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Abstract 

The purpose of this paper is to apply the fuzzy natural transform (FNT) for solving linear 

fuzzy fractional ordinary differential equations (FFODEs) involving fuzzy Caputo’s H-

difference with Mittag-Leffler laws. It is followed by proposing new results on the 

property of FNT for fuzzy Caputo’s H-difference. An algorithm was then applied to find 

the solutions of linear FFODEs as fuzzy real functions. More specifically, we first 

obtained four forms of solutions when the FFODEs is of order � ∈ (0,1], then eight 

systems of solutions when the FFODEs is of order � ∈ (1,2] and finally, all of these 

solutions are plotted using MATLAB. In fact, the proposed approach is an effective and 

practical to solve a wide range of fractional models. 

1. Introduction 

The subject of fractional calculus, a generality of the ordinary calculus, described 

when the order of the functions’ derivative is non-integer. Fractional calculus has a long 

history, where, explored and studied by various researchers in different fields of 

mathematics, engineering and physics have been intensively described via fractional 

derivatives, and fractional differential equations have come up as powerful instrument for 

modeling many difficult types of complex problems. Many authors considered the terms 

such as Riemann-Liouville, Grüunwald-Letnikov and Caputo fractional derivative when 

dealing with fractional differential equations ([3], [23], [29], [40]). As times moving on, 

some drawbacks seem in the fractional differential equations especially, when dealing 
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with physical phenomena. One of which is that a model involves uncertainty quantities 

and thus it is difficult to determine the initial values of it, as seen in ([13], [39]). To 

handle uncertainty quantities, researchers suggest several concepts. What stands out 

among those concepts is fuzzy set theory [44]. This theory is able to deal with differential 

equations having uncertainties at initial values. The first contribution on handling 

fractional differential equations with uncertainty was studied in [3]. This has prompted 

many researchers to further explore the topic ([4]-[6], [34], [23], [41]). It is also possible 

to solve many types of equations using integral transforms. Where integral transforms 

were used in solving linear ordinary differential equations, as well as linear fractional 

differential equations. The integral transforms were preceded by Fourier transform. 

Following, several integral transforms have been proposed, namely, Laplace, Mellin, 

Hankel and Sumudu transforms ([17], [24], [27], [32]). In this paper, we go to apply the 

natural transform to solve linear fuzzy fractional ordinary differential equations FFODEs 

involving fuzzy Caputo’s H-difference. The natural transform is a new integral transform 

was introduced by [10], and its properties were giving by [38] also they proved that the 

natural transform method converges to the Laplace and Sumudu transforms. This 

transform was applied to solve the ordinary differential equations ([20], [28]). Moreover, 

in [28], some certain fundamental properties of generalized natural transform in 

generalized spaces were established. In [37], this new transform was applied to find 

analytical solutions of fractional-order heat and wave equations. In the recent years and 

with the rapid development of linear and nonlinear science, many effectiveness numerical 

and analytical different methods for solving the fuzzy fractional differential equations, as 

using the fuzzy Laplace and fuzzy Sumudu transforms, see ([1], [14]). The objective of 

this paper is to discuss the numerically solutions for each form and system of FFODEs 

based on orders of fuzzy Caputo’s H-difference by using FNT. 

The paper is presented as follows: Section 2 gives the fundamental definitions and 

theorems of fuzzy calculus, fuzzy fractional derivatives and the types of Mittag-Leffler 

functions. The definition of fuzzy natural transform FNT for Caputo’s H−difference is 

given in Section 3. Algorithm of the solution of linear fuzzy fractional ordinary 

differential equations FFODEs of order 0 < � ≤ 1 and 1 < � ≤ 2 is presented in Section 

4. The solutions of the FFODEs by four forms and eight systems are described in Section 

5, respectively. Section 6 focuses on the results of the numerical applications are 

performed to test the validity and reliability of the present method in Section 4. Finally, 

the conclusions are drawn in Section 7. 
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2. Basics Concepts 

Fuzzy Calculus 2.1. In this subsection, several essential definitions and theorems of 

fuzzy calculus will be introduced. 

Definition 2.2. A fuzzy number � is a pair ( �, �) of functions �(�), �(�), 0 ≤ � ≤ 1 

which satisfy the following requests [36]: 

  i: �(�) is bounded monotonic increasing left continuous function. 

 ii: �(�) is bounded monotonic decreasing left continuous function. 

iii: �(�) ≤ �(�), 0 ≤ � ≤ 1. 

