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Abstract

In this paper, we give some characterizations for proper f−biharmonic

curves in the para-Bianchi-Cartan-Vranceanu space forms with 3-dimensional

para-Sasakian structures.

1 Introduction

As a natural generalization of biharmonic curves, the concept of f−biharmonic

curves was introduced by Lu in [4]. Since this paper, many authors studied

f -biharmonic curves in several spaces: Ou considered f−biharmonic curves

on a generic manifold and gave a characterization for them in n−dimensional

space forms [6]. Guvenc and Ozgur studied f−biharmonic Legendre curves

in Sasakian space forms [2]. Karaca and Ozgur investigated f−biharmonic

curves in Sol spaces, Cartan Vranceanu three-dimensional spaces and homogenous

contact three-manifolds [3]. Dua and Zhang examined f−biharmonic curves in

Lorentz–Minkowski spaces [1].

On the other hand, in a very recent paper [5], Lee constructed

the para-Bianchi-Cartan-Vranceanu model with 3-dimensional para-Sasakian

structure and found the necessary and sufficient conditions for biharmonic Frenet

curves.
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In this paper, we investigate f−biharmonic curves in this 3-dimensional

para-Sasakian manifolds. We obtain some characterizations with respect to the

special situations of curvature and torsion functions of these curves. Throughout

the paper, all geometric objects (curves, manifolds, vector fields, functions etc.)

are assumed to be smooth.

2 Preliminaries

2.1 Para-Sasakian manifolds

We recall fundamental ingredients of para-Sasakian manifolds from [5]. A (2n +

1)−dimensional differentiable manifold M is said to be an almost paracontact

manifold if it admits a (1,1)-tensor field ϕ, a vector field ξ and a 1-form η satisfying

ϕ2 = I − η ⊗ ξ, η(ξ) = 1.

For an almost paracontact manifold M , we have ϕξ = 0 and η ◦ ϕ = 0.

If a (2n + 1)−dimensional manifold M with almost paracontact structure

(ϕ, ξ, η) admits a compatible pseudo-Riemannian metric such that

g(ϕX,ϕY ) = −g(X,Y ) + η(X)η(Y ), (2.1)

then we say M is an almost paracontact metric manifold with the paracontact

metric structure (ϕ, ξ, η, g). Putting Y = ξ, we have

η(X) = g(X, ξ). (2.2)

If the compatible pseudo-Riemannian metric g satisfies

dη(X,Y ) = g(X,ϕY ),

then η is a contact form on M, ξ the associated Reeb vector field, g an associated

metric and (M,ϕ, ξ, η, g) is called a paracontact metric manifold.
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For a paracontact metric manifold M, an almost paracomplex structure J on

M × R is defined by

J(X, f
d

dt
) = (ϕX + fξ, η(X)

d

dt
),

where X is a vector field on M, t the coordinate of R and f a function of M ×R.
If the almost paracomplex structure J is integrable, then the paracontact metric

manifold M is said to be normal or para-Sasakian.

Proposition 1. [8] An almost paracontact metric manifold (M,ϕ, ξ, η, g) is

para-Sasakian if and only if

(∇Xϕ)Y = −g(X,Y )ξ + η(Y )X, (2.3)

for any vector fields X,Y on M , where ∇ is Levi-Civita connection of g.

2.2 Frenet-Serret equations

Let γ : I →M be a unit speed curve in a three-dimensional Lorentzian manifold

M such that γ′ satisfies g(γ′, γ′) = ε1 = ±1. The constant ε1 is said to be the

causal character of γ. A unit speed curve is called spacelike or timelike if its causal

character is 1 or -1, respectively. A unit speed curve is called a Frenet curve if

g(γ′′, γ′′) 6= 0. A Frenet curve has an orthonormal frame field {T = γ′, N,B} along

γ. Then the Frenet-Serret equations are given by

∇TT = ε2κN,

∇TN = −ε1κT − ε3τB,

∇TB = ε2τN,

where κ =
∥∥∇γ′γ′∥∥ is the geodesic curvature and τ is the geodesic torsion of γ.

The vector fields T,N and B are called tangent vector field, principal normal

vector field and binormal vector field of γ, respectively.

The constants ε2 and ε3 are defined by g(N,N) = ε2 and g(B,B) = ε3, and

called second causal character and third causal character of γ, respectively. The

equation ε1ε2 = −ε3 holds.

