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Abstract

In this paper, we introduce the generalized Oresme sequence and we

deal with, in detail, three special cases which we call them modified

Oresme, Oresme-Lucas and Oresme sequences. We present Binet’s formulas,

generating functions, Simson formulas, and the summation formulas for these

sequences. Moreover, we give some identities and matrices related with these

sequences.

1 Introduction

The Oresme sequence, {On}n≥0, was introduced by Nicole Oresme (1320–1382)

in the 14-th century. Oresme found the sum of the rational numbers formed by

the terms 0, 12 ,
2
4 ,

3
8 ,

4
16 ,

5
32 ,

6
64 , ...,

n
2n . These numbers form a second order sequence

and are defined by the recurence relation

On+2 = On+1 −
1

4
On, O0 = 0, O1 =

1

2
.

In [4], Horadam presented a history and obtained an abundance of properties

of these numbers. Oresme numbers have many interesting properties and

applications in many fields of science (see, for example, [1,2,3,4,9]).

The purpose of this article is to generalize and investigate these interesting

sequence of numbers (Oresme numbers). First, we recall some properties of

Fibonacci numbers and its generalizations, namely generalized Fibonacci numbers.
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The Fibonacci numbers, Lucas numbers and their generalizations have many

interesting properties and applications to almost every field such as architecture,

nature, art, physics and engineering. The sequence of Fibonacci numbers {Fn}n≥0
is defined by

Fn = Fn−1 + Fn−2, n ≥ 2, F0 = 0, F1 = 1,

and the sequence of Lucas numbers {Ln}n≥0 is defined by

Ln = Ln−1 + Ln−2, n ≥ 2, L0 = 2, L1 = 1.

The generalization of Fibonacci sequence leads to several nice and interesting

sequences. The generalized Fibonacci sequence (or generalized (r, s)-sequence

or Horadam sequence or 2-step Fibonacci sequence) {Wn(W0,W1; r, s)}n≥0 (or

shortly {Wn}n≥0) is defined (by Horadam [6]) as follows:

Wn = rWn−1 + sWn−2, W0 = a,W1 = b, n ≥ 2 (1.1)

where W0,W1 are arbitrary complex (or real) numbers and r, s are real numbers,

see also Horadam [5,7,8] and Soykan [12].

For some specific values of a, b, r and s, it is worth presenting these special

Horadam numbers in a table as a specific name. In literature, for example, the

following names and notations (see Table 1) are used for the special cases of r, s

and initial values.

Table 1: A few special case of generalized Fibonacci sequences.

Name of sequence Wn(a, b; r, s) Binet Formula OEIS[10]

Fibonacci Wn(0, 1; 1, 1) = Fn

(
1+
√
5

2

)n
−
(
1−
√
5

2

)n
√

5
A000045

Lucas Wn(2, 1; 1, 1) = Ln

(
1+
√
5

2

)n
+
(
1−
√
5

2

)n
A000032

Pell Wn(0, 1; 2, 1) = Pn

(
1 +
√

2
)n − (1−√2

)n
2
√

2
A000129

Pell-Lucas Wn(2, 2; 2, 1) = Qn

(
1 +
√

2
)n

+
(
1−
√

2
)n

A002203

Jacobsthal Wn(0, 1; 1, 2) = Jn
2n−(−1)n

3 A001045

Jacobsthal-Lucas Wn(2, 1; 1, 2) = jn 2n + (−1)n A014551
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Here, OEIS stands for On-line Encyclopedia of Integer Sequences.

The sequence {Wn}n≥0 can be extended to negative subscripts by defining

W−n = −r
s
W−(n−1) +

1

s
W−(n−2)

for n = 1, 2, 3, ... when s 6= 0. Therefore, recurrence (1.1) holds for all integer n.

Now we define two special cases of the sequence {Wn}. (r, s) sequence

{Gn(0, 1; r, s)}n≥0 and Lucas (r, s) sequence {Hn(2, r; r, s)}n≥0 are defined,

respectively, by the second-order recurrence relations

Gn+2 = rGn+1 + sGn, G0 = 0, G1 = 1, (1.2)

Hn+2 = rHn+1 + sHn, H0 = 2, H1 = r, (1.3)

The sequences {Gn}n≥0, {Hn}n≥0 and {En}n≥0 can be extended to negative

subscripts by defining

G−n = −r
s
G−(n−1) +

1

s
G−(n−2),

H−n = −r
s
H−(n−1) +

1

s
H−(n−2),

for n = 1, 2, 3, ... respectively. Therefore, recurrences (1.2)-(1.3) hold for all integer

n.

Some special cases of (r, s) sequence {Gn(0, 1; r, s)}n≥0 and Lucas (r, s)

sequence {Hn(2, r; r, s)}n≥0 are as follows:

1. Gn(0, 1; 1, 1) = Fn, Fibonacci sequence,

2. Hn(2, 1; 1, 1) = Ln, Lucas sequence,

3. Gn(0, 1; 2, 1) = Pn, Pell sequence,

4. Hn(2, 2; 2, 1) = Qn, Pell-Lucas sequence,

5. Gn(0, 1; 1, 2) = Jn, Jacobsthal sequence,

6. Hn(2, 1; 1, 2) = jn, Jacobsthal-Lucas sequence.

Earthline J. Math. Sci. Vol. 7 No. 2 (2021), 333-367
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The following theorem shows that the generalized Fibonacci sequence Wn at

negative indices can be expressed by the sequence itself at positive indices.