Arithmetic operation of arbitrary fuzzy numbers � = ��(�), �(�)� and  � =
��(�), �(�)� ∈ ℝ, can be defined as [1], 

(a) � = �, if and only if   �(�) = �(�) and �(�) = �(�). 
(b) � + � =  ��(�) + �(�), �(�) + �(�)�. 
(c) � − � = ��(�) − �(�), �(�) − �(�)�. 
(d) �� =  ���(�), ��(�)�   ,    � ≥ 0,

���(�), ��(�)�  ,     � < 0 ." 
The fuzzy numbers are classified into several types of fuzzy membership function.  The 

definition of triangular fuzzy number will be mentioned, because it’s the most used 

membership functions in our study. 

Definition 2.3 [14]. In a triangular fuzzy number (TFN) is defined by notation # = [%, &, '].  Then the members help function for this TFN is defined as  

#(() =  
⎩⎪⎨
⎪⎧      0    ,                ( < %( − %& − %   , % ≤ ( ≤ &' − (' − &  , & ≤ ( ≤ '

" .   
The �-cuts of TFN is #- = [(& − %)� + %(& − ')� + '], ∀ � ∈ (0,1]. 
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Theorem 2.4 [15]. Let /((): ℝ → ℱ(ℝ) and it is denoted by 34-((), 4-(()5. So for 

any fixed � ∈ [0,1], imagine 4-(() and 4-(() are Riemann−integrable on [%, &] for every 

& ≥ %, and two positive 6- and 67- such that,  8 94-(()9 :; ≤<= 6- and  8 >4-(()> :; ≤<= 67- for every & ≥ %. Then,  /(() is inadvisable fuzzy Riemann−integrable on [%, ∞)" and 

it is a fuzzy number. Thereby,   

@ /(() :;A
= = B@ 4-(() :;A

= , @ 4-(() :;A
= C. 

Hukuhara (H−difference) of fuzzy number is defined as follows. 

Definition 2.5 [36]. If �, � ∈ ℱ(ℝ) and exists a fuzzy subset D ∈ ℱ(ℝ) such as D + � = �, thereby D is unique. In this case, D is called H−difference, of � and � 

denoted by �−E  � and also note that −E � ≠ � + (−1)� . 

The concept of strongly generalized differentiable is a popularization of 

H−difference for fuzzy functions, it is defined as follows.  

Definition 2.6 [43]. Let /(() ∶ (%, &) → ℱ(ℝ) be a fuzzy function and (H ∈ (%, &). 

That /(() is strongly generalized differentiable at (H if there exists an element /′((H) ∈ℱ(ℝ), then:   

For all ℎ > 0 sufficiently small, ∃ /((H + ℎ)−E/((H), ∃ /((H)−E/((H − ℎ), and the 

limits (in the metric M) 

limO→H /((H + ℎ)−E/((H)ℎ = limO→H /((H)−E/((H − ℎ)ℎ = /P((H). 
Or, 

For every ℎ > 0 enough small, ∃ /((H)−E/((H + ℎ), ∃ /((H − ℎ)−E/((H) and so 

the limits (in the metric M) 

limO→H /((H)−E/((H + ℎ)−ℎ  =  limO→H /((H − ℎ)−E/((H)−ℎ = /P((H). 
The symbols ℂℱ[%, &] and Rℱ[%, &] are used to refer for the spaces of all continuous fuzzy 

functions and Lebesgue integrable fuzzy functions, respectively on [%, &] ⊆ ℝ.  
Fuzzy Fractional Derivatives 2.7. In this subsection, some of these definitions and 

theorems are presented on the subject of fuzzy Caputo’s H-difference. This subject 

extended of crisp case for fuzzy discussed in [35]. 
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Lemma 2.8. Let 4(() be a crisp continuous function and (⌈�⌉) −time differentiable 

in the independent variable ( over the interval of differentiation (integration) [0, (]. Then 

the relation, 

MV4(() = MVWX Y4(() − Z ([\!
⌊V⌋

[`H 4H([)ab , � ∈ (c − 1, c], c ∈ ℕ, 
holds, where 4H([) = "efg(h)ehf 9h`H and MVb  means Caputo derivative operator, while ⌈�⌉ 
and ⌊�⌋ are the value � rounded up and down to the closet integer number, respectively. MVWX  is the common Riemann−Liouville fractional derivative operator which is defined 

as follows: 

