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Abstract

In this paper, we define two new classes of analytic functions involving strong differential
subordinations and superordination associated with Frasin operator. Further, we study

some important properties of these classes.

1. Introduction

Let U denote the open unit disk of the complex plane U ={z0C:|z|<1},

U ={z0C:|z| <1} be the closed unit disk of the complex plane and let H(U x U)
be the class of analytic functions in U x U. For a positive integer n and a 0 C, let
Hla, n, Q] ={f OHW xT): f(z. Q) = a+ a,@Q)<" + @ ()" + ..

:0U,C0OU},

where a;({) are holomorphic functions in U for j = n.

Let A z indicate the class of functions of the form:
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f. ) =2+ Q)" (z00.200), (1.1)

k=2
which are analytic in U xU and a; (¢) are holomorphic functions in U for k > 2.

Definition 1.1 [4]. Denote by Qg the set of functions that are analytic and injective

on U xU\E(f, 7), where

E(f,0) ={r00U : lim f(z, {) = o},

-7
and are such that f](r, {) # 0 for r 00U x U\E(f, {). The subclass of Q; for which

£(0, ) = a is denoted by O (a).

Definition 1.2 [5]. Let f(z, {), F(z, {) analytic in U x U. The function f(z, ) is
said to be strongly subordinate to F(z, {) if there exists a function w analytic in U with
w(0) =0 and |w(z)|<1(z0OU) such that f(z,{) = F(w(z),{) for all ZOU. In
such a case we write f(z, {) << F(z, ¢), zOU,C0OU.

Remark 1.1 [5].

(1) Since f(z, ) is analytic in U x U, for all ¢ OU and univalent in U, for all
{OU, Definition 1.2 is equivalent to f(0,2)=F(0,Z) for all {OU and
foxu)aFUxU).

) If f(z,0) = f(z) and F(z, ) = F(z), the strong subordination becomes the
usual notion of subordination.

If f(z, ) strongly subordinate to F(z, {), then F(z, {) strongly superordinate to
f(z. Q).

Lemma 1.1 [3]. Let h(z, {) be a univalent with h(0, Q) = a for every L OU and
let u O C\0} with Re(u) = 0. If p O Hla, 1, {] and

p(z. Q) +ﬁzp;(z, 0) << h(z. 7). (:0U.200), (12)
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then

p(z. 0) << q(z, {) =< h(z, ), (z0U,C0OV),
where q(z, {) = UZ_“I()Zh(t, Z)t“_ldt is convex and it is the best dominant of (1.2).

Lemma 1.2 [4]. Let h(z, {) be a convex with h(0, 1) = a for every L OU and let

nOC\0} with Re(u) 2 0. If pOH[a, 1, LN Q. p(z. )+ ﬁzp;(z, Q) is univalent

inUxU and
h(z, ) << pl(z, Z)+ﬁzp;(z, ). (:0U,T00), (1.3)
then
q(z, Q) =< p(z 0). (:0U.T0O0),
where q(z, {) = Hz “I QO Yat is convex and it is the best subordinant of (1.3).

For fOAz, mON, 9, jONy =NU{0},0<1<1. Frasin operator [2] DSI’T :
Az - Ag (see [7]) is defined by

e
DS f(z Q) =z+ Z{l + (k —1)2["?](— 1)j+1r1} aq@Q)Z*, (20U, T00).(14)

It is readily verified from (1.4) that

CP WDy <f (2 V). =DEHF(2 Q)= (1= CPO)DG /(2 0),  (15)

where C"'(1) = 3" (’7](— 1)+,

J=1 j

Special cases of this operator include the generalized Saldagean operator [1] and the

Salagean differential operator [6].
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2. Main Results

Definition 2.1. Let Y(z, {) be an analytic function in U x U with (0, {) =1 for
every ( OU and A >0, mON, 8, jUONg, 0 <t<1. Afunction f D.AZ is said to be

in the class M()\, o, m, j, T, l]J) if it satisfies the strong differential subordination

1[{1— A }D,Z,Tf(z,zﬂ A DYz, Z)]«w(z,z), (z0U,200).
z cj'(1) cj'(1)

A function f [ Az is said to be in the class NN, 8, m, j, T; ) if it satisfies the

strong differential superordination

W(z, )«;[{1‘ ) JD,Z,J(Z, )+ — D2y, Z)], (:0U,Z00).

cr () "

Theorem 2.1. Let Y(z, {) be a convex function in U xU with (0, ) =1 for

every ([ U and \ > 0. If /\/l()\, o, m, J, T, llJ), then there exists a convex function
q(z, €) such that q(z, {) << Y(z, ) and f O M(0, 8, m, j, T; q).

Proof. Suppose that

D,?L Tf(z’ Z)

Z

p(z, Q) =

d
:”Z{ Z( J 1)/ 1/ Jak(Z)zk_l, (zOU,C0U). (2.1)

k=2 j=l1
Then, p O X1, 1, Z].

Since f O M(A, 8, m, j, T, @), then we have

l[[1— nz\ ]D,i,rf(z, Z)+mLD2,+rl (z. Z)]<< W(z. 7). 22)
z ci(n) 7(0)

http://www.earthlinepublishers.com
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From (2.1) and (2.2), we get

ll[l— r,},\ ]D/?Z,Tf(29Z)+ ,,},\ DS (2 Q) | = plz, Q)+ Aapt(z, Q) <= W(z. 0).
< Cj (T) Cj (T)

An application of Lemma 1.1 with p = %, yields

p(z, 0) << q(z, {) =< W(z, Q).

