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Abstract 

In this paper, we introduce the notion of αgI ~ -closed sets in ideal topological spaces and 

investigate some of their properties. Further, we introduce the concept of mildly αgI~ -

closed sets and αgI ~  normal space. 

1. Introduction and Preliminaries   

Levine [7, 8] introduced the concept of generalized closed sets and semiclosed sets 

in topological spaces. The concept of αg~ -closed sets were introduced by Devi et al. [2].  

Dontchev et al. [4] introduced the notion of the generalized closed sets in ideal 

topological space (i.e. g-I -closed sets) in 1999. In 2008, Navaneethakrishnan and 

Joseph have studied some characterizations of normal spaces via gI  open sets [10]. In 

this paper, we introduce the notion of αgI ~ -closed sets in ideal topological spaces and 

investigate some of their properties. Further, we introduce the concept of mildly αgI ~ -

closed sets. 
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An ideal I  [5] on a topological space ( )τ,X  is a non-empty collection of subsets of 

X satisfies 

(a) I∈A  and AB ⊂  implies I∈B  and 

(b) I∈A  and I∈B  implies .I∈BA ∪  

Given a topological space ( )τ,X  with an ideal I  on X and if ( )XP  is the set of all 

subsets of X, a set operator ( ) ( ) ( ),: XPXP →⋅ ∗  called a local function [5] of A with 

respect to τ  and I  is defined as follows: For ( ) { II ≠∈=τ⊂ ∗
AUXxAXA ∩:,,  

for every ( )},xU τ∈  where ( ) { }.: UxUx ∈τ∈=τ  We will make use of the basic facts 

about the local functions [5, Theorem 2.3] without mentioning it explicitly. A 

Kuratowski closure operator ( )⋅∗
cl  for a topology ( ),, ττ∗

I  called the ∗τ -topology, 

finer than τ  is defined by ( ) ( )τ= ∗∗ ,IAAAcl ∪  [16]. When there is no chance for 

confusion, we will simply write ∗
A  for ( )τ∗ ,IA  and ∗τ  for ( )., ττ∗

I  If I  is an ideal 

on X, then ( )I,, τX  is called ideal space. A subset A of an ideal space ( )I,, τX  is ∗τ  

closed [5] if .AA ⊂∗  

By a space, we always mean a topological space ( )τ,X  with no separation 

properties assumed. If ( )AclXA ,⊂  and ( )Aint  will, respectively, denote the closure 

and interior of A in ( )τ,X  and ( )A
∗int  will denote the interior of A in ( )., ∗τX  

Definition 1.1. A subset A of a space ( )τ,X  is called a 

(a) semi-open set [8] if ( )( )AclA int⊆  and a semi-closed set [8] if ( )( ) ,int AAcl ⊆  

(b) α-open set [12] if ( )( )( )AclA intint⊆  and an α-closed set [12] if 

( )( )( ) AAclcl ⊆int  and 

(c) regular open [15] if ( )( ).int AclA =  

The semi-closure (resp. α-closure) of a subset A of a space ( )τ,X  is the intersection 

of all semi-closed (resp. α-closed) sets that contain A and is denoted by 

( )Ascl ( )( )..resp Aclα  
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Definition 1.2. A subset A of a topological space ( )τ,X  is called 

(a) a g-closed set [7] if ( ) UAcl ⊂  whenever UA ⊂  and U is open in ( ),, τX  

(b) an αg-closed set [9] if ( ) UAcl ⊂α  whenever UA ⊂  and U is open in ( ),, τX  

(c) a ĝ -closed set [18, 20] if ( ) UAcl ⊂  whenever UA ⊂  and U is semi-open in 

( ),, τX  

(d) a g
∗ -closed set [17] if ( ) UAcl ⊆  whenever UA ⊆  and U is ĝ -open in 

( ),, τX  

(e) a gs
# -closed set [19] if ( ) UAscl ⊆  whenever UA ⊆  and U is g

∗ -open in 

( ),, τX  and 

(f) a αg~ -closed set [2] if ( ) UAcl ⊆α  whenever UA ⊆  and U is gs
# -open set of 

( )., τX  The complement of an αg~ -closed set is called αg~ -open. 

