known

[23, 24, 25, 26, 27] that the resolvent equations technique can be used effectively

to develop some powerful iterative algorithms for various classes of variational

inclusions (inequalities) as well as to study the sensitivity analysis for variational

inclusions. It is well known that the resolvent equations include the Wiener-Hopf

equations as a special case. The Wiener-Hopf equations were introduced and

studied by Shi [47] and Robinson [45] in relations with classical variational

inequalities. This technique has been used to study the existence of a solution

as well as to develop various inertial iterative methods for solving the variational

inclusions, see [21, 23]. It is worth mentioning that the inertial methods were

introduced by Polyak [44]. Alvarez [1], Noor et al. [32, 33, 34] and Shehu et al.

[48] have developed these inertial type methods for variational inequalities and

related optimization problems.

Noor [20, 21] have proved that variational inequalities are equivalent to the

dynamical systems. This equivalence has been used to study the existence

and stability of the solution of variational inequalities. Noor et al. [35] have

been shown that the dynamical system can be used to suggest some implicit
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iterative method for solving variational inclusions using the forward-backward

finite difference. For the applications and numerical methods of the dynamical

systems, see [25, 35, 36] and the references therein.

The classical problem of the variational inclusion problem is to find µ ∈ H
such that

0 ∈ T µ, (1.1)

where T : H : R is a monotone operator, see [46]. Problem (1.1) appears in

different fields of applied mathematics and optimization such as signal processing,

numerous important structured optimization, composite convex optimization,

saddle point, and inverse problems.

To develop the efficient methods, it is important the operator T can be

decomposed as sum of two operators T = M + A. In this case, the problem

(1.1) is to find µ ∈ H such that

0 ∈Mµ+Aµ, (1.2)

which is known as finding zeroes of two monotone operators, see [23, 24, 43]. Here

the operator M is strongly monotone operator and the operator A is a maximal

monotone operator. Such type of problems have been studied extensively in recent

years, see [1, 6, 16, 23, 24, 26, 31, 34, 38, 42, 43].

Motivated and inspired by the ongoing research in this active areas,

we consider a new system of absolute value variational inclusions involving

three monotone operators. It is shown that some interesting problems such

as variational inclusions, system of absolute value equations, absolute value

variational inequalities, absolute value complementarity problems and absolute

value hemivariational inequalities are special cases of absolute value variational

inclusions. It is shown that this system of absolute value variational inclusions

is equivalent to the fixed point problem. This alternative formulation is used to

consider the existence of a solution as well as to suggest and investigate some

new implicit and explicit iterative methods for solving variational inclusions.
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Dynamical system and nonexpansive mappings approach are considered for

solving the absolute value inclusions are investigated. The convergence criteria of

the proposed implicit methods is discussed under some mild conditions. Several

important and significant special cases are discussed as applications of our results.

It is expected the techniques and ideas of this paper may be starting point for

further research.

2 Formulations and Basic Facts

Let H be a real Hilbert space whose inner product and norm are denoted by 〈., .〉
and ‖.‖ respectively. Let T ,B,A : H → R be nonlinear operators.

We consider the problem of finding µ ∈ H such that

0 ∈ T µ− B|µ|+A(µ). (2.1)

Inclusion of type (2.1) is called the absolute value variational inclusion. We would

like to emphasize that the operator T is a strongly monotone, the operator B is

Lipschitz continuous and A is a maximal monotone operator. Several important

problems arising in pure and applied sciences can be studied in the frame work of

the form (2.1). For example, see [6, 11, 13, 16, 23, 24, 31, 34, 40, 43, 46] and the

references therein.

We now discuss several important and interesting problems, which can be

deduced from the problem (2.1).

Special Cases

(I). For B = 0, the problem (2.1) collapse to finding µ ∈ H such that

0 ∈ T µ+A(µ), (2.2)
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is known as finding zeros of the sum of two monotone operators and have been

studied extensively in recent years.

(II). If A(µ) = 0, the problem (2.1) collapse to finding µ ∈ H such

that

0 ∈ T µ− B|µ|, (2.3)

which is called the problem of finding zeros of absolute value inclusions. Problem

(2.3) can be interpreted as finding zeros of difference of two monotone operators,

which is itself a very difficult problem. This problem can be viewed as a problem

of finding the minimum of two difference of convex functions, known DC-problem

[38]. Such type of problems have applications in optimization theory and imaging

process in medical sciences and earthquake.

(III). If A(.) = ∂ϕ(.), where ∂ϕ(., .) is the subdifferential of a proper,

convex and lower-semicontinuous function ϕ(., .) : H × H → R ∪ {+∞} with

respect to the first argument, then problem (2.1) is equivalent to finding µ ∈ H
such that.

〈T µ− B|µ|, ν − µ〉+ ϕ(ν)− ϕ(µ) ≥ 0, ∀µ ∈ H. (2.4)

The problem of the type (2.4) is called the mixed absolute value variational

inequality problem, which has many important and significant applications in

regional, physical, mathematical, pure and applied sciences.

(IV). If ϕ(.) is the indicator function of a closed convex set Ω in H,

then problem (2.4) is equivalent to finding µ ∈ Ω such that

〈T µ− B|µ|, ν − µ〉 ≥ 0, ∀ν ∈ Ω, (2.5)

which is called the absolute value variational inequality, see [3, 4, 17].