A Frenet curve γ is a geodesic if and only if κ = 0.
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Proposition 2. Let {T,N,B} are orthonormal frame field in a Lorentzian

3-manifold. Then,

T ∧L N = ε3B, N ∧L B = ε1T, B ∧L T = ε2N.

2.3 f−Biharmonic maps

A map φ : (Mm, g)→ (Nn, h) between two pseudo-Riemannian manifolds is called

harmonic if it is a critical point of the energy

E(φ) =
1

2

∫
Ω

‖dφ‖2 dvg,

where Ω is a compact domain of Mm. The tension field τ(φ) of φ is defined by

τ(φ) = tr(∇φdφ) =
m∑
i=1

εi(∇φeidφ(ei)− dφ(∇eiei)),

where ∇φ and {ei} denote the induced connection by φ on the bundle φ∗TNn. A

map φ is called harmonic if its tension field vanishes. The bienergy E2(φ) of the

map φ is defined by

E2(φ) =
1

2

∫
Ω

‖τ(φ)‖2 dvg,

and φ is called biharmonic if it is a critical point of the bienergy, where

Ω is a compact domain of Mm. Clearly, all harmonic maps are biharmonic.

Non-harmonic biharmonic maps are called proper biharmonic maps. The

bitension field τ2(φ) of φ is defined by

τ2(φ) =
m∑
i=1

εi((∇φei∇
φ
ei −∇

φ
∇eiei

)τ(φ)−RN (τ(φ), dφ(ei))dφ(ei)), (2.4)

where RN denotes the curvature tensor of Nn. A map φ is called biharmonic if its

bitension field vanishes.

A map φ is called f−harmonic with a function f : M → R, if it is a critical

point of the energy

Ef (φ) =
1

2

∫
Ω

f ‖dφ‖2 dvg,
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where Ω is a compact domain of Mm. The f−tension field τf (φ) of φ is given by

τf (φ) = fτ(φ) + dφ(gradf)

see [7]. The f−bitension field τ2,f (φ) of φ is defined by

τ2,f (φ) = fτ2(φ) + ∆fτ(φ) + 2∇φgradfτ(φ). (2.5)

A map φ is called f−biharmonic if its f−bitension field vanishes (see [1],

[4]). Non-harmonic and non-biharmonic f−biharmonic curves are called proper

f−biharmonic curves, and if f is constant, then an f−biharmonic curve turns

into a biharmonic curve [4].

3 f−Biharmonic Curves in Para-Sasakian Space

Forms

Lee introduced the concept of para-Bianchi-Cartan-Vranceanu model with

3-dimensional para-Sasakian structure in [5] as follows:

Consider the set

D = {(x, y, z) ∈ R3 : 1 +
c

2
(x2 + y2) > 0},

where c is a real number. Remark that if c ≥ 0, then D is the whole R3(x, y, z).

On the region D, the contact form η is taken as

η = dz +
ydx− xdy

1 + c
2(x2 + y2)

.

Then, the characteristic vector field of η is ξ = ∂
∂z .

Next, the Lorentzian metric is equipped as

gc =
−dx2 + dy2

{1 + c
2(x2 + y2)}2

+ (dz +
ydx− xdy

1 + c
2(x2 + y2)

)2.

The Lorentzian orthonormal frame field (e1, e2, e3) on (D, gc) is given by

e1 = {1 +
c

2
(x2 + y2)} ∂

∂x
− y ∂

∂z
, e2 = {1 +

c

2
(x2 + y2)} ∂

∂y
+ x

∂

∂z
, e3 =

∂

∂z
.

Earthline J. Math. Sci. Vol. 7 No. 2 (2021), 369-379



374 Murat Altunbaş

Then the endomorphism field ϕ is given by

ϕ(e1) = e2, ϕ(e2) = e1, ϕ(e3) = 0.

The Levi-Civita connection ∇ of (D, gc) is described as

∇e1e1 = −cye2, ∇e1e2 = −cye1 + e3, ∇e1e3 = −e2,

∇e2e1 = −cxe2 − e3, ∇e2e2 = −cxe1, ∇e2e3 = −e1,

∇e3e1 = −e2,∇e3e2 = −e1,∇e3e3 = 0.

The contact form η on D fulfills

dη(X,Y ) = gc(X,ϕY ), X, Y ∈ χ(D).

Furthermore the structure (gc, ϕ, ξ, η) is para-Sasakian. The non-vanishing

components of the curvature tensor R of (D, gc) is given by

R(e1, e2)e2 = −{3 + c2(x2 − y2)}e1, R(e1, e3)e3 = e1,

R(e2, e1)e1 = {3 + c2(x2 − y2)}e2, R(e2, e3)e3 = e2,

R(e3, e1)e1 = −e3, R(e3, e2)e2 = e3.