The set { }closed-~is,: α⊇⊂ gFAFXF∩  is called αg~ -closure of A and is denoted 

by ( ).~ Agcl α  

Definition 1.3. A subset A of an ideal topological space ( )IX ,, τ  is called 

(a) an gI  closed [4] if UA ⊆∗  whenever UA ⊆  and U is open in ( ),,, τIX  

(b) an rgI  closed [11] if UA ⊆∗  whenever UA ⊆  and U is regular open in 

( ),,, τIX  

(c) an ggIα  closed [13] if UA ⊆∗  whenever UA ⊆  and U is αg-open in 

( ),,, τIX  

(d) an I-R closed [1] if ( )( )AclA int∗=  and 

(e) a pre-I-closed [3] if ( )( ) .int AAcl ⊆∗  

Lemma 1.4 [14]. Let ( )IX ,, τ  be an ideal topological space .XA ⊆  If ,∗⊆ AA  

then ( ) ( ) ( ).AclAclAclA
∗∗∗ ===  
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Lemma 1.5 [5]. Let ( )IX ,, τ  be an ideal topological space and BA,  be subsets of 

X. Then the following properties hold: 

(a) BA ⊂  implies ,∗∗ ⊂ BA  

(b) ( ) ( ),AclAclA ⊂= ∗∗  

(c) ( ) ,∗∗∗ ⊂ AA  

(d) ( ) .∗∗∗ = BABA ∪∪  

2. Properties of αgI ~ -closed Sets in Ideal Topological Spaces 

Definition 2.1. A subset A of an ideal space ( )IX ,, τ  is said to be αgI ~ -closed set if 

UA ⊆∗  whenever UA ⊆  and U is αg~ -open set. 

Theorem 2.2.  

(a) Every ∗ -closed set is αgI ~ -closed set. 

(b) Every ggIα -closed set is αgI ~ -closed set. 

(c) Every αgI ~ -closed set is rgI -closed set. 

(d) Every αgI ~ -closed set is gI -closed set. 

Proof.  

(a) It is obvious. 

(b) Let UA ⊆  and U is αg~ -open set and hence gα -open set. Since A is ggIα -

closed, we have .UA ⊆∗  Therefore A is αgI ~ -closed set. 

(c) Let UA ⊆  and U is regular open set and hence αg~ -open set. Since A is αgI ~ -

closed, we have .UA ⊆∗  Therefore A is rgI -closed set. 

(d) Let UA ⊆  and U is open set and hence αg~ -open set. Since A is αgI ~ -closed, we 

have .UA ⊆∗  Therefore A is gI -closed set. 
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The converse of the above theorems need not be true by the following examples. 

Example 2.3. 

(a) Let ( )IX ,, τ  be an ideal topological space such that { },,, cbaX =  

{ }{ }baX ,,, ∅=τ  and { }.∅=I  Then { }ca,  is αgI ~ -closed set but not ∗-closed. 

(b) Let ( )IX ,, τ  be an ideal topological space such that { },,, cbaX =  

{ } { }{ }cbaX ,,,, ∅=τ  and { }{ }., cI ∅=  Then { }b  is αgI ~ -closed set but not ggIα -

closed. 

(c) Let ( )IX ,, τ  be an ideal topological space such that { },,,, dcbaX =  

{ } { } { }{ }babaX ,,,,, ∅=τ  and { }.∅=I  Then { }c  is rgI -closed set but not αgI ~ -

closed. 

(d) Let ( )IX ,, τ  be an ideal topological space such that { },,, cbaX =  

{ }{ }aX ,, ∅=τ  and { }{ }., aI ∅=  Then { }ca,  is gI -closed set but not αgI ~ -closed. 

Theorem 2.4. The union of two αgI ~ -closed sets is αgI ~ -closed set. 

Proof. Let A and B are αgI ~ -closed sets. Let U be an αgI ~ -open set containing 

.BA ∪  Since A and B are αgI ~ -closed sets, UA ⊆∗  and .UB ⊆∗  We have 

( ) ( ) ., UBABABA ⊆= ∗∗∗∗
∪∪∪  Therefore BA ∪  is αgI ~ -closed set. 

Remark 2.5. The intersection of two αgI ~ -closed sets need not be αgI ~ -closed.  

Proof. It follows from the following example. 

Example 2.6. Let ( )IX ,, τ  be an ideal topological space such that 

{ },,,, dcbaX =  { } { } { }{ }babaX ,,,,, ∅=τ  and { }.∅=I  Then { }caA ,=  and 

{ }daB ,=  are αgI ~ -closed set but { }aBA =∩  is not αgI ~ -closed. 

Theorem 2.7. Let ( )IX ,, τ  be an ideal topological space. For every ,IA ∈  A is 

αgI ~ -closed. 