(V). If Ω∗ = {µ ∈ H : 〈µ, ν〉 ≥ 0, ∀ν ∈ Ω} is a polar (dual) cone of a
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convex cone Ω in H, then problem (2.5) is equivalent to finding µ ∈ Ω such that

T µ− B|µ| ∈ Ω∗ and 〈T µ− B|µ|, µ〉 = 0, (2.6)

which is known as the absolute value complementarity problems [19, 20].

Obviously absolute complementarity problems include the complementarity

problems, which were introduced by Lemke [10], Cottle et al.[2] and Noor [18]

in game theory, management sciences and quadratic programming as special cases.

(VI). If Ω = H, then problem (2.5) reduces to finding µ ∈ H such that

T u− B|µ| = b, (2.7)

which is called the absolute value equation, where b is a given data. This

problem was rediscovered by Mangasarian[14] and Noor at al.[36, 37]. Clearly,

system of absolute value equations is a very important special case of nonlinear

variational inequalities, which were introduced by Noor [17] in 1975. See also

[15, 29, 36, 37, 38, 50, 51].

(VII). If 〈B|ν ν〉 = B(µ, ν), then (2.5) reduces to finding µ ∈ Ω such

that

〈T µ, ν − µ〉 ≥ B(|µ|, ν − µ), ∀ν ∈ Ω, (2.8)

which is called absolute value hemivariational inequality. If 〈B|ν|, ν〉 =

B(µ, µ), ∀µ ∈ Ω, then (2.8 is known as the hemivariational inequality,

which was introduced by Panagiotopoulos [42] in structural analysis. For the

applications, formulation and other aspects of variational and hemivariational

inequalities, see [26, 39, 42, 43] and the references therein.

(VII). If B = 0, then (2.5) reduces to finding µ ∈ Ω such that

〈T µ, ν − µ〉 ≥ 0, ∀ν ∈ Ω, (2.9)

which is called the classical variational inequality, introduced and studied by

Stampacchia [49] in potential theory. Variational inequalities are viewed as a
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novel extension of the variational principles, the origin of which can be traced

back to Euler, Lagrange, Newton and Bernoulli brothers. For the applications,

formulation, numerical methods, generalizations, sensitivity analysis, dynamical

systems, well-posedness, and other aspects of variational inequalities. See, for

example, [3, 4, 5, 6, 8, 11, 12, 13, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 29, 30,

38, 39, 40, 41, 43, 45, 46, 47, 48, 48, 49, 50, 51] and the references therein.

Remark 2.1. It is worth mentioning that for appropriate and suitable choices of

the operators T ,B,A, convex set and the spaces, one can obtain several classes of

variational inequalities, complementarity problems, problem of finding a zero of

the sum of two maximal monotone operators, the location problem minµ∈H{f(µ)+

g(µ)}, where both f and G are convex functions and optimization problems as

special cases of the nonlinear quasi variational inclusion (2.1). This shows that

the problem (2.1) is quite general and unifying one. It is interesting problem to

develop efficient and implementable numerical methods for solving the nonlinear

quasi-variational inclusions and their variant forms.

Definition 2.1. If T is a maximal monotone operator on H, then, for a constant

ρ > 0, the resolvent operator associated with T is defined by

JT (µ) = (I + ρT )−1(µ), ∀µ ∈ H,

where I is the identity operator. It is also known that the operator T is maximal

monotone, if and only if, the resolvent operator JT is defined everywhere on the

space. Also the resolvent operator JT is single-valued and nonexpansive, that is,

‖JT (µ)− JT (ν)‖ ≤ ‖µ− ν, ∀µ, ν ∈ H.

Definition 2.2. An operator T : H → H is said to be:

(i) Strongly monotone, if there exist a constant α > 0, such that

〈T µ− T ν, µ− ν〉 ≥ α‖µ− ν‖2, ∀µ, ν ∈ H.

(ii) Lipschitz continuous, if there exist a constant β > 0, such that

‖T µ− T ν‖ ≤ β‖µ− ν‖, ∀µ, ν ∈ H.
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(iii) Monotone, if

〈T µ− T ν, µ− ν〉 ≥ 0, ∀µ, ν ∈ H.

(iv) Pseudo monotone, if

〈T µ, ν − µ〉 ≥ 0 ⇒ 〈T ν, ν − µ〉 ≥ 0, ∀µ, ν ∈ .

Remark 2.2. Every strongly monotone operator is a monotone operator and

monotone operator is a pseudo monotone operator, but the converse is not true.

3 Iterative Resolvent Methods

In this section, we prove that the problem (2.1) is equivalent to the fixed point

problem using the resolvent operator technique. we use this alternative fixed point

formulation to study the existences of solution as well as to suggest and analyze

some new implicit methods for solving the absolute value variational inclusions

(2.1).

Lemma 3.1. The function µ ∈ H is a solution of the absolute value variational

inclusion (2.1), if and only if, µ ∈ H satisfies the relation

µ = JA[µ− ρ(T µ− B|µ|)], (3.1)

where JA is the resolvent operator and ρ > 0 is a constant.