MVWX 4(() = 1i(⌈�⌉ − �) :⌈V⌉:(⌈V⌉ @ 4(j)(( − j)kl⌈V⌉mV :j.h
H  

Definition 2.9. Let /(() ∈ ℂℱ[0, &] ∩ Rℱ[0, &], o(() = kp(⌈V⌉lV) 8 g(q)l∑ sff!⌊t⌋fuv gv(f)
(hlq)wx⌈t⌉yt :j,hH  

and 

limO→Hy
o((H + ℎ)−Eo((H)ℎ = limO→Hy

o((H)−Eo((H − ℎ)ℎ = z((H), 
and   

limO→Hy
o((H)−Eo((H + ℎ)−ℎ = limO→Hy

o((H − ℎ)−Eo((H)−ℎ = R((H) 

/(() is Caputo’s H−difference function of order 0 < � < 2, � ≠ 1 at (H ∈ (0, &), if there 

exists an element MV/((H)b ∈ ℂℱ such that for every 0 ≤ � ≤ 1 and for ℎ > 0 

adequately near zero, either, 

(a) limO→Hy {(hvmO)l|{(hv)O = limO→Hy {(hv)l|{(hvlO)O = MV/((H)b . 
(b) limO→Hy {(hv)l|{(hvmO)lO = limO→Hy {(hvlO)l|{(hv)lO = MV/((H),b  

for 0 < � < 1. 

(c) limO→Hy }(hvmO)l|}(hv)O = limO→Hy }(hv)l|}(hvlO)O = MV/((H)b . 
(d) limO→Hy }(hv)l|}(hvmO)lO = limO→Hy }(hvlO)l|}(hv)lO = MV/((H)b . 
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(e) limO→Hy X(hvmO)l|X(hv)O = limO→Hy X(hv)l|X(hvlO)O = MV/((H)b . 
(f) limO→Hy X(hv)l|X(hvmO)lO = limO→Hy X(hvlO)l|X(hv)lO = MV/((H)b , 

for 1 < � < 2. 

Remark 2.10. The fuzzy function /(() is Caputo’s H-difference and denoted by M~ kV/((), M~ �V/(() respectively if it is (c) −differentiable for c = 1,2 as in Definition 

2.9 cases (a,b). Also, the fuzzy function /(() is Caputo’s H-difference and denoted by M~ k,kV /((), M~ k,�V /((), M~ �,kV /((), M~ �,�V /(() respectively if it is (c, �) − differentiable 

for c, � = 1,2 as in Definition 2.9 cases(c,d,e,f). 

Theorem 2.11. Let /(() ∈ ℂℱ[0, &] ∩ Rℱ[0, &] be a fuzzy valued function and where [/(()]- = [4-((), 4-(()], for � ∈ [0,1] and (H ∈ (0, &). Then:  

i- If /(() is Caputo’s H-difference function in (1)-differentiable form, then for  0 < � < 1 

[ M~ kV/((H)]- = [ M~ V 4-((H), M~ V 4-((H)]. 
ii- If /(() is Caputo’s H-difference function in (2)-differentiable form, then for  0 < � < 1 

[ M~ �V/((H)]- = [ M~ V 4-((H), M~ V 4-((H)]. 
iii- If M~ kV/(() is Caputo’s H-difference function in (1,1)-differentiable form, then 

for 1 < � < 2 

[ M~ k,kV /((H)]- = 3 M~ V 4-((H), M~ V 4-((H)5. 
iv- If M~ kV/(() is Caputo’s H-difference function in (1,2)-differentiable form, then 

for 1 < � < 2 

[ M~ k,�V /((H)]- = [ M~ V 4-((H), M~ V 4-((H)]. 
v- If M~ �V/(() is Caputo’s H-difference function in (2,1)-differentiable form, then for  1 < � < 2 

[ M~ �,kV /((H)]- = 3 M~ V 4-((H), M~ V 4-((H)5. 
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vi- If M~ �V/(() is Caputo’s H-difference function in (2,2)-differentiable form, then 

for 1 < � < 2 

[ M~ �,�V /((H)]- = 3 M~ V 4-((H), M~ V 4-((H)5. 
where 

M~ V 4-((H) = � kp(⌈V⌉lV) 8 �⌈t⌉g�(h)(hlq)wx⌈t⌉yt :jhH �h`hv, 

M~ V 4-((H) = � kp(⌈V⌉lV) 8 �⌈t⌉g�(h)(hlq)wx⌈t⌉yt :jhH �h`hv. 

M�4(() = e�g(h)eh�  . 

Mittag−Leffler Function 2.12. This function is a direct generalization of the 

exponential function, and has an affinity for fractional calculus. In this subsection, one 

and two parameter representations of Mittag–Leffler function are presented by the 

following definitions [22]. 