Proof. Let UA ⊆  and U is αg~ -open set. Since ., UAA ⊆∅= ∗∗  Therefore A is 

αgI ~ -closed. 
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Theorem 2.8. If ( )IX ,, τ  be an ideal topological space, then ∗A  is always αgI ~ -

closed for every subset A of X. 

Proof. Let UA ⊆∗  and U is αg~ -open set. Since ( ) ,∗∗∗ ⊆ AA  we have ( ) UA ⊆∗∗  

implies .UA ⊆∗  Hence ∗A  is αgI ~ -closed. 

Theorem 2.9. If ( )IX ,, τ  be an ideal topological space, then every αgI ~ -closed, 

αg~ -open set is ∗ -closed set. 

Proof. Since A is αgI ~ -closed and αg~ -open set. Then AAAA ⊆⊆∗ ,  and A is 

αg~ -open. Hence A is ∗-closed set. 

Theorem 2.10. If ( )IX ,, τ  be an ideal topological space and A is a subset of X, 

then the following are equivalent. 

(a) A is αgI ~ -closed. 

(b) ( ) UAUAcl ⊆⊆∗ ,  and U is αg~ -open in X. 

(c) For all ( ) { } .~, ∅≠α∈ ∗
AxclgAclx ∩  

(d) ( ) AAcl −∗  contains no non-empty αg~ -closed set. 

(e) AA −∗  contains no non-empty αg~ -closed set. 

Proof. ( ) ( )ba ⇒  If A is αgI ~ -closed, then UAUA ⊆⊆∗ ,  and U is αg~ -open in X 

and so ( ) UAUAAAcl ⊆⊆= ∗∗ ,∪  and U is αg~ -open in X. 

( ) ( )cb ⇒  Suppose ( ).Aclx
∗∈  If { } ,~ ∅=α Axclg ∩  then { }.~ xclgXA α−⊆  By 

(b) ( ) { },~ xgXAcl α−⊆∗  a contradiction. 

( ) ( )dc ⇒  Suppose ( ) ,AAclF −⊆ ∗
 F is αg~ -closed and .Fx ∈  Since XF ⊆  

A−  and F is αg~ -closed, then FXA −⊆  and F is αg~ -closed, { } .~ ∅=α Axclg ∩  

Since ( ),Aclx
∗∈  by (c) { } .~ ∅≠α Axclg ∩  Therefore ( ) AAcl −∗  contains no non-

empty αg~ -closed set. 
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( ) ( )ed ⇒  Since ( ) ( ) ( ) ( ) ( )ccc
AAAAAAAAAAAAcl ∩∪∩∩∪∪

∗∗∗∗ ==−=−   

.AAAA c −== ∗∗
∩  Therefore AA −∗  contains no non-empty αg~ -closed set. 

( ) ( )ae ⇒  Let UA ⊆  and U is αg~ -closed set. Therefore AXUX −⊆−  and 

( ) ( ) .AAAXAUXA −=−⊆− ∗∗∗
∩∩  Since ∗A  is always closed set, so 

( )UXA −∗
∩  is αg~ -closed set contained in .AA −∗  Therefore, ( ) ∅=−∗

UXA ∩  

and hence UA ⊆∗  which implies A is αgI ~ -closed. 

Theorem 2.11. If ( )IX ,, τ  be an ideal topological space and A be an αgI ~ -closed, 

then the following are equivalent. 

(a) A is a ∗ -closed set. 

(b) ( ) AAcl −∗  is a αg~ -closed set. 

(c) AA −∗  is a αg~ -closed set. 

Proof. ( ) ( )ba ⇒  If A is ∗-closed, then AA ⊆∗  and so ( ) ( ) −=− ∗∗
AAAAcl ∪  

.∅=A  Hence ( ) AAcl −∗  is αg~ -closed. 

( ) ( )cb ⇒  Since ( ) ( ) ( ) ( ) ( )ccc
AAAAAAAAAAAAcl ∩∪∩∩∪∪

∗∗∗∗ ==−=−    

AAAA
c −== ∗∗

∩  and so AA −∗  is αg~ -closed. 

( ) ( )ac ⇒  If AA −∗  is a αg~ -closed set and A is αgI ~ -closed set, by Theorem 2.10. 

∅=−∗
AA  and so A is ∗ -closed. 

Theorem 2.12. If ( )IX ,, τ  be an ideal topological space and A is a subset of X. 

Then A is αgI ~ -closed if and only if ,NFA −=  where F is ∗ -closed and N contains no 

non-empty αg~ -closed set. 