For the sectional curvature K of (D, gc), we have

K(e2, e3) = −1 = −K(e3, e1),

and

K(e1, e2) = R(e1, e2, e1, e2) = −{3 + c2(x2 − y2)}.

So, (D, gc) is of holomorphic sectional curvature H = −{3 + c2(x2 − y2)}.
For the case c = 0, the holomorphic sectional curvature H equals −3, thus the

space D becomes para-Sasakian space form. In the next, we will deal with the

case c = 0.

Now, suppose that γ : I → (D, gc) is a curve parametrized by arc-length

and {T,N,B} is an orthonormal frame field tangent to D along γ, where T =

T1e1 + T2e2 + T3e3, N = N1e1 +N2e2 +N3e3 and B = B1e1 +B2e2 +B3e3.

The f−biharmonicity condition for curves on (D, gc) is obtained in the

following theorem.
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Theorem 1. Let γ : I → (D, gc) be a curve parametrized by arc-length. Then γ

is f−biharmonic if and only if the following relations are satisfied:

3κκ′f + 2κ2f ′ = 0,

κf ′′ + 2κ′f ′ + f [κ′′ + ε3κ
3 + ε1κτ

2 + κε2(ε3 − 4η(B)2)] = 0,

−2κτf ′ − f(2κ′τ + κτ ′)− 4ε1κfη(N)η(B) = 0.

(3.1)

Proof. Let γ = γ(s) be a curve parametrized by arc-length. We use formula (2.5).

From [5], we have

τ(γ) = ε1∇TT = −ε3κN, (3.2)

R(T,N, T,N) = ε3 − 4B2
3 ,

R(T,N, T,B) = −4ε1N3B3,
(3.3)

τ2(γ) = 3ε3κκ
′T + ε2(κ′′− ε2κ(ε1κ

2 + ε3τ
2))N + ε1(2κ′τ + κτ ′)B+ ε2κR(T,N)T.

(3.4)

Moreover, from [1], we have

∇γgradfτ(γ) = f ′∇T (∇TT ) = ε2f
′[κ′N + κ(−ε1κT − ε3τB)],

∆fτ(γ) = f ′′∇TT = f ′′ε2κN.
(3.5)

Therefore, combining the equations (3.2), (3.4) and (3.5), we obtain

(3.6)

τ2,f (γ) = 3ε3κκ
′fT + ε2f(κ′′ − ε2κ(ε1κ

2 + ε3τ
2))N + ε1f(2κ′τ + κτ ′)B

+ε2fκR(T,N)T + ε2κf
′′N + 2ε2f

′[κ′N + κ(−ε1κT − ε3τB)].

If we take inner product of equation (3.6) with T,N and B, respectively and use

the equations (3.3), we get (3.1).

Proposition 3. Let γ : I → (D, gc) be an f−biharmonic curve parametrized by

arc-length. If κ is a non-zero constant, then γ is biharmonic.

Proof. Under the assumption κ is a non-zero constant, from the first equation in

(3.1), obviously we get f ′ = 0. So, γ is a biharmonic curve.

Proposition 4. Let γ : I → (D, gc) be an f−biharmonic curve parametrized by

arc-length. If τ is a non-zero constant and η(N)η(B) = 0, then γ is biharmonic.
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Proof. Under the assumption τ is a non-zero constant and η(N)η(B) = 0, using

the first and third equations in (3.1), we get

κ′

κ
= −2f ′

3f
(3.7)

and

τ(
κ′

κ
+
f ′

f
) = 0. (3.8)

Putting equation (3.7) in (3.8) shows that f is constant, therefore γ is a biharmonic

curve.

Proposition 5. Let γ : I → (D, gc) be an f−biharmonic curve parametrized by

arc-length. If τ is a non-zero constant, then f = e
∫
− 6ε1η(N)η(B)

τ .

Proof. Under the assumption τ is a non-zero constant, if we use the first and third

equations in (3.1), we obtain
κ′

κ
= −2f ′

3f
(3.9)

and

− 2κτf ′ − 2fκ′τ − 4ε1κfη(N)η(B) = 0. (3.10)

Setting equation (3.9) in (3.10), we get the result.