By using (2.1), we obtain

5
M << q(z, {) =< W(z, 0),
where
1 _ z l—1
q(z, Z)=XZ AJ'Ow(t, Oth ar

is convex and it is the best dominant.
Theorem 2.2. Let Y(z, {) be a convex function in U xU with (0, ) =1 for

Dr?z, rf(Z’ Z)
Z

every LOU and N >0. If f ON(N, 8, m, j, T, Y), OH[1L 1, 7N Qo

and

l[{l— ni‘ JDQ,J(Z,ZH n): Dy £ (2 )
Z Cj (T) CJ (T)

is univalent in U XU, then there exists a convex function q(z,C) such that
FON(0,8 m, j, T q).

Proof. Suppose that the function p(z, {) be defined by (2.1). It is evident that
pOH[, L TN Q. After a short calculation and considering f 0N A\, 3, m, j,; ),

we can conclude that

W(z, ¢) << plz, Q) + Azp(z. ).
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An application of Lemma 1.2 with p = %, yields

q(z, ) =< p(z, Q).

In view of (2.1), we obtain

o
q(z, U) =< —Dm’”;(z’ 9 :

where

1—1

1
1 3rz N
q(z, ) =~z AI W(r, e de
A 0
is convex and it is the best subordinant.
If we combine the results of Theorem 2.1 and Theorem 2.2, we obtain the following
strong differential “sandwich theorem”.
Theorem 2.3. Let Y(z,{) and Q,(z, Q) be convex functions in U XU with
W(0,0) =W, (0,2) =1 for every TOU and A >0. If fOMMN, 8 m, j, T, P;)N

D1§1, Tf(Z9 Z)
Z

NQ, 8, m, j, T P,), OH[1, 1, 2] N Qg and

é[{l— A JDQ,J(Z,ZH A DY f(z. Q)

ci'(v) ci'(n)

is univalent in U x U , then

FOMO, 8 m j, T q)NNO, 8 m, j. T q).

where
1 ‘l z l—1
- )\ :
IERIEEE JollJl(t,Z)t d
and
1
1 .
92(z, C) =3 C )\Izmz(l, Qth dr

The functions q; and q, are convex.

http://www.earthlinepublishers.com
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Theorem 2.4. Let (z, {) be a convex function in U xU with P(0,) =1 for
every L OU and

€+2
£+l
Z

G(z. 7) = j £, Qdr, (20U, LOT, Re(e) > -2). 2.3)

If fOM(®, 3, m, j, T;Q), then there exists a convex function q(z, () such that
q(z, Q) <= W(z, Q) and G O M(1, 8, m, j, T; q).
Proof. Suppose that
p(z. 0) = (D} +G(z. 0);. (z0U.70T). (2.4)
Then, p O K|, 1, ].

From (2.3), we have

2*6(z, 1) = (e + 2) j;ﬁ 7, ). 2.5)

Differentiating both sides of (2.5) with respect to z, we get

(€+2)f(z. Q) = (€ +1)G(z. {) + 2G;(z. O

and

I

(e +2)Dp 1/ (2. Q) = (e + ) D (G(z. 0) + (D, Gz Q)): -

Differentiating the last relation with respect to z, we have

1 "

(D5, </ (2 V) =(Dh<G(z, Q): + 5.1G(z 0)2 (2.6)
Since f O M(1, 8, m, j, T; P), then we have
1 5+ _m 5
m Dm T ( Z) (1 C ( ))Dm,'l'f(z’ Z)] == lIJ(Z’ Z) (27)
Cj (T)Z
Now, from (1.5), (2.7) is equivalent to
(D3, +f (. Q) << Wz, O). (2.8)
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From (2.6) and (2.8), we get

(D3,16(z. Qe+ (D 6(z. )2 << wi(z. Q). 29

Replacing (2.4) in (2.9), we obtain

plz, Q)+

s (2, Q) << W(z, Q).

An application of Lemma 1.1 with 4 = € + 2, yields

p(z, Q) << g(z, {) =< W(z, Q).

By using (2.4), we obtain

(D3 1G(z, V). =< q(z, 1) << W(z, Q).

where

Z

ol 0) = e+ 2) D Cul O ar

0
is convex and it is the best dominant.

Theorem 2.5. Let ((z, {) be a convex function in U xU with P(0,) =1 for
every {OU and G(z,0) is given by (2.3). If fON( S m, j, T, W),

(D3,+G(z. 0): OH[L1LZIN Q¢ and

L D34 (z 0) - (1- (1)) D2 1/ (=, )]

C1'(1)z

is univalent in U XU, then there exists a convex function q(z,C) such that

GON( 3 m, j, T;q).

Proof. Suppose that the function p(z, {) be defined by (2.4). It is evident that
pOH[, L ZIN Qg . After a short calculation and considering f [ N1, 8 m, j, W),

we can conclude that

W O << ple )+ 5 74 Q).

+2
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An application of Lemma 1.2 with [ = € + 2, yields

q(z, {) == p(z, Q).

By using (2.4), we obtain

a(z, Q) << (D8, 6(z, Q) ,

where

Z

ol 0) = e+ 2) D Cul O ar

0

is convex and it is the best subordinant.

If we combine the results of Theorem 2.4 and Theorem 2.5, we obtain the following

strong differential “sandwich theorem”.

Theorem 2.6. Let (z,{) and Q,(z, Q) be convex functions in U XU with
Wi(z, Q) =Wy(z, Q) =1 for every LOU and G(z, Q) is given by (2.3). If f O
ML 8 m, . T W) NN (L8, m, j. T W), (DG +6(z Q)): DML 1. N Qg and

1

(1)

DY f(2. Q) - (1= CT (@) DY £ (2 )

is univalent in U x U , then
FOMO 8 m, j, & g)NNQA 8 m, j, T q),

where

a(2 0) = e+ 27 0, O

and
0z ) = (e+ Z)Z_(EJrZ)_[()Z‘lJz(t, Q) ar,

The functions q; and q, are convex.
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