Proof. If A is αgI ~ -closed, then by Theorem 2.10, AAN −= ∗  contains no 

nonempty αg~ -closed set. If ( ),AclF
∗=  then F is ∗ -closed such that =− NF  

( ) ( ) ( ) ( )cc
AAAAAAAA ∩∩∪∪

∗∗∗∗ =−− ( ) ( ( ) ) == ∗∗ c
AAAA ∪∩∪ ( ∩∪

∗
AA   

( ) ) .AA
c =∗  
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Conversely suppose ,NFA −=  where F is ∗ -closed and N contains no nonempty 

αg~ -closed set. Let U be a αg~ -open set such that .UA ⊆  Then UNF ⊆−  implies 

( ) .NUXF ⊆−∩  Now FA ⊆  and ,FF ⊆∗  then ∗∗ ⊆ FA  and so ( )UXA −∗
∩  

( ) ( ) .NUXFUXF ⊆−⊆−⊆ ∗
∩∩  By hypothesis, since ( )UXA −∗

∩  is αg~ -

closed, ( ) ∅=−∗
UXA ∩  and so .UA ⊆∗  Hence A is αgI ~ -closed. 

Theorem 2.13. If ( )IX ,, τ  be an ideal topological space. If A and B are subset of X 

such that ( )AclBA
∗⊆⊆  and A is αgI ~ -closed, then B is αg~ -closed. 

Proof. Since A is αgI ~ -closed, by Theorem 2.10(d) ( ) AAcl −∗  contains no non-

empty αg~ -closed set. Since ( ) ( ) AAclBBcl −⊆− ∗∗  and so ( ) BBcl −∗  contains no 

non-empty αg~ -closed set. Hence B is αgI ~ -closed set. 

Theorem 2.14. If ( )IX ,, τ  be an ideal topological space and A is a subset of X. 

Then A is αgI ~ -open if and only if ( )AF
∗⊆ int  whenever F is αg~ -closed and .AF ⊆  

Proof. Suppose A is αgI ~ -open. If F is αg~ -closed and ,AF ⊆  then 

FXAX −⊆−  and so ( ) FXAXcl −⊆−∗  by Theorem 2.10. Therefore, ⊆F  

( ) ( ).int AAXclX
∗∗ =−−  

Conversely suppose the condition holds. Let U be a αg~ -open set such that 

.UAX ⊆−  Then AUX ⊆−  and so ( )AUX
∗⊆− int  implies ( ) ,UAXcl ⊆−∗  by 

Theorem 2.10, AX −  is αgI ~ -closed. Hence A is αgI ~ -open set. 

Theorem 2.15. Let ( )IX ,, τ  be an ideal topological space and A is a subset of X. If 

A is αgI ~ -open and ( ) ABA ⊆⊆∗int  then B is αgI ~ -open. 

Proof. Since A is αgI ~ -open, AX −  is αgI ~ -closed. By Theorem 2.10, ( )AXcl −∗  

( )AX −−  contains no non-empty αg~ -closed set. Since ( ) ( )BA
∗∗ ⊆ intint  which 

implies ( ) ( )AXclBXcl −⊆− ∗∗
 and so ( ) ( ) ⊆−−−∗

BXBXcl ( ) −−∗
AXcl  

( ).AX −  Hence B is αgI ~ -open. 
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Theorem 2.16. If ( )IX ,, τ  be an ideal topological space and A is a subset of X, 

then the following are equivalent. 

(a) A is αgI ~ -closed. 

(b) ( )∗− AXA ∪  is αgI ~ -closed. 

(c) AA −∗  is αgI ~ -open. 

Proof. ( ) ( )ba ⇒  Suppose A is αgI ~ -closed. If U is any αg~ -open set such that 

( ) ,UAXA ⊆− ∗
∪  then ( ( )) ( ( ) ) ∩∪∩∪

∗∗∗ ==−−⊆− AAAXAXAXUX
cc

 

c
A .AA −= ∗  Since A is αg~ -closed, by Theorem 2.10(e), it follows that ∅=− UX  

and so .UX =  Therefore ( ) UAXA ⊆− ∗
∪  which implies ( ) XAXA ⊆− ∗

∪  and 

so ( ( )) .UXXAXA =⊆⊆− ∗∗∗
∪  Hence ( )∗− AXA ∪  is αgI ~ -closed. 