Definition 2.13. A one-parameter function of Mittag-Leffler type defined by the 

series expansion 

�V(�) = Z ��Γ(�� + 1)
A

�`H    , � > 0 , � ∈ ℂ. 
Definition 2.14. A two-parameter function of Mittag–Leffler type defined by the 

series expansion  

�V,�(�) = Z ��Γ(�� + �)
A

�`H    , � > 0 , � > 0, � ∈ ℂ. 
Consequently, the definition for the classical natural transform is given, when dealing 

with Caputo’s fractional derivative of crisp type and then some properties. 

Theorem 2.15 [26]. Let c ∈ ℕ and � > 0  be such that c − 1 < � ≤ c and �m(j, �) 

be a natural transform of the function 4((). Then the natural transform denoted by �Vm(j, �) of Caputo fractional derivative of the function 4(() of order �, is given by 

�m[ M~ V 4(()] = �Vm(j, �) = jV�V �m(j, �) − Z jVl(�mk)�Vl�
�lk
�`H [M�4(()]h`H. 
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Since in this paper, the orders 0 < � ≤ 1 and 1 < � ≤ 2  are considered, Theorem 

2.16 can be simplified as 

�m[ M~ V 4(()] = �Vm(j, �) = qt�t �m(j, �) − qtxw�t MH4(0),  � ∈ (0, 1], 
�m[ M~ V 4(()] = �Vm(j, �) = qt�t �m(j, �) − qtxw�t MH4(0) − qtx��txw Mk4(0), � ∈ (1, 2]. 

Note that when � = 1 and � = 2, the definition is like to the definition of natural 

transform for first and second orders derivative. 

Property 2.16 [26]. If  � > −1, then the natural transform of (V is given by 

�m[(V] = Γ(� + 1)�VjVmk . 
Property 2.17 [18]. If �, � > 0, � ∈ ℝ and  

qt�t > |%|, then the inverse natural 

transform formula, 

�lk B��lkjVl�jV + %�V C = (�lk�V,�(−%(V). 
3. Fuzzy Natural transforms for Caputo’s H-difference  

The definition of FNT for Caputo’s H-difference will be introduced as follows ([26], 

[33]). 

Definition 3.1. Let /((): ℝ → ℱ(ℝ) be a continuous fuzzy function. Assume /(�()�lqh is improper fuzzy Riemann-integrable on [0, ∞), then 8 /(�()�lqhAH :( is 

called fuzzy Natural transform and is denoted by,   

�(j, �) = �m[/(()](�, j) = 1� @ /(�()�lqhA
H :(, j, � ∈ [−�k, �� ] 

where, the variables � and j are used to factor the variable ( in the argument of the fuzzy 

and �k, �� > 0. Also, the FNT can be written in the following form: 

�m[/(()](�, j) = 3�m 34-((H)5 (�, j), 4-((H), �m�4-((H)�(�, j)5. 
4. Algorithm of the Solution of Linear Fuzzy Fractional Ordinary Differential 

Equations (FFODEs) 

The FFODEs is given in this form: 



Solution of Linear Fuzzy Fractional Differential Equations … 

Earthline J. Math. Sci. Vol. 8 No. 1 (2022), 41-65 

49

[ MVb ��(() ]- = %[��(() ]- + &,                                               (1) 

where, MVb  is Caputo’s H-difference of order, 0 < � ≤ 1 or 1 < � ≤ 2, � ∈ [0,1] and %, & are constants. The fuzzy initial condition FIC is the triangular fuzzy number:   

[��(0) ]- = [�k , �� , ��],                                                      (2) 

where, [��(() ]-  is a fuzzy function of the crisp function �((). Then Eq. (1) and Eq. (2) 

are equivalent the following forms, respectively:  

3 M~ V �-((), M~ V �-(()5 = % 3�-((), �-(()5 + &,                           (3) 

3�-(0), �-(0)5 = [�k + �(�� − �k) , �� − �(�� − ��)].                    (4) 

Next, the algorithm for solving of FFODEs can be provided through the following 

steps: 

Step 1: Eq. (3) is written in the form of a system consisting of two equations. The 

same procedure which applied to Eq.(4) as follows: 

M~ V �-(() = %�-(() + &,                                                (5) 

M~ V �-(() = %�-(() + &,                                                (6) 

and  

�-(0) = �k + �(�� − �k),                                               (7) 

�-(0) = �� − �(�� − ��).                                              (8) 

Step 2: Add the equations (5), (6) as well as equations (7), (8) to obtain the following 

equations, respectively. 

