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Abstract 

This paper focuses on the construction and implementation of an improved secant method 

for finding the root of a polynomial. The arithmetic mean in the Marouane’s method was 

replaced by the geometric mean. The result shows that the method converges compete 

favorably with other methods in literature and efficient as the two points in the 

conventional secant methods has been reduced to only one fixed point. 

1. Introduction  

Over the years, different methods and improvement have been made to the solution 

of the polynomial equation 
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The root-finding problem arises in a wide variety of practical applications in physics and 

engineering and many others. This problem also has a direct application in the multiple 

shooting method for two-point boundary-value problems. The basic concept to all root 

finding numerical methods is iteration or successive approximation. The main idea of an 

iterative method is to first choose a suitable guess of the root, and then repeatedly 

improve upon this guess, using some well-defined operations, until we obtain an 
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approximate root that is sufficiently close to actual root. One of the most widely used 

root-finding iterative algorithms is Newton’s Raphson method.  

Brent [1] presented a root finding algorithm by combining the bisection method, the 

secant method and inverse quadratic interpolation. Hildebrand [2] states that the theory 

of numerical analysis deals with the location of the roots of an equation. Ostrowski [3] 

presented the secant method as a modified form of the Newton Ralphson’s method. He 

referred to the secant method as an alteration using successive adjacent points. He 

explains that the secant method uses the last two points instead of constantly using one 

of the initial points. Traub [4] explained that the secant method always uses the last two 

approximations. He was the first to state that convergence of the secant method is super-

linear. 

Zheng et al. [5] presented an improvement to Brent’s method for finding roots of a 

function of a single variable. Zhang improvement to Brent’s method makes the algorithm 

earlier presented by Brent to be much simpler and much understandable. 

Marouane [6] presented an improvement to the secant method that is much faster in 

quadratic order with only one initial guess. On his part Chen [7] derived a family of 

improved secant-like method is proposed. In the paper, the analysis of the convergence 

shows that this method has super-linear convergence. Efficiency were demonstrated by 

numerical experiments when the choice of α is correct. Recently also, Tiruneh et al. [8] 

presented a modification of secant method for finding roots of equations that uses three 

points for iteration instead of just two. The development of the mathematical formula to 

be used in the iteration process is provided together with the proof of the rate of 

convergence which is 1.84 and is the same as the rate of convergence of Mueller’s 

method of root finding. Application examples were given where it was demonstrated that 

for equations involving ill-conditioned cases, the proposed method has better 

convergence characteristics compared to the Newton and conventional secant methods. 

2. Materials and Methods 

The secant method is a root-finding algorithm that uses a succession of roots of 

secant lines to better approximate a root of a function ( ) .0=xf  It is an improvement of 

Newton Ralphson’s method where ( )nxf ′  in the Newton-Raphson method is replaced 

by the difference equation 
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which is the slope of the line through two parts of the curve ( ).xfy =  The conventional 

secant method is therefore given by the formula: 
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Marouane [6] improved on (3) by deriving a new method given as 
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Derivation of the new improved methods 

 

Figure 1. The first two iterations of the secant method. The red curve shows the function 

f, and the blue lines are the secants. 

Starting with initial values 0x  and ,1x  we construct a line through the points 

( )( )00 , xfx  and ( )( ),, 11 xfx  as shown in the picture above. In the gradient intercept 

form, the equation of this line is ;cmxy +=  that is: 
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The root of this linear function, that is the value of x such that 0=y  is  
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Maouane replaces   
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and obtains 
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In this paper, (7) and (8) are replaced as  

 ( )001 2 xfxx ≅  (10) 

 ( ) ( ( ) ),2 001 xfxfxf ≅   (11) 

respectively. 

Substituting equations (10) and (11) into equation (6), we have 
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Generalizing equation (12), we have 
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3. Numerical Experiments  

In this section, we consider the numerical experiment of the newly improved secant 

algorithm to ascertain its accuracies and convergence. Also the new algorithm is 

compared with other existing methods such as Marouane’s and conventional secant 

methods. 

Problem 1. Given the equation ( ) 12 −= xxf  the roots are given as follows: 

Using the new method (13): 

When ,0=n  we have 
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By bisection rule, ( ) 11 −=f  and ( ) .22 =f  Thus, ( ) ( ) ,021 <× ff  hence ( ).2,1∈x  It 

follows that   
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When ,2=n  
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It continues for the first ten iterations and the results are displayed in the table below: 

Table 1. Table of solution generated by the new method. 

S/N 
nx  ( )nxf  ne  1+ne  

1 1.394337567 -0.055822748 0.019875995 0.011334568 

2 1.42554813 0.032172312 0.011334568 0.007284613 

3 1.406928949 -0.0205509344 0.007284613 0.005190139 

4 1.419403701 0.014706866 0.005190139 0.003867308 

5 1.410346254 -0.010923445 0.003867308 0.003020833 

6 1.417234395 0.00855333 0.003020833 0.002416966 

7 1.411796596 -0.006830709 0.002416966 0.001988036 

8 1.416201598 0.005626966 0.001988036 0.001660041 

9 1.412553521 -0.004692552 0.001660041 0.001411619 

10 1.415623181 0.003994654 0.001411619  
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Solving same problem with Marouane is summarized in the table below 

Table 2. Table of solution generated by the Marouane’s method. 