( ) ( )ab ⇒  Suppose ( )∗− AXA ∪  is αgI ~ -closed. If F is any αg~ -closed-set such 

that ,AAF −⊆ ∗  then ∗⊆ AF  and F does not contained in A which implies 

( ) FXAA −⊆− ∗  and .FXA −⊆  Therefore ( ) ( )FXAAXA −⊆− ∗
∪∪  

FX −=  and FX −  is αg~ -open. Since ( ( )) FXAXA −⊆− ∗∗
∪  which implies 

( ) FXAXA −⊆− ∗∗∗
∪  and so FXA −⊆∗  which implies .∗−⊆ AXF  Since 

,∗⊆ AF  it follows that .∅=F  Hence A is αgI ~ -closed. 

( ) ( )cb ⇔  Since ( ) ( ) ( ) ===−− ∗∗∗
AAXAAXAAX

ccc
∪∩∩∩ ( ∩X  

( ) ) ( ) ( ).∗∗ −= AXAAXA
c

∪∩∪  

Theorem 2.17. Let ( )IX ,, τ  be an ideal topological space. Then every subset X is 

αgI ~ -closed if and only if every αg~ -open set is ∗-closed. 

Proof. Suppose every subset of X is αgI ~ -closed. If XU ⊆  is αg~ -open, then U is 

αgI ~ -closed and so .UU ⊆∗  Hence U is ∗-closed. 

Conversely suppose that every αg~ -open set is ∗ -closed. If U is αg~ -open such that 

,XUA ⊆⊆  then UUA ⊆⊆ ∗∗  and so A is αgI ~ -closed. 
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Theorem 2.18. Let ( )IX ,, τ  be an ideal topological space. Then either { }x  is αg~ -

closed or { }c
x  is αgI ~ -closed for every .Xx ∈  

Proof. Suppose { }x  is not αg~ -closed, then { }c
x  is not αg~ -open and the only αg~ -

open set containing { }c
x  is X and hence ({ } ) .Xx

c ⊆∗  Thus { }c
x  is αgI ~ -closed. 

Definition 2.19. An ideal topological space ( ),,, IX τ  is said to be an αgI ~  normal 

space if every pair of disjoint closed subsets A and B of X, there exist disjoint αgI ~  open 

sets U and V such that UA ⊆  and .VB ⊆  

Theorem 2.20. Let ( )IX ,, τ  be an ideal space. Then the following are equivalent: 

 (i) X is αgI ~  normal. 

(ii) For every closed set A and an open set V containing A there exist an αgI ~  open 

set U such that ( ) .VUclUA ⊂⊂⊂ ∗  

Proof. ( ) ( )iii ⇒  Let A be a closed set and V be an open set containing A. Then A 

and VX −  are disjoint closed set and so there exist disjoint αgI ~  open sets U and W 

such that UA ⊂  and .WVX ⊂−  Now ∅=WU ∩  implies that ( ) ∅=∗
WU int∩  

which implies that ( ) ∅=−⊂ ∗
WXU int  and so ( ) ( ).int WXUcl

∗∗ −⊂  Again, 

WVX ⊂−  implies that ,VWX ⊂−  where V is open which implies that 

( ) VWXcl ⊂−∗  and so ( ) .int VWX ⊂− ∗  Thus ( ) ( )WXUclUA
∗∗ −⊂⊂⊂ int  

.V⊂  Therefore ( ) ,VUclUA ⊂⊂⊂ ∗  where U is αgI ~  open. 

( ) ( )iii ⇒  Let A and B be two disjoint closed subsets of X, by hypothesis, there 

exists an αgI ~  open set U such that ( ) .BXUclUA −⊂⊂⊂ ∗  Now ( ) BXUcl −⊂∗  

implies that ( ).UclXB
∗−⊂  If ( ) ,WUclX =− ∗  then W is an αgI ~  open. Hence U 

and W are the required disjoint αgI ~  open sets containing A and B, respectively. 

Therefore ( )IX ,, τ  is αgI ~  normal. 
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3. Mildly αgI ~ -closed Sets in Ideal Topological Spaces 

Definition 3.1. A subset A of an ideal space ( )IX ,, τ  is said to be mildly αgI ~ -

closed set if ( )( ) UA ⊆∗int  whenever UA ⊆  and U is αg~ -open set. 

Theorem 3.2. (a) Every αgI ~ -closed set is mildly αgI ~ -closed set. 

(b) Every pre-I-closed set is mildly αgI ~ -closed set. 

Proof. (a) Let UA ⊆  and U is αg~ -open set. Since A is αgI ~ -closed set, UA ⊆∗  

which implies ( )( ) .int UA ⊆∗  Therefore A is mildly αgI ~ -closed set. 