MVb �-(() = %�-(() + 2&,                                           (9) 

where,  

�-(() = �-(() + �-(() .                                             (10) 

So, 

�-(0) = �k + �� + �(2�� − �k − ��).                                 (11) 

Step 3: Finding a solution to the Eq. (9) by applying FNT and the properties of 

Mittag–Leffler function. 
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Step 4: Subtract the equations (5), (6) as well as equations (7), (8) to obtain the 

following equations, respectively 

MVb �-(() = %�-((),                                                (12) 

where, 

�-(() = �-(() −  �-(().                                                  (13) 

So, 

�-(0) = �k − �� + �(�� − �k).                                       (14) 

Step 5: Getting the solution to the Eq.(12) by applying FNT and the properties of 

Mittag–Leffler function. 

Step 6: Return to step 1 and step 2, such that Firstly: adding the equations (10), (13) 

to get the lower bound of solution �-((). Secondly: subtracting the same equations to get 

the upper bound of solution �-(() . 

5. The Solutions of FFODEs 

In this section, the solutions of FFODEs (3)-(4) will be based on the method steps 

mentioned above in the algorithm through two subsections depending on the orders of 

Caputo’s H-difference MVb . First: includes the solutions when the order is 0 < � ≤ 1 

and Second: includes other solutions when the order is 1 < � ≤ 2.  
5.1. The solutions of FFODEs of the order � < � ≤   

Now, the FFODEs (3)-(4) of order � ∈ (0,1] can be solved through two cases 

depending on the signal of the constant %.  

Case i: Let % > 0, then the solutions of (3)-(4) can be found by applying the (i) and 

(ii) forms of Theorem 2.11, as follows: 

First Form: Assume that [��(() ]- is Caputo’s H-difference function in (1) −differentiable, from Theorem 2.11 (i), then the solution is  

�-(() = {�k + �(�� − �k)}�V(%(V) + &(V�V,Vmk(%(V), 

�-(() = {�� + �(�� − ��)}�V(%(V) + &(V�V,Vmk(%(V). 

Second Form: Assume that [��(() ]- is Caputo’s H-difference function in (2) −differentiable, then from Theorem 2.11 (ii), then the solution is 
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�-(() = 12 {�k + �� + �(2�� − �k − ��)}�V(%(V) + 12 {�k − �� + �(�� − �k)}�V(−%(V)
+ &(V�V,Vmk(%(V), 

�-(() = 12 {�k + �� + �(2�� − �k − ��)}�V(%(V) − 12 {�k − �� + �(�� − �k)}�V(−%(V)
+ &(V�V,Vmk(%(V). 

Case ii: Let % < 0, then (3)-(4) becomes  

3 M~ V �-((), M~ V �-(()5 = % 3�-(() , �-(()5 + &, 
3�-(0), �-(0)5 = [�k + �(�� − �k) , �� − �(�� − ��)]. 

In order to get the solutions of the above equations. By applying the (i) and (ii) forms 

of Theorem 2.11, as follows: 

First form: Consider that [��(() ]- is Caputo’s H-difference function in (1) −differentiable, from Theorem 2.11 (i).  Note that getting the same lower and upper 

bound for a second form of Case i. 

Second form: Assume that [��(() ]- is Caputo’s H-difference function in (2) −differentiable, then from Theorem 2.11 (ii). Note that the same lower and upper 

bound are getting to the first form of Case i. 

5.2. The solutions of FFODEs of the order   < � ≤ £ 

If the FFODEs (3) - (4) are of the order � ∈  (1,2], then they are also solved using the 

same algorithm of the method and these equations take the form: 

3 M~ V �-((), M~ V �-(()5 = % 3�-((), �-(()5 + & ,                            (15) 

subject to the (FIC)[��(0)]- = ¤-,[��h(0)]- = ¥-. Put ¤- = ¥-, then, 

[��h(0)]- = [��(0)]- = [�k , �� , ��], = [�k + �(�� − �k) , �� − �(�� − ��)].                (16) 

The above equation will be solved in two cases depending on the signal of the 

constant %. 

Case j: Let % > 0, finding the solutions of (15)-(16) by applying the (iii), (iv), (v) 

and (vi) forms of Theorem 2.11, respectively as in the following the systems. 
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(1-1) System: Assume that [��(() ]- is Caputo’s H-difference function  (1,1) −differentiable, from Theorem2.11 (iii), then the solution of  (15)-(16) is 

�-(() = {�k + �(�� − �k)}(�V(%(V) + (�V,�(%(V)) + &(V�V,Vmk(%(V), 

�-(() = {�� + �(�� − ��)}(�V(%(V) + (�V,�(%(V)) + &(V�V,Vmk(%(V) .    
(1-2) System: Suppose that [��(() ]- is Caputo’s H-difference function in (1,2) −differentiable, from Theorem 2.11 (iv), note that (15)-(16) becomes  

3 M~ V �-((), M~ V �-(()5 = % 3�-((), �-(()5 + &, 

and FIC is �-(0) = ¤-,    �-(0) = ¤- , 
�h-(0) = ¥-,    �h-(0) = ¥- . 