Proof. Let µ ∈ H be a solution of (2.1), then, for a constant ρ > 0,

ρT µ− ρB|µ| + ρA(µ) 3 0,

⇐⇒

−µ+ ρT µ− ρB|µ| + (I + ρA)(µ) 3 0

⇐⇒

µ = JA[µ− ρT µ+ ρB|µ|].

the required (3.1).

http://www.earthlinepublishers.com



Absolute Value Variational Inclusions 129

Lemma 3.1 implies that the variational inclusion (2.1) is equivalent to the fixed

point problem (3.1).

We use this fixed point formulation to study the existence of a solution of the

problem (2.1). We define the mapping Φ associated with (3.1) as:

Φ(µ) = JA[µ− ρ(T µ− B|µ|)], (3.2)

To prove the existence of the solution of problem (2.1), it is enough to show that

the mapping Φ defined by (3.2) is a contraction mapping.

Theorem 3.1. Let the operator T is strongly monotone with constant α > 0

and Lipschitz continuous with constant β > 0, respectively. If the operator B is

Lipschitz continuous with constant γ and there exists a constant ρ > 0, such that

ρ <
2(α− γ)

β2 − γ2
‖, ργ < 1, γ < α, (3.3)

then there exists a solution µ ∈ H satisfying problem (2.1).

Proof. Let u 6= v ∈ H be two solutions of problem (2.1). Then, from problem

(3.2), we have

‖Φ(v)− Φ(u)‖ = ‖JA[µ− ρ(T µ− B|µ|)]− JA[µ− ρ(T µ− B|µ|)]

≤ ‖µ− ρ(T µ− B|µ|)− µ− ρ(T ν − B|ν|)‖

≤ ‖µ− ν − ρ(T µ− T ν)‖+ ρ‖B|µ| − B|µ|‖. (3.4)

Since the operator T is strongly monotonicity with constant α > 0 and Lipschitz

continuous with constant β > 0, so

‖µ− ν − ρ(T − T ν‖2 = ‖µ− ν‖2 − ρ〈T µ− T ν, µ− ν〉

+ρ2‖T µ− T ν‖2,

≤ (1− 2αρ+ β2ρ2)‖µ− ν‖2. (3.5)

From the Lipschitz continuity of the operator B with constant γ > 0. we have

‖B|µ| − B|µ|‖ ≤ γ‖|µ| − |µ|‖ ≤ ‖µ− ν‖. (3.6)

Earthline J. Math. Sci. Vol. 8 No. 1 (2022), 121-153



130 M. A. Noor and K. I. Noor

Combining (3.4), (3.5) and (3.6), we have

‖Φ(v)− Φ(u)‖ ≤ {
√

(1− 2αρ+ β2ρ2) + ργ}‖µ− ν‖

= θ‖µ− ν‖, (3.7)

where

θ = {
√

(1− 2αρ+ β2ρ2) + ργ}. (3.8)

From (3.3). it follows that θ < 1. Thus it follows that the mapping Φ(µ) defined

(3.2) is a contraction mapping and consequently, the mapping Φ(µ) has a fixed

point Φ(µ) = µ ∈ H satisfying (2.1), the required result.

We now use the alternative equivalent formulation (3.1) to suggest the some

iterative methods for solving the problem (2.1).

Algorithm 3.1. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

µn+1 = JA[µn − ρ(T µn − B|µn|)],

which is known as the resolvent method and has been studied extensively.

Algorithm 3.2. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

µn+1 = JA[µn − ρ(T µn+1 − B|µn+1|)],

which is known as the implicit resolvent method and is equivalent to the following

two-step method.

Algorithm 3.3. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

ωn = JA[µn − ρ(T µn − B|µn|)]

µn+1 = JA[µn − ρ(T ωn − B|ωn|)].

Algorithm 3.4. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

µn+1 = JA[µn+1 − ρ(T µn+1 − B|µn+1|)],

which is known as the modified resolvent method and is equivalent to the iterative

method.
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Algorithm 3.5. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

ωn = JA[µn − ρ(T un − B|µn|)]

µn+1 = JA[ωn − ρ(T ωn − B|ωn|)],

which is two-step predictor-corrector method for solving the problem (2.1).

We can rewrite the equation (3.1) as:

µ = JA[
µ+ µ

2
− ρT µ+ ρB|µ|].

This fixed point formulation was used to suggest the following implicit method.

Algorithm 3.6. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

µn+1 = JA[
µn + µn+1

2
− ρT µn+1 + ρB|µn+1|].

Algorithm 3.7. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

ωn = JA[µn − ρT µn + ρB|µn|]

µn+1 = JA[
ωn + µn

2
− ρT ωn + ρB|ωn|], λ ∈ [0, 1].

From equation (3.1), we have

µ = JA[µ− ρT (
µ+ µ

2
) + ρB(

|µ|+ |µ|
2

)]. (3.9)

This fixed point formulation (3.9) is used to suggest the implicit method for solving

the problem (2.1) as

Algorithm 3.8. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

µn+1 = JA[µn − ρT (
µn + µn+1

2
) + ρB(

|µn|+ |µn+1|
2

)].