(b) Let UA ⊆  and U is αg~ -open set. Since A is pre-I-closed set, 

( )( ) .int UAAcl ⊆⊆∗  Therefore A is mildly αgI ~ -closed set. 

The converse of Theorem 3.2 need not be true by the following examples. 

Example 3.3. (a) Let ( )IX ,, τ  be an ideal topological space such that =X  

{ },,,, dcba  { } { } { } { }{ }cbacabaaX ,,,,,,,,, ∅=τ  and { } { } { }{ }.,,,, babaI ∅=  

Then { }c  is mildly αgI ~ -closed set but not αgI ~ -closed. 

(b) Let ( )IX ,, τ  be an ideal topological space such that { },,,, dcbaX =  

{ } { } { } { } { }{ }dbadbdadaX ,,,,,,,,,, ∅=τ  and { }.∅=I  Then { }dc,  is mildly αgI ~ -

closed set but not I
∗pre -closed. 

Remark 3.4. The union of two mildly αgI ~ -closed set in an ideal topological space 

need not be a mildly αgI ~ -closed set. 

Proof. It follows from the following example. 

Example 3.5. Let ( )IX ,, τ  be an ideal topological space such that =X  

{ },,,, dcba  { } { } { } { }{ }cbacabaaX ,,,,,,,,, ∅=τ  and { } { } { }{ }.,,,, babaI ∅=  

Then { }a  and { }cb,  are mildly αgI ~ -closed set but their union { }cba ,,  is not mildly 

αgI ~ -closed. 
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Theorem 3.6. Let ( )IX ,, τ  be an ideal topological space and A is a subset of X. 

The following properties are equivalent  

 (i) A is a mildly αgI ~ -closed set 

(ii) ( )( ) UAcl ⊆∗ int  whenever UA ⊆  and U is a αg~ -open set in X. 

Proof. ( ) ( )iii ⇒  Let A is a mildly αgI ~ -closed set in ( ).,, IX τ  Suppose that 

UA ⊆  and U is a αg~ -open set in X. We have ( )( ) .int UA ⊆∗  Since ( ) ,int UAA ⊆⊆  

then ( )( ) ( )( ) ( )( ) .intintint UAclUAA ⊆⇒⊆ ∗∗
∪  

( ) ( )iii ⇒  Let ( )( ) UAcl ⊆∗ int  whenever UA ⊆  and U is a αg~ -open set in X. 

Since ( )( ) ( )( ) ,intint UAA ⊆∗
∪  then ( )( ) UAUA ⊆⊆∗ ,int  and U is a αg~ -open set in 

X. Therefore A is a mildly αgI ~ -closed set in ( ).,, IX τ  

Theorem 3.7. Let ( )IX ,, τ  be an ideal topological space and A is a subset of X. If 

A is a αg~ -open set and mildly αgI ~ -closed set, then pre-I closed. 

Proof. Let A be a αg~ -open set and mildly αgI ~ -closed set in ( ).,, IX τ  Then 

( )( ) ,,int AAAA ⊆⊆∗  A is αg~ -open set, by Theorem 3.6, ( )( ) ,,int AAAAcl ⊆⊆∗  A 

is αg~ -open set. Thus A is a pre-I closed set in ( ).,, IX τ  

Theorem 3.8. Let ( )IX ,, τ  be an ideal topological space and A is a subset of X. If 

A is a mildly αgI ~ -closed set, then ( ) AA −∗int  contains no any nonempty αg~ -closed 

set. 

Proof. Let A be a mildly αgI ~ -closed set in ( ).,, IX τ  Suppose that U is αg~ -closed 

set such that ( )( ) .int AAU −⊆ ∗  Since A is a mildly αgI ~ -closed set, UX −  is αg~ -

open set and ,UXA −⊆  then ( )( ) .int UXA −⊆∗  We have ( )( ) .int ∗−⊆ AXU  

Hence ( )( ) ( ( )( ) ) .intint ∅=−⊆ ∗∗
AXAU ∩  Thus ( )( ) AA −∗int  contains no any 

nonempty αg~ -closed set. 
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Theorem 3.9. Let ( )IX ,, τ  be an ideal topological space and A is a subset of U. If 

A is a mildly αgI ~ -closed set, then ( )( ) AAcl −∗ int  contains no any nonempty αg~ -closed 

set. 