Then the solution is 

�-(() = 12 {�k + �� + �(2�� − �k − ��)}(�V(%(V) + (�V,�(%(V)) + 12 {�k − ��+  �(�� − �k)}(�V(−%(V) +  (�V,�(−%(V)) + &(V�V,Vmk(%(V), 
�-(() = 12 {�k + �� + �(2�� − �k − ��)}(�V(%(V) + (�V,�(%(V)) + 12 {�k − ��+ �(�� − �k)}(�V(−%(V) +  (�V,�(−%(V)) + &(V�V,Vmk(%(V) .    
(2-1) System: Consider that [��(() ]- is Caputo’s H-difference function 

in(2,1) −differentiable, from Theorem 2.11 (v), 

Note that (15)-(16) becomes  

3 M~ V �-((), M~ V �-(()5 = % 3�-((), �-(()5 + &, 
and FIC is �-(0) = ¤- ,    �-(0) = ¤- , 

�h-(0) = ¥-
,  �h-(0) = ¥-. 

Then the solution is 

�-(() = 12 {�k + �� + �(2�� − �k − ��)}(�V(%(V) + (�V,�(%(V)) + 12 {�k − ��+  �(�� − �k)}(�V(−%(V) − (�V,�(−%(V)) + &(V�V,Vmk(%(V), 
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�-(() = 12 {�k + �� + �(2�� − �k − ��)}(�V(%(V) + (�V,�(%(V)) − 12 {�k − ��+ �(�� − �k)}(�V(−%(V) −  (�V,�(−%(V)) + &(V�V,Vmk(%(V) . 
(2-2) System: Assume that [��(() ]- is Caputo’s H-difference function 

in(2,2) −differentiable, from Theorem 2.11 (vi),   

Note that (15)-(16) becomes  

3 M~ V �-(() , M~ V �-(()5 = % 3�-((), �-(()5 + &, 

and FIC is �-(0) = ¤-,    �-(0) = ¤- , 
�h-(0) = ¥-

,   �h-(0) = ¥- . 
Then the solution is 

�-(() =  {�k + �(�� − �k)}�V(%(V) + {�� + �(�� − ��)}(�V,�(%(V) +  &(V�V,Vmk(%(V), 
�-(() = {�� + �(�� − ��)}�V(%(V) + {�k + �(�� − �k)}(�V,�(%(V)+ &(V�V,Vmk(%(V) .    

Case jj: Let % < 0, then (15)-(16) take this form 

3 M~ V �-(() , M~ V �-(()5 = % 3�-((), �-(()5 + &,                         (17) 

subject to the FIC[��(0)]- = ¤-,[��h(0)]- = ¥-. Put ¤- = ¥-, then, 

[��h(0)]- = [��(0)]- = [�k , �� , ��], 
= [�k + �(�� − �k) , �� − �(�� − ��)].                                             (18) 

Now, finding the solutions of (17)-(18). By applying the (iii), (iv), (v) and (vi) forms 

of Theorem 2.11, respectively as in the following systems: 

(1-1) System: Consider that [��(() ]- is Caputo’s H-difference function in (1,1) −differentiable, from Theorem 2.11 (iii), then the solution of  (17)-(18) is 

�-(() = 12 {�k + �� + �(2�� − �k − ��)}(�V(%(V) + (�V,�(%(V)) + 12 {�k − ��+ �(�� − �k)}(�V(−%(V) + (�V,�(−%(V)) + &(V�V,Vmk(%(V), 
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�-(() = 12 {�k + �� + �(2�� − �k − ��)}(�V(%(V) + (�V,�(%(V)) − 12 {�k − ��+ �(�� − �k)}(�V(−%(V) +  (�V,�(−%(V)) + &(V�V,Vmk(%(V) .    
(1-2) System: Suppose that [��(() ]- is Caputo’s H-difference function in (1,2) −differentiable, from Theorem 2.11 (iv),  

Note that (17)-(18) becomes  

3 M~ V �-((), M~ V �-(()5 = % 3�-((), �-(()5 + &, 
and FIC is 

�-(0) = ¤- ,     �-(0) = ¤- , 
�h-(0) = ¥- ,    �h-(0) = ¥-

. 