We can use the predictor-corrector technique to rewrite Algorithm 3.8 as:
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Algorithm 3.9. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

ωn = JA[µn − ρT µn + ρB|µn|],

µn+1 = JA[µn − ρT (
µn + ωn

2
) + ρB(

|µn|+ |ωn|
2

)],

is known as the mid-point implicit method for solving the problem (2.1).

We again use the above fixed formulation to suggest the following implicit

iterative method.

Algorithm 3.10. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

µn+1 = JA[µn+1 − ρT (
µn + µn+1

2
) + ρB(

|µn|+ |µn+1|
2

)].

Using the predictor-corrector technique, Algorithm 3.9 can be written as:

Algorithm 3.11. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

ωn = JA[µn − ρT µn + ρB|µn|],

µn+1 = JA[ωn − ρT (
µn + ωn

2
) + ρB(

|µn|+ |ωn|
2

)],

which appears to be new one.

It is obvious that Algorithm 3.3 and Algorithm 3.4 have been suggested using

different variant of the fixed point formulations (3.1). It is natural to combine

these fixed point formulation to suggest a hybrid implicit method for solving the

problem (2.1) and related optimization problems, which is the main motivation

of this paper.

One can rewrite (3.1) as

µ = JA[
µ+ µ

2
− ρT (

µ+ µ

2
) + ρB(

|µ|+ |µ|
2

)]. (3.10)

This equivalent fixed point formulation enables us to suggest the following implicit

method for solving the problem (2.1).
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Algorithm 3.12. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

µn+1 = JA
[
µn + µn+1

2
− ρT (

µn + µn+1

2
) + ρB(

|µn|+ |µn+1|
2

)

]
.

To implement the implicit method, one uses the predictor-corrector technique.

We use Algorithm 3.4 as the predictor and Algorithm 3.12 as corrector. Thus, we

obtain a new two-step method for solving the problem (2.1).

Algorithm 3.13. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

ωn = JA[µn − ρT µn + ρB|µn|]

µn+1 = JA
[(

ωn + µn
2

)
− ρT

(
ωn + µn

2

)
+ ρB

(
|ωn|+ |µn|

2

)]
.

For a parameter ξ, one can rewrite (3.1) as

µ = JA(1− ξ)µ+ ξµ− ρT µ+ ρB|µ|].

This equivalent fixed point formulation enables to suggest the following inertial

method for solving the problem (2.1).

Algorithm 3.14. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

µn+1 = JA[(1− ξ)µn + ξµn−1 − ρT µn + ρB|µn|].

It is noted that Algorithm 3.14 is equivalent to the following two-step method.

Algorithm 3.15. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

ωn = (1− ξ)un + ξun−1

µn+1 = JA[ωn − ρT ωn + ρB|ωn|].

Algorithm 3.15 is known as the inertial resolvent method, which is mainly due

to Noor [21] and Noor et al. [32, 33, 34].

Using this idea, we can suggest the following iterative methods for solving

variational inclusions.
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Algorithm 3.16. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

ωn = (1− ξ)un + ξun−1

µn+1 = JA[ωn − ρT ωn + ρB|ωn|].

Algorithm 3.17. For a given u0 ∈ H, compute un+1 by the iterative scheme

ωn = (1− α)un + αun−1

un+1 = JA[yn − ρT ωn + ρB|ωn|].

Using the technique of Noor et al. [33, 34], Jabeen et al. [8] and Shehu et

al. [48], one can investigate the convergence analysis of these inertial resolvent

methods.

4 Resolvent Equations Technique

In this section, we discuss the resolvent equations associated with the quasi

variational inclusions (2.1). It is worth mentioning that the resolvent equations

associated with variational inclusions were introduced and studied by Noor

[23, 24]. Noor and Noor [26] proved that the quasi variational inclusions are

equivalent to the implicit resolvent equations to study the sensitivity analysis.

Related to the quasi variational inclusion (2.1), we consider the problem of

finding z, µ ∈ H such that

T JAz + ρ−1RAz = BJAz, (4.1)

where ρ > 0 is a constant and RA = I − JA. Here I is the identity operator and

J = (1 + ρA)−1 is the resolvent operator. The equation of the type (4.1) are

called the absolute value resolvent equations.

We now prove that the absolute value variational inclusions (2.1) are equivalent

to the absolute value resolvent equations (4.1).
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Lemma 4.1. The quasi variational inclusion (2.1) has a solution µ ∈ H if and

only if the resolvent equations (4.1) have a solution z, µ ∈ H, where

µ = JAz (4.2)

and

z = µ− ρ(T µ− B|µ|). (4.3)

Proof. Let µ ∈ H be a solution of (2.1). Then, by Lemma 3.1, we have

µ = JA[µ− ρT µ+ ρB|µ|]. (4.4)

Take

z = µ− ρT µ+ ρB|µ|

in (4.4), we obtain

z = JAz,

which is the required (4.2). Thus

z = µ− ρT µ+ ρB|µ|

= JAz − ρT JAz + ρBJAz,

which implies that

T JA(z + ρ−1RAz = BJAz,

the required (4.1).