Proof. Suppose U is a αg~ -closed set such that ( )( ) AAclU −⊆ ∗ int  by Theorem 

3.8. It follows from the fact that ( )( ) ( )( ) ( )( ) .intintint AAAAAcl −=− ∗∗
∪  

Theorem 3.10. Let ( )IX ,, τ  be an ideal topological space and A is a subset of X. If 

A is mildly αgI ~ -closed set, then ( ) ,int KHA −=  where H is I-R-closed and K contains 

no any non-empty αg~ -closed set. 

Proof. Let A is a mildly αgI ~ -closed set in ( ).,, IX τ  Take ( )( ) .int AAK −= ∗  Then 

by Theorem 3.8., K contains no any nonempty αg~ -closed set. Take ( )( ).int AclH
∗=  

Then ( )( ).int HclH
∗=  Moreover we have  

( )( ) −=− ∗
AclKH int ( ( )( ) ) =−∗

AAint ( ) ( )( ) ( ( )( ) )AAAA −− ∗∗ intintint ∪   

 ( ) ( )( ) ( ( ( )( ) ))AAXAA −−= ∗∗ intintint ∩∪ ( ).int A=  

Theorem 3.11. Let ( )IX ,, τ  be an ideal topological space. The following 

properties are equivalent. 

 (i) A pre-I closed for each mildly αgI ~ -closed set A in ( ).,, IX τ  

(ii) Each singleton { }x  of X is a αg~ -closed set or { }x  is pre-I open. 

Proof. ( ) ( )iii ⇒  Let A be pre-I closed for each mildly αgI ~ -closed set A in 

( )IX ,, τ  and .Xx ∈  We have ( )( ) AAcl ⊆∗ int  for each mildly αgI ~ -closed set A in 

( ).,, IX τ  Assume that { }x  is not a αg~ -closed set. It follows that X is the only αg~ -open 

set containing { }.xX −  Then { }xX −  is a mildly αgI ~ -closed set in ( ).,, IX τ  Thus 

{ }( )( ) { }xXxXcl −⊆−∗ int  and hence { } { }( )( ).int xclx
∗⊆  Consequently { }x  is I

∗pre  

open. 

( ) ( )iii ⇒  Let A be a mildly αgI ~ -closed set in ( ).,, IX τ  Let ( )( ).int Aclx
∗∈  
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Suppose that { }x  is pre-I-open. We have { } { }( ).int xclx
∗⊆  Since ( )( ),int Aclx

∗∈  then 

{ }( ) ( ) .intint ∅≠∗
Axcl ∩  It follows that { }( ) ( ) .int ∅≠Axcl ∩  We have { }( ) ∩xcl  

( ) ∅≠Aint  and then { }( ) ( ) .int ∅≠Axcl ∩  Hence ( ).int Ax ∈  Thus, we have .Ax ∈  

Suppose that { }x  is a αg~ -closed set. By Theorem 3.9, ( )( ) AAcl −∗ int  does not contain 

{ }.x  Since ( )( ),int Aclx
∗∈  we have .Ax ∈  Thus, ( )( ) AAcl ⊆∗ int  and hence A is pre-

I-closed. 

Theorem 3.12. Let ( )IX ,, τ  be an ideal topological space and A is a subset of X. 

Assume that A is a mildly αgI ~ -closed set. The following properties are equivalent. 

  (i) A is pre-I-closed. 

 (ii) ( )( ) AAcl −∗ int  is a αg~ -closed set. 

(iii) ( )( ) AA −∗int  is a αg~ -closed set. 

Proof. ( ) ( )iii ⇒  Let A be pre-I-closed. We have ( )( ) .int AAcl ⊆∗  Then ( )( )Acl int∗  

.∅=− A  Thus ( )( ) AAcl −∗ int  is a αg~ -closed set.  

( ) ( )iii ⇒  Let ( )( ) AAcl −∗ int  be a αg~ -closed set. Since A is a mildly αgI ~ -closed 

set in ( ),,, IX τ  then by Theorem 3.9 ( )( ) .int ∅=−∗
AAcl  Hence ( )( ) .int AAcl ⊆∗

 

Thus, A is pre-I-closed. 