After solving this system, obtaining the same results in (1-1) system for the Case j. 

(2-1) System: Assume that [��(() ]- is Caputo’s H-difference function in (2,1) −differentiable, from Theorem 2.11 (v),  

Note that (17)-(18) becomes 

3 M~ V �-((), M~ V �-(()5 = % 3�-((), �-(()5 + &, 
and (FIC) is 

�-(0) = ¤- ,    �-(0) = ¤- , 
�h-(0) = ¥- ,    �h-(0) = ¥-. 

After solving this system obtaining the same results in (2-2) system for the Case j. 

(2-2) System: Assume that [��(() ]- is Caputo’s H-difference function in (2,2) −differentiable, from Theorem 2.11 (vi),   

Note that (17)-(18) becomes  

3 M~ V �-(() , M~ V �-(()5 = % 3�-((), �-(()5 + &, 
and (FIC) is �-(0) = ¤- ,     �-(0) = ¤- , 
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�h-(0) = ¥- ,    �h-(0) = ¥- . 
Then the solution is 

�-(() = {12 {�k + �� + �(2�� − �k − ��)}(�V(%(V) + (�V,�(%(V))
+ 12 {�k − �� +  �(�� − �k)}(�V(−%(V) − (�V,�(−%(V))+ &(V�V,Vmk(%(V), 

�-(() = 12 {�k + �� + �(2�� − �k − ��)}(�V(%(V) + (�V,�(%(V))
− 12 {�k − �� + �(�� − �k)}(�V(−%(V) − (�V,�(−%(V))+ &(V�V,Vmk(%(V).    

6. Main Results and Discussion 

In this section, assume that the FIC is [��h(0)]- = [��(0)]- = [1,2,3]. Taking % = & =1 for Cases i and j so, % = −1, & = 1  for Cases ii and jj. Firstly, the numerical solutions 

of (3)-(4) for Cases i and ii are listed in Tables 1 and 2, respectively. For graphical 

results, please see in Figures 1 and 2. 

Table 1: Numerical solutions at Case i; First and Second forms of FFODEs (3)-(4) for � = 0.5. 

                            Case i; First form � = 0.5                       Case i; Second form � = 0.5 

� � � � � 

0 27.3517 55.5461 41.0128 41.8850 

0.1 28.7614 54.1364 41.0564 41.8414 

0.2 30.1711 52.7267 41.1000 41.7978 

0.3 31.5808 51.3170 41.1436 41.7542 

0.4 32.9906 49.9072 41.1872 41.7106 

0.5 34.4003 48.4975 41.2308 41.6669 

0.6 35.8100 47.0878 41.2745 41.6233 

0.7 37.2197 45.6781 41.3181 41.5797 

0.8 38.6295 44.2683 41.3617 41.5361 

0.9 40.0392 42.8586 41.4053 41.4925 

1.0 41.4489 41.4489 41.4489 41.4489 
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Figure 1: The numerical solutions at Case i; First and Second forms of FFODEs (3)-(4) 

for � = 0.5. 

Table 2: Numerical solutions at Case ii; First and Second forms of FFODEs (3)-(4) for � = 0.5. 
                        Case i; First form � = 0.5                      Case i; Second form � = 0.5 

� � � � � 

0 -12.5039 15.6905 1.1572 2.0294 

0.1 -11.0942 14.2808 1.2008 1.9858 

0.2 -9.6845 12.8711 1.2444 1.9422 

0.3 -8.2748 11.4614 1.2880 1.8986 

0.4 -6.8650 10.0516 1.3316 1.8550 

0.5 -5.4553 8.6419 1.3752 1.8113 

0.6 -4.0456 7.2322 1.4189 1.7677 

0.7 -2.6359 5.8225 1.4625 1.7241 

0.8 -1.2261 4.4127 1.5061 1.6805 

0.9 0.1836 3.0030 1.5497 1.6369 

1.0 1.5933 1.5933 1.5933 1.5933 
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Figure 2: The numerical solutions at Case ii; First and Second forms of FFODEs (3)-(4) 

for � = 0.5. 

Secondly, the numerical solutions of (13)-(14) for Cases j and jj are listed in Tables 

3, 4, 5 and 6, respectively. For graphical results, please see in Figures 3 and 4. Numerical 

solutions for all cases are got by extending Mittag-Leffler functions up to 10 terms. 