Lemma 4.1 implies that the variational inclusion (2.1) and the resolvent

equations (4.1) are equivalent. This alternative equivalent formulation has been

used to suggest and analyze a wide class of efficient and robust iterative methods

for solving the absolute value variational inclusions and related optimization

problems.
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We use the resolvent equations (4.1) to suggest some new iterative methods

for solving the quasi variational inclusions. From (4.2) and (4.3), we have

z = JAz − ρT JAz + ρB(JAz)

= JA[µ− ρT µ+ ρB|µ|]− ρT JA([µ− ρT µ+ ρB|µ|] + ρBJA[µ− ρT µ+ ρB|µ|].

Thus, we have

µ = ρT µ− ρB(µ) +
[
JA([µ− ρT µ+ ρB(µ)]− ρT JA[µ− ρT µ+ ρB(µ)].

Consequently, for a constant αn > 0, we have

µ = (1− αn)µ+ αnJA{JA[µ− ρT u+ ρB(µ)] + ρT µ− ρB|µ|

−ρT JA[µ− ρT µ+ ρB|µ|}

= (1− αn)µ+ αnJA{ω − ρT ω + ρT µ− ρB|µ|}, (4.5)

where

ω = JA[µ− ρT µ+ ρB|µ|]. (4.6)

Using (4.5) and (4.6), we can suggest the following new predictor-corrector method

for solving the absolute value variational inclusion (2.1).

Algorithm 4.1. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

ωn = JA[µn − ρT µn + ρB|µn|]

µn+1 = (1− αn)µn + αnJA
{
ωn − ρT ωn − ρB|µn|+ ρT µn

}
.

If αn = 1, then Algorithm 4.1 reduces to

Algorithm 4.2. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

ωn = JA[µn − ρT µn + ρB|µ|]

µn+1 = JA[ωn − ρT ωn + ρT µn − ρB|µn|],

which appears to be a new one.
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In a similar way, we can suggest and analyse the predictor-corrector inertial

method for solving the quasi variational inclusion (2.1), which involve only one

resolvent.

Algorithm 4.3. For given u0, u1 ∈ H, compute un+1 by the iterative scheme

ωn = µn − ξ(µn − µn−1)

µn+1 = JA[ωn − ρT ωn + ρT µn − ρB|µ|].

One can study the convergence of the Algorithm 4.3 using the technique of

Jabeen et al. [8].

Remark 4.1. We have only given some glimpse of the technique of the resolvent

equations for solving the quasi variational inclusions. One can explore the

applications of the resolvent equations in developing efficient numerical methods

for variational inclusions and related nonlinear optimization problems.

5 Dynamical Systems Technique

In this section, we consider the dynamical systems technique for solving quasi

variational inclusions. Dupuis and Nagurney [5] introduced and studied dynamical

systems associated with variational inequalities using the fixed point problems.

Thus it is clear that the variational inequalities are equivalent to a first order

initial value problem. Consequently, equilibrium and nonlinear problems arising

in various branches in pure and applied sciences can now be studied in the setting

of dynamical systems. It has been shown that the dynamical systems are useful in

developing some efficient numerical techniques for solving variational inequalities

and related optimization problems. We consider some iterative methods for

solving the variational inclusions. We investigate the convergence analysis of

these new methods involving only the monotonicity of the operator.

We now define the residue vector R(µ) by the relation

R(µ) = µ− JA[µ− ρT µ+ ρB|µ|]. (5.1)
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Invoking Lemma 3.1, one can easily conclude that µ ∈ H is a solution of the

problem(2.1), if and only if, µ ∈ H is a zero of the equation

R(µ) = 0. (5.2)

We now consider a dynamical system associated with the variational

inclusions. Using the equivalent formulation (3.1), we suggest a class of resolvent

dynamical systems as

dµ

dt
= λ{JA[µ− ρT u+ ρB|µ|]− µ}, µ(t0) = α, (5.3)

where λ is a parameter. The system of type (5.1) is called the resolvent dynamical

system associated with the problem (2.1). Here the right hand is related to the

projection and is discontinuous on the boundary. From the definition, it is clear

that the solution of the dynamical system always stays in H. This implies that the

qualitative results such as the existence, uniqueness and continuous dependence

of the solution of (5.1) can be studied.

We use the resolvent dynamical system (5.1) to suggest some iterative for

solving the variational inclusion (2.1). These methods can be viewed in the sense

of Koperlevich [13] and Noor [25] involving the double projection.

For simplicity, we take λ = 1. Thus the dynamical system (5.1) becomes

dµ

dt
+ µ = JA

[
µ− ρT u+ ρB|µ|

]
, µ(t0) = α. (5.4)

The forward difference scheme is used to construct the implicit iterative

method.

Discretizing (5.4), we have

µn+1 − µn
h

+ µn+1 = JA[µn − ρT µn+1 + ρB|µn+1|], (5.5)

where h is the step size.

Now, we can suggest the following implicit iterative method for solving the

variational inclusion (2.1).
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Algorithm 5.1. For a given µ0, compute µn+1 by the iterative scheme

µn+1 = JA
[
µn − ρT µn+1 + ρB|µn+1|)−

µn+1 − µn
h

]
,

This is an implicit method, which is quite different from the implicit method

of [4].

Algorithm 5.1 is equivalent to the following two-step method.

Algorithm 5.2. For a given µ0, compute µn+1 by the iterative scheme

ωn = JA[µn − ρT µn + ρB|µn|]

µn+1 = JA
[
µn − ρT ωn + ρB|ωn| −

ωn − µn
h

]
.