( ) ( )iiiii ⇒  It follows easily from that ( )( ) ( )( ) .intint AAAAcl −=− ∗∗  

Theorem 3.13. Let ( )IX ,, τ  be an ideal topological space and A a subset of X be a 

mildly αgI ~ -closed set. Then ( ( )( ) )∗− AXA int∪  is a mildly αgI ~ -closed set in 

( ).,, IX τ  

Proof. Let A be a mildly αgI ~ -closed set in ( ).,, IX τ  Suppose U is a αg~ -open set 

such that ( ( )( ) ) .int UAXA ⊆− ∗
∪  We have ( ( ( )( ) ))∗−−⊆− AXAXUX int∪  

( ) ( )( ) =−= ∗
AAX int∩ ( )( ) .int AA −∗  Since UX −  is a αg~ -closed set and A is a 

mildly αgI ~ -closed set, it follows from Theorem 3.8 that .∅=− UX  Hence .UX =  
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Thus X is the only αg~ -open set containing ( ( )) .int ∗− AXA ∪  Hence ( ( ))∗− AXA int∪  

is a mildly αgI ~ -closed set in ( ).,, IX τ  

Theorem 3.14. Let ( )IX ,, τ  be an ideal topological space and A a subset of X be a 

mildly αgI ~ -closed set. Then ( )( ) AA −∗int  is a mildly αgI ~ -open set in ( ).,, IX τ  

Proof. Since ( ( ) ) ( )( ) ,intint ∗∗ −=−− AXAAAX ∪  it is follows from Theorem 

3.13 that ( )( ) AA −∗int  is a mildly αgI ~ -open set in ( ).,, IX τ  

Theorem 3.15. Let ( )IX ,, τ  be an ideal topological space and A a subset of X be a 

mildly αgI ~ -closed set. Then the following properties are equivalent. 

  (i) A is ∗ -closed and open set. 

 (ii) A is I-R closed and open set. 

(iii) A is a mildly αg~ -closed and open set. 

Proof. ( ) ( ) ( ):iiiiii ⇒⇒  Obvious. ( ) ( )iiii ⇒  Since A is mildly αgI ~ -closed and 

open set, then ( )( ) AAcl ⊆∗ int  and so ( )( ).int AclA
∗=  Then A is I-R closed and hence 

it is ∗ -closed. 

Theorem 3.16. Let ( )IX ,, τ  be an ideal topological space and A a subset of X be a 

mildly αgI ~ -closed set. Then the following properties are equivalent. 

 (i) Each subset of ( )IX ,, τ  is a mildly αgI ~ -closed set. 

(ii) A is pre-I-closed for each αg~ -open set A in X. 

Proof. ( ) ( )iii ⇒  Suppose that each subset of ( )IX ,τ  is a mildly αgI ~ -closed set. 

Let A be a αg~ -open set. Since A is mildly αgI ~ -closed set, then we have 

( )( ) .int AAcl ⊆∗  Thus A is pre-I-closed. 

( ) ( )iii ⇒  Let A be a subset of ( )IX ,τ  and U be a αg~ -open set such that .UA ⊆  

We have ( )( ) ( )( ) .intint UUclAcl ⊆⊆ ∗∗  Thus A is mildly αgI ~ -closed set in ( ).,, IX τ  
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Theorem 3.17. Let ( )IX ,, τ  be an ideal topological space and A be a subset of X. If 

A is mildly αgI ~ -closed set and ( )( ),int AclUA
∗⊆⊆  then U is mildly αgI ~ -closed set. 

Proof. Let KU ⊆  and K be a αg~ -open set in X. Since KA ⊆  and A is mildly 

αgI ~ -closed set, ( )( ) .int KAcl ⊆∗  Since ( )( ),int AclU
∗⊆  ( )( ) ( )( )AclUcl intint ∗∗ ⊆  

.K⊆  Thus ( )( ) KUcl ⊆∗ int  and hence U is a mildly αgI ~ -closed set. 

Theorem 3.18. Let ( )IX ,, τ  be an ideal topological space and A be a subset of X. If 

A is mildly αgI ~ -closed and open set, then ( )Acl
∗  is a mildly αgI ~ -closed set. 

Proof. Let A be mildly αgI ~ -closed and open set in ( )., IXτ  We have ( ) =⊆ ∗
AclA  

( )( ).int Acl
∗  Hence by Theorem 3.17, ( )Acl

∗  is a mildly αgI ~ -closed set in ( ).,, IX τ  

Theorem 3.19. Let ( )IX ,, τ  be an ideal topological space and A be a subset of X. If 

A is nowhere dense set, then A is a mildly αgI ~ -closed set. 

Proof. Let A be a nowhere dense set in X. Since ( ) ( )( ),intint AclA ⊆  ( ) .int ∅=A  

Hence ( )( ) .int ∅=∗
Acl  Thus, A is a mildly αgI ~ -closed set in ( ).,, IX τ   
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