S/N 
nx  ( )nxf  ne  1+ne  

1 1.42000000 0.0164 0.005786438 0.000028415 

2 1.41421977 0.00008037 0.000028415 0.000000000 

3 1.414213562 0.000000001 0.000000000 0.000000000 

4 1.414213562 0.000000001 0.000000000 0.000000000 

5 1.414213562 0.000000001 0.000000000 0.000000000 

6 1.414213562 0.000000001 0.000000000 0.000000000 

7 1.414213562 0.000000001 0.000000000 0.000000000 

8 1.414213562 0.000000001 0.000000000 0.000000000 

9 1.414213562 0.000000001 0.000000000 0.000000000 

10 1.414213562 0.000000001 0.000000000 0.000000000 

Also with the conventional secant method as 

Table 3. Table of solution generated by the conventional secant method. 

S/N 
nx  ( )nxf  ne  1+ne  

1 1.428571429 0.040816328 0.014357867 0.002453105 

2 1.416666667 0.006944433 0.002453105 0.000012384 

3 1.414225946 0.000035028 0.000012384 0.000000010 

4 1.414213572 0.000000029 0.000000010 0.000000000 

5 1.414213562 0.000000001 0.000000000 0.000000000 

6 1.414213562 0.000000001 0.000000000 0.000000000 

7 1.414213562 0.000000001 0.000000000 0.000000000 

8 1.414213562 0.000000001 0.000000000 0.000000000 

9 1.414213562 0.000000001 0.000000000 0.000000000 

10 1.414213562 0.000000001 0.000000000 0.000000000 
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4. Results and Discussions 

The summary of the results of solution generated by the different methods is 

tabulated below: 

Table 4. Table of solution generated by the secant method and the new derived method. 

Conventional Secant Method (SM) New Method (NM) 

S/N 
nx  ne  nx  ne  

1 1.428571429 0.014357867 1.394337567 0.019875995 

2 1.416666667 0.002453105 1.42554813 0.011334568 

3 1.414225946 0.000012384 1.406928949 0.007284613 

4 1.414213572 0.000000010 1.419403701 0.005190139 

5 1.414213562 0.000000000 1.410346254 0.003867308 

6 1.414213562 0.000000000 1.417234395 0.003020833 

7 1.414213562 0.000000000 1.411796596 0.002416966 

8 1.414213562 0.000000000 1.416201598 0.001988036 

9 1.414213562 0.000000000 1.412553521 0.001660041 

10 1.414213562 0.000000000 1.415623181 0.001411619 

 

Figure 2. Graph of the conventional secant and improved secant method. 
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Table 5. Comparisons between Marouane’s method (MA) and the new method (NM). 

Marouane’s Method (MA) New Method (NM) 

S/N 
nx  ne  nx  ne  

1 1.42000000 0.005786438 1.394337567 0.019875995 

2 1.41421977 0.000028415 1.42554813 0.011334568 

3 1.414213562 0.000000000 1.406928949 0.007284613 

4 1.414213562 0.000000000 1.419403701 0.005190139 

5 1.414213562 0.000000000 1.410346254 0.003867308 

6 1.414213562 0.000000000 1.417234395 0.003020833 

7 1.414213562 0.000000000 1.411796596 0.002416966 

8 1.414213562 0.000000000 1.416201598 0.001988036 

9 1.414213562 0.000000000 1.412553521 0.001660041 

10 1.414213562 0.000000000 1.415623181 0.001411619 

 

Figure 3. Graph of the Marouane’s method (MA) and the new method (NM). 
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Table 6. Comparisons between Marouane’s method the new method (NM). 

Conventional Secant Method (SM) Marouane’s Method (MA) New Method (NM) 

S/N 
nx  ne  nx  ne  nx  ne  

1 1.428571429 0.014357867 1.42000000 0.005786438 1.394337567 0.019875995 

2 1.416666667 0.002453105 1.41421977 0.000028415 1.42554813 0.011334568 

3 1.414225946 0.000012384 1.414213562 0.000000000 1.406928949 0.007284613 

4 1.414213572 0.000000010 1.414213562 0.000000000 1.419403701 0.005190139 

5 1.414213562 0.000000000 1.414213562 0.000000000 1.410346254 0.003867308 

6 1.414213562 0.000000000 1.414213562 0.000000000 1.417234395 0.003020833 

7 1.414213562 0.000000000 1.414213562 0.000000000 1.411796596 0.002416966 

8 1.414213562 0.000000000 1.414213562 0.000000000 1.416201598 0.001988036 

9 1.414213562 0.000000000 1.414213562 0.000000000 1.412553521 0.001660041 

10 1.414213562 0.000000000 1.414213562 0.000000000 1.415623181 0.001411619 

The graph is presented below 

  

Figure 4. Graph of the Marouane’s method, the new method and the conventional secant 

method. 

From the numerical experiment of tables and figures above, it all show that our 

newly improved secant method converges and it has advantages over the conventional 

secant method as it requires only one fixed point and hence reduces computational stress.  
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5. Conclusion 

From the analysis, it is discovered that the newly improved secant method converges 

and requires only one fixed point for computation, which is far better than the 

conventional secant method that requires two fixed points. 
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