Discretizing (5), we now suggest an other implicit iterative method for solving

(2.1).
µn+1 − µn

h
+ µn+1 = JA)[µn+1 − ρT µn+1 + ρB|µn+1|],

where h is the step size.

This formulation enables us to suggest the two-step iterative method.

Algorithm 5.3. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

ωn = JA[µn − ρT µn + ρB|µn|]

µn+1 = JA
[
ωn − ρT ωn + ρB|ωn| −

ωn − µn
h

]
, n = 0, 1, 2, . . . .

Again using the project dynamical systems, we can suggested some iterative

methods for solving the variational inclusions and related optimization problems.

Algorithm 5.4. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

µn+1 = JA
[

(h+ 1)µn − µn+1

h
− ρT µn + ρB|µn|

]
, n = 0, 1, 2, . . . .

or equivalently
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Algorithm 5.5. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

ωn = JA[µn − ρT µn + ρB|µn|]

µn+1 = JA
[

(h+ 1)µn − ωn
h

− ρT un + ρB|µn|
]
, n = 0, 1, 2, . . . .

Discretizing (5.3), we have

µn − µn−1
h

+ µn+1 = JA[µn − ρT µn+1 + ρB|µn+1|], (5.6)

where h is the step size.

This helps us to suggest the following implicit iterative method for solving the

problem (2.1).

Algorithm 5.6. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

ωn = JA[µn − ρT µn + ρB|µn|]

µn+1 = JA
[

(h+ 1)µn − ωn
h

− ρT µn + ρB|µn|
]
, n = 0, 1, 2, . . . .

Discretizing (5.3), we propose another implicit iterative method.

µn+1 − µn
h

+ µn = JA[µn − ρT µn+1 + ρB|µn+1|],

where h is the step size.

For h = 1, we can suggest an implicit iterative method for solving the problem

(2.1).

Algorithm 5.7. For a given µ0 ∈ H, compute µn+1 by the iterative scheme

µn+1 = JA[µn − ρT µn+1 + ρB|µn+1|], n = 0, 1, 2, 3, ....

Algorithm 5.7 is an implicit iterative method in the sense of Koperlevich.
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Using (5.2), we have

dµ

dt
+ µ = JA[(1− α)µ+ αµ− ρT ((1− α)µ+ αµ) + ρB|(1− α)µ+ αµ)|], (5.7)

where α ∈ [0, 1] is a constant.

Discretization (5.7) and taking h = 1, we have

µn+1 = JA
[
(1−α)µn+αµn−1−ρT ((1−α)µn+αµn−1)+ρB|(1−α)µn+αµn−1|

]
,

which is an inertial type iterative method for solving the variational inclusion

(2.1). Using the predictor-corrector techniques, we have

Algorithm 5.8. For a given µ0 ∈ H, compute µn+1 by the iterative schemes

ωn = (1− α)µn + αµn−1

µn+1 = JA
[
ωn − ρT (ωn) + ρB|ωn|

]
,

which is known as the inertial two-step iterative method.

Remark 5.1. For appropriate and suitable choice of the operators T ,B,A, convex

set, parameter α and the spaces, one can propose a wide class of implicit, explicit

and inertial type methods for solving variational inclusions and related nonlinear

optimization problems. Using the techniques and ideas of Noor et al. [36], one

can discuss the convergence analysis of the proposed methods.

6 Nonexpansive Mappings

In this section, we consider the non-expansive mapping technique to suggest some

iterative methods for solving variational inclusions (2.1). First of all, we recall

the following fact.

Let S be a nonexpansive mapping. We denote the set of the fixed points

of S by F(S) and the set of the solutions of the variational inclusion (2.1) by
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RI(H,T,B). If µ∗ ∈ F(S) ∩ RI(H,T,B), then x∗ ∈ F (S) and µ∗ ∈ V I(K,T ).

Thus from Lemma 3.1, it follows that

µ∗ = Sµ∗ = JA[µ∗ − ρT µ∗ + ρB|µ∗|]

= SJA[µ∗ − ρT µ∗ + ρB|µ∗|],

where ρ > 0 is a constant.

This fixed point formulation is used to suggest the following iterative method

for finding a common element of two different sets of solutions of the fixed points

of the nonexpansive mappings and the variational inclusions.

Algorithm 6.1. For a given u0 ∈ H, compute the approximate solution xn by

the iterative schemes

un+1 = (1− an)un + anSJA[µn − ρT µn + ρB|µn|],

where an ∈ [0, 1] for all n ≥ 0 and S is the nonexpansive operator.

Algorithm 6.1 is also known as a Mann iteration. Using the technique of Noor

[25], one can discuss the convergence analysis of Algorithm 6.1.

Related to the variational inclusions, we have the problem of solving the

resolvent equations (4.1) involving the non-expansive mapping S. To be more

precise, let RA = I − SJA, where JA is the resolvent, I is the identity operator

and S is the nonexpansive operator. We consider the problem of finding z ∈ H
such that

T SJAz + ρ−1RAz = BSJAz, (6.1)

which is called the implicit resolvent equation involving the nonexpansive operator

S. For S = I, the identity operator, we obtain the implicit resolvent equation

(4.1). Using essentially the technique of the resolvent operator, one can establish

the equivalence between the resolvent equations and variational inclusions. This

alternative equivalence has played a fundamental and basic role in developing
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some efficient and robust methods for solving variational inclusions and related

optimization problems. It has been shown that the resolvent equation technique

is more flexible and general than the resolvent method and its variant form.