Table 3: Numerical solutions at Case j; (1-1) and (1-2) systems of FFODEs (13)-(14) for � = 1.3. 
                      Case j; (1-1) system, � = 1.3                Case j; (1-2) system, � = 1.3 

� � � � � 

0 15.5994 37.3200 25.6504 27.3203 

0.1 16.6854 36.2340 25.7313 27.2343 

0.2 17.7714 35.1479 25.8122 27.1482 

0.3 18.8575 34.0619 25.8932 27.0621 

0.4 19.9435 32.9759 25.9741 26.9761 

0.5 21.0295 31.8899 26.0550 26.8900 

0.6 22.1156 30.8038 26.1360 26.8040 

0.7 23.2016 29.7178 26.2169 26.7179 

0.8 24.2876 28.6318 26.2978 26.6318 

0.9 25.3737 27.5457 26.3788 26.5458 

1.0 26.4597 26.4597 26.4597 26.4597 
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Table 4: numerical solutions at Case j; (2-1) and (2-2) systems of FFODEs (13)-(14) for � = 1.3. 
                     Case j; (2-1) system, � = 1.3                 Case j; (2-2) system, � = 1.3 

� � � � � 

0 25.5991 27.3203 25.8419 27.0775 

0.1 25.6851 27.2343 25.9037 27.0157 

0.2 25.7712 27.1482 25.9654 26.9539 

0.3 25.8572 27.0621 26.0272 26.8922 

0.4 25.9433 26.9761 26.0890 26.8304 

0.5 26.0294 26.8900 26.1508 26.7686 

0.6 26.1154 26.8040 26.2126 26.7068 

0.7 26.2015 26.7179 26.2744 26.6450 

0.8 26.2876 26.6318 26.3361 26.5833 

0.9 26.3736 26.5458 26.3979 26.5215 

1.0 26.4597 26.4597 26.4597 26.4597 
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Figures 3: The numerical solutions at Case j; (1-1),(1-2),(2-1) and (2-2) systems of 

FFODEs (13)-(14) for � = 1.3. 

Table 5: Numerical solutions at Case jj; (1-1) and (1-2) systems of FFODEs (13)-(14) 

for � = 1.3.  
                     Case jj; (1-1) system, � = 1.3              Case jj; (1-2) system, � = 1.3 

� � � � � 

0 -8.2160 3.2621 1.8350 3.4536 

0.1 -7.1300 3.2003 1.9159 3.3727 

0.2 -6.0440 3.1385 1.9968 3.2917 

0.3 -4.9579 3.0767 2.0778 3.2108 

0.4 -3.8719 3.0150 2.1587 3.1299 

0.5 -2.7859 2.9532 2.2396 3.0489 

0.6 -1.6998 2.8914 2.3206 2.9680 

0.7 -0.6138 2.8296 2.4015 2.8871 

0.8 0.4722 2.7678 2.4824 2.8061 

0.9 1.5582 2.7061 2.5634 2.7252 

1.0 2.6443 2.6443 2.6443 2.6443 
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Table 6: Numerical solutions at Case jj; (2-1) and (2-2) systems of FFODEs (13)-(14) 

for � = 1.3 . 

                     Case jj; (2-1) system, � = 1.3              Case jj; (2-2) system, � = 1.3 

� � � � � 

0 3.5049 1.7836 2.0265 3.2621 

0.1 3.4189 1.8697 2.0883 3.2003 

0.2 3.3328 1.9558 2.1500 3.1385 

0.3 3.2467 2.0418 2.2118 3.0767 

0.4 3.1607 2.1279 2.2736 3.0150 

0.5 3.0746 2.2140 2.3354 2.9532 

0.6 2.9885 2.3000 2.3972 2.8914 

0.7 2.9025 2.3861 2.4589 2.8296 

0.8 2.8164 2.4722 2.5207 2.7678 

0.9 2.7303 2.5582 2.5825 2.7061 

1.0 2.6443 2.6443 2.6443 2.6443 
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Figure 4: The numerical solutions at Case jj; (1-1), (1-2), (2-1) and (2-2) systems of 

FFODEs (13)-(14) for � = 1.3. 

7. Conclusions 

In the present paper, we obtained the solutions of FFODEs involving fuzzy Caputo’s 

H-difference according to the method proposed by [12]. A new property of fuzzy natural 

transform for fuzzy Caputo’s H-difference has been introduced. The new property has 

been used to establish a procure for solving linear FFODEs. These equations have been 

solved numerically to show that FNT is functional. For future research, we contemplate 

to apply FNT on nonlinear fuzzy differential equations of fractional order. Finally, we 

demonstrated that the proposed approach has good effectiveness and accuracy to compute 

the fuzzy solution set and for applications to FFODEs. 
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