Proposition 6. Let γ : I → (D, gc) be a non-geodesic curve parametrized by

arc-length and suppose that τ = 0. In this case, γ is f−biharmonic if and only if

the following equations are valid:

f2κ3 = c2
1, (3.11)

(fκ)′′ = −fκ(ε3κ
2 + ε2(ε3 − 4η(B)2)), (3.12)

η(N)η(B) = 0, (3.13)

where c1 ∈ R.

Proof. Under the assumption τ = 0, if we use equations in (3.1) by integrating

first equation, we deduce the results.
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Proposition 7. Let γ : I → (D, gc) be a non-geodesic curve parametrized

by arc-length and suppose that τ and κ are non-constants. In this case, γ is

f−biharmonic if and only if the following equations are valid:

f2κ3 = c2
1, (3.14)

(fκ)′′ = −fκ(ε3κ
2 + ε1τ

2 + ε2(ε3 − 4η(B)2)), (3.15)

f2κ2τ = e
∫
− 4ε1η(N)η(B)

τ , (3.16)

where c1 ∈ R.

Proof. Under the assumption τ and κ are non-constants, if we use equations

in (3.1) by integrating first and third equations, we obtain (3.14), (3.15) and

(3.16).

From the last two propositions, we can give the following theorem.

Theorem 2. An arc-length parametrized curve γ : I → (D, gc) is proper

f−biharmonic if and only if one of the following situations is true:

(i) τ = 0, f = c1κ
−3/2 and the curvature κ solves the equation below:

3(κ′)2 − 2κκ′′ = −4κ2[ε3κ
2 + ε2(ε3 − 4η(B)2)].

(ii) τ 6= 0, τ
κ = e

∫
− 4ε1η(N)η(B)

τ

c21
, f = c1κ

−3/2 and the curvature κ solves the

equation below:

3(κ′)2 − 2κκ′′ = −4κ2[ε3κ
2(1− ε2

e
∫
− 8ε1η(N)η(B)

τ

c4
1

) + ε2(ε3 − 4η(B)2)].

Proof. (i) The first equation of (3.1) gives

f = c1κ
−3/2. (3.17)

By replacing the above equation into (3.12), we obtain the result.

(ii) From the first equation of (3.1), we have

f = c1κ
−3/2. (3.18)
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Setting the above equation in (3.16), we get

τ

κ
=
e
∫
− 4ε1η(N)η(B)

τ

c2
1

. (3.19)

And finally putting equations (3.18) and (3.19) in (3.15), we obtain the result.

Consequently, we can express the following corollary.

Corollary 1. An arc-length parametrized f−biharmonic curve γ : I → (D, gc)

with constant geodesic curvature is biharmonic.
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[3] F. Karaca and C. Özgür, On f -biharmonic curves, Int. Electron. J. Geom. 11(2)

(2018), 18-27. https://doi.org/10.36890/iejg.545115

[4] W-J. Lu, On f -bi-harmonic maps and bi-f -harmonic maps between Riemannian

manifolds,Sci. China Math. 58 (2015), 1483-1498.

https://doi.org/10.1007/s11425-015-4997-1

[5] J.E. Lee, Slant curves and biharmonic Frenet curves in 3-dimensional para-Sasakian

manifolds Balkan J. Geo. App. 26(1) (2021), 21-33.

[6] Y-L. Ou, On f -biharmonic maps and f -biharmonic submanifolds, Pacific J. Math.

271 (2014), 461-477. https://doi.org/10.2140/pjm.2014.271.461

[7] S. Ouakkas, R. Nasri and M. Djaa, On the f -harmonic and f -biharmonic maps, JP

J. Geo. Top. 10 (2010), 11-27.

http://www.earthlinepublishers.com

https://doi.org/10.1155/2020/7529284
https://doi.org/10.2298/FIL1703639G
https://doi.org/10.36890/iejg.545115
https://doi.org/10.1007/s11425-015-4997-1
https://doi.org/10.2140/pjm.2014.271.461


f-Biharmonic Curves 379

[8] J. Welyczko, Slant curves in 3-dimensional normal almost paracontact metric

manifolds, Mediterr. J. Math. 11 (2014), 965-978.

https://doi.org/10.1007/s00009-013-0361-2

This is an open access article distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted,

use, distribution and reproduction in any medium, or format for any purpose, even commercially

provided the work is properly cited.

Earthline J. Math. Sci. Vol. 7 No. 2 (2021), 369-379

https://doi.org/10.1007/s00009-013-0361-2

	Introduction
	Preliminaries
	Para-Sasakian manifolds
	Frenet-Serret equations
	f-Biharmonic maps

	f-Biharmonic Curves in Para-Sasakian Space Forms