Definition 6.1. An operator T : H → H is called ζ-Lipschitzian if, there exists

a constant µ > 0, such that

‖T x− T y‖ ≤ ζ‖x− y‖, ∀x, y ∈ H.

Definition 6.2. An operator T : H → H is called α1-inverse strongly monotone

(or co-coercive), if there exists a constant α > 0, such that

〈T x− T y, x− y〉 ≥ α‖T x− T y‖2, ∀x, y ∈ H.

Definition 6.3. An operator T : H → is called r-strongly monotone, if there

exists a constant r > 0 such that

〈Tx− Ty, x− y〉 ≥ r‖x− y‖2, ∀x, y ∈ H.

Definition 6.4. An operator T : H → H is called relaxed (γ, r)-cocoercive, if

there exists constants γ > 0, r > 0, such that

〈T x− T y, x− y〉 ≥ −γ‖T x− T y‖2 + r‖x− y‖2, ∀x, y ∈ H.

Remark 6.1. Clearly a r-strongly monotone operator or a γ-inverse strongly

monotone operator must be a relaxed (γ, r)-cocoercive operator, but the converse

is not true. Therefore the class of the relaxed (γ, r)-cocoercive operators is the

most general class, and hence definition 2.4 includes both the definition 2.2 and

the definition 2.3 as special cases.

Remark 6.2. From Definition 6.2, it follows that if T is α-inverse strongly

monotone (or co-coercive), than T is also Lipschitz continuous with constant
1
α .

Lemma 6.1. Suppose {δk}∞k=0 is a nonnegative sequence satisfying the following

inequality:

δk+1 ≤ (1− λk)δk + σk, k ≥ 0,

with λk ∈ [0, 1],
∑∞

k=0 λk =∞, and σk = o(λk). Then limk→∞ δk = 0.
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In this section, we use the resolvent equations to suggest and analyze an

iterative method for finding the common element of the nonexpansive mappings

and the variational inclusion RV I(T,K). For this purpose, we need the following

result, which can be proved by using Lemma 2.2.

Lemma 6.2. The element µ ∈ H is a solution of variational inclusion (2.1), if

and only if, z ∈ H satisfies the implicit resolvent equation (2.12), where

µ = SJAz, (6.2)

z = u− ρT µ+ ρB|µ|, (6.3)

where ρ > 0 is a constant.

From Lemma 6.2, it follows that the variational inclusion (2.1) and the

resolvent equation (6.2) are equivalent. This alternative equivalent formulation

has been used to suggest and analyze a wide class of efficient and robust iterative

methods for solving variational inclusions and related optimization problems. We

denote the set of the solutions of the resolvent equations by IRE(H,T,S).

Using Lemma 6.2 and Remark 6.1, we now suggest and analyze a new

iterative algorithm for finding the common element of the solution sets of the

quasi variational inclusions and nonexpansive mappings S and this is the main

motivation of this paper.

Algorithm 6.2. For a given z0 ∈ H, compute the approximate solution zn+1 by

the iterative schemes

µn = SJAzn (6.4)

zn+1 = (1− an)zn + an{un − ρT µn + ρB|µ|)}, (6.5)

where an ∈ [0, 1] for all n ≥ 0 and S is a nonexpansive operator.

For S = I, the identity operator, Algorithm 6.2 reduces to the following

iterative method for solving variational inclusion(2.1) and appears to be a new

one.
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Algorithm 6.3. For a given z0 ∈ H, compute the approximate solution zn+1 by

the iterative schemes

µn = SJAzn
zn+1 = (1− an)zn + an{un − ρT µn + ρB|µ|)}.

We now study the convergence of Algorithm 6.2.

Theorem 6.1. Let T be a relaxed (γ, r)-cocoercive and µ-Lipschitzian mapping

and S be a nonexpansive mapping such that F(S)∩IRE(H,T, S) 6= ∅. Let {zn} be

a sequence defined by Algorithm 6.2, for any initial point z0 ∈ H. If The operator

B is Lipschitz continuous with constant ξ, and

θ =
√

1 + 2ργµ2 − 2ρr + ρ2µ2 + ρξ < 1, ρξ < 1, an ∈ [0, 1], (6.6)

∞∑
n=0

an =∞,

then zn converges strongly to z∗ ∈ F (S) ∩ IRE(H,T, S).

Proof. Let z∗ ∈ H be a solution of F(S) ∩ IRE(H,T, S). Then, from Lemma

6.1, we have

µ∗ = anSJAz∗ (6.7)

z∗ = (1− an)z∗ + an{µ∗ − ρT µ∗ + ρB|µ∗|, (6.8)

where an ∈ [0, 1] and u∗ ∈ H is a solution of RVI(H,I). To prove the result, we

need first to evaluate ‖zn+1 − z∗‖ for all n ≥ 0. From (6.5) and (6.8), we have

‖zn+1 − z∗‖ = ‖(1− an)zn + an{µn − ρT µn + ρB|µn|}

−(1− an)z∗ − an{µ∗ − ρT µ∗ + ρB|µ∗n)|}‖

≤ (1− an)||zn − z∗‖+ an||un − u∗ − ρ(T µn − T u∗)‖

+ρ‖B(µn − B|µ∗n|‖. (6.9)
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From the relaxed (γ, r)-cocoercive and µ-Lipschitzian definition on T , we have

‖un − u∗ − ρ(T un − T u∗)‖2

= ‖un − u∗‖2 − 2ρ〈T µn − T u∗, un − u∗〉+ ρ2‖T µn − T u∗‖2

≤ ||un − u∗||2 − 2ρ[−γ‖T µn − T u∗‖2 + r||un − u∗‖2]

+ρ2||Tun − Tu∗||2

≤ ||un − u∗||2 + 2ργµ2||un − u∗||2 − 2ρr||un − u∗||2 + ρ2µ2||un − u∗||2

= [1 + 2ργµ2 − 2ρr + ρ2µ2]||un − u∗||2 (6.10)

Combining (6.9), (6.10) and using the Lipschitz continuity of the operator B,
we have

‖zn+1 − z∗‖ ≤ (1− an)‖zn − z∗‖+ anθ1‖µn − µ∗‖. (6.11)

where

θ =
√

1 + 2ργµ2 − 2ρr + ρ2µ2 + ρξ. (6.12)

From (6.4) and (6.7), we have

‖µn − µ∗‖ ≤ ‖SJ zn − SJAz∗‖ ≤ ‖zn − z∗‖. (6.13)

From (6.11) and (6.13), we obtain that

‖zn+1 − z∗‖ ≤ (1− an)‖zn − z∗‖+ anθ‖zn − z∗‖

= [1− an(1− θ)]‖zn − z∗‖. (6.14)

Hence by (6.14) and Lemma 6.1, it follows that

lim
n→∞

‖zn − z∗‖ = 0,

which complete the proof.

We now prove the strong convergence of Algorithm 6.2 under the α-inverse

strongly monotonicity.
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Theorem 6.2. Let T be an α-inverse strongly monotonic mapping with constant

α > 0 and S be a nonexpansive mapping such that F(S) ∩ IRE(H,T ) 6= ∅. If the

operator B is Lipschitz continuous with constant ξ and

ρ <
2α

1 + αξ
, (6.15)

then the approximate solution obtained from Algorithm 6.2 converges strongly to

z∗ ∈ F(S) ∩ IRE(H,T ).

Proof. Let T be α-inverse strongly monotone with the constant α > 0, then

T is 1
α–Lipschitzian continuous. Consider

‖µn − µ∗ − ρ[T µn − T µ∗]‖2

= ‖µn − µ∗‖2 + ρ2‖T µn − T µ∗‖2 − 2ρ〈T µn − T µ∗, µn − µ∗〉

≤ ‖µn − µ∗‖2 + ρ2‖T µn − T µ∗‖2 − 2ρα‖T µn − T µ∗‖2

= ‖µn − µ∗‖2 + (ρ2 − 2ρα)|T µn − T µ∗‖2

≤ ‖µn − µ∗‖2 + (ρ2 − 2ρα) · 1

α2
‖µn − µ∗‖2

=

(
1 +

(ρ2 − 2ρα)

α2

)
‖µn − µ∗‖2. (6.16)

From (6.13) and (6.16), we have

‖zn+1 − z∗‖ ≤ (1− an)‖zn − z∗‖+ an‖µn − µ∗ − ρ(T µn − T µ∗)‖

+αnρ‖B|µn| − B|µ∗|‖

≤ (1− an)||xn − x∗||+ anθ2‖µn − µ∗‖+ αnρξ‖µn − µ∗‖

= [1− an(1− θ3)]‖zn − z∗‖,

where

θ2 = (1 +
(ρ2 − 2ρα)

α2
)1/2.

and

θ3 =

√
1 +

ρ2 − 2ρα

α2
+ ρξ < 1, using (6.15).
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Therefore, it follows

lim
n→∞

‖zn − z∗‖ = 0

from Lemma 6.1, completing the proof.

Remark 6.3. For suitable and appropriate choices of the operators and spaces,

one can suggest and analyze several inertial type methods for solving absolute

value variational inclusions and their variant forms. The developments and

implementations of efficient methods and their comparison with other methods

need further efforts.

Conclusion

We have introduced and investigated the absolute value variational inclusions.

It has been shown that some interesting and important problems such as

absolute value equations, complementarity problems, difference of two operators

and absolute value variational inequalities are special cases of the absolute

value variational inclusions. This shows that the absolute value variational

inclusions can be viewed as a general unified frame work to study these

unrelated problem in a unified manner. We have used the equivalence between

the absolute value variational inclusion and fixed point formulation to suggest

some new iterative methods for solving the variational inclusions. These new

methods include extra-resolvent method, modified double resolvent methods and

inertial type iterative methods, which are suggested using resolvent equations,

dynamical systems and nonexpansive mappings. Convergence analysis of the

proposed method is discussed for monotone operators. It is an open problem

to compare these proposed methods with other methods. Despite the recent

research activates, very few results are available. The development of efficient

implementable numerical methods requires further efforts.
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