Theorem 1. For n ∈ Z, for the generalized Fibonacci sequence (or generalized

(r, s)-sequence or Horadam sequence or 2-step Fibonacci sequence), we have the

following:

(a)

W−n = (−1)−n−1s−n(Wn −HnW0)

= (−1)n+1s−n(Wn −HnW0).

(b)

W−n =
(−1)n+1s−n

−W 2
1 + sW 2

0 + rW0W1
((2W1 − rW0)W0Wn+1 − (W 2

1 + sW 2
0 )Wn).

Proof. For the proof, see Soykan [13, Theorem 3.2 and Theorem 3.3].

The following theorem presents sum formulas of generalized (r, s) numbers

(generalized Fibonacci numbers).

Theorem 2. Let x be a real (or complex) number. For all integers m and j, for

generalized (r, s) numbers (generalized Fibonacci numbers), we have the following

sum formulas:

(a) If (−s)mx2 − xHm + 1 6= 0, then

n∑
k=0

xkWmk+j =

((−s)m x−Hm)xn+1Wmn+j

+ (−s)m xn+1Wmn+j−m +Wj − (−s)m xWj−m
(−s)mx2 − xHm + 1

. (1.4)

(b) If (−s)mx2 − xHm + 1 = u(x− a)(x− b) = 0 for some u, a, b ∈ C with u 6= 0

and a 6= b, i.e., x = a or x = b, then

n∑
k=0

xkWmk+j =

(x(n+ 2) (−s)m − (n+ 1)Hm)xnWj+mn

+ (−s)m (n+ 1)xnWmn+j−m − (−s)mWj−m
2 (−s)m x−Hm

.
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(c) If (−s)mx2 − xHm + 1 = u(x − c)2 = 0 for some u, c ∈ C with u 6= 0, i.e.,

x = c, then

n∑
k=0

xkWmk+j =

(n+ 1)
(
(−s)m (n+ 2)xn − nxn−1Hm

)
Wmn+j

+ n(n+ 1) (−s)m xn−1Wmn+j−m
2 (−s)m

.

Proof. It is given in Soykan [13, Theorem 4.1].

Note that (1.4) can be written in the following form

n∑
k=1

xkWmk+j =

((−s)m x−Hm)xn+1Wmn+j + (−s)m xn+1Wmn+j−m
+ x(Hm − (−s)m x)Wj − (−s)m xWj−m

(−s)mx2 − xHm + 1
.

We give the ordinary generating function
∞∑
n=0

Wnx
n of the sequence {Wn}.

Lemma 3. Suppose that fWn(x) =
∞∑
n=0

Wnx
n is the ordinary generating function

of the generalized Fibonacci sequence {Wn}n≥0. Then,
∞∑
n=0

Wnx
n is given by

∞∑
n=0

Wnx
n =

W0 + (W1 − rW0)x

1− rx− sx2
. (1.5)

Proof. For a proof, see [12, Lemma 1.1].

Binet’s formula of generalized Fibonacci sequence can be calculated using its

characteristic equation (the quadratic equation) which is given as

x2 − rx− s = 0. (1.6)

The roots of characteristic equation are

α =
r +
√

∆

2
, β =

r −
√

∆

2
. (1.7)

where

∆ = r2 + 4s

Earthline J. Math. Sci. Vol. 7 No. 2 (2021), 333-367
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and the followings hold

α+ β = r,

αβ = −s,

(α− β)2 = (α+ β)2 − 4αβ = r2 + 4s.

1.1 Binet’s Formula for the Distinct Roots Case

In this subsection, we assume that the roots α and β of characteristic equation

(1.6) are distinct. Using these roots and the recurrence relation, Binet’s formula

can be given as follows:

Theorem 4 (Distinct Roots Case). Binet’s formula of generalized Fibonacci

numbers is

Wn =
b1α

n

α− β
+

b2β
n

β − α
=
b1α

n − b2βn

α− β
(1.8)

where

b1 = W1 − βW0, b2 = W1 − αW0.

(1.8) can be written in the following form:

Wn = A1α
n +A2β

n (1.9)

where

A1 =
W1 − βW0

α− β
, A2 =

W1 − αW0

β − α
.

Note that

A1A2 =
(W 2

1 − sW 2
0 − rW1W0)

−(r2 + 4s)
,

A1 +A2 = W0.

We next find Binet’s formula of generalized Fibonacci numbers {Wn} by the

use of generating function for Wn.

http://www.earthlinepublishers.com
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Theorem 5 (Binet’s formula of generalized Fibonacci numbers).

Wn =
d1α

n

(α− β)
+

d2β
n

(β − α)
(1.10)

where

d1 = W0α+ (W1 − rW0),

d2 = W0β + (W1 − rW0)β.

Proof. For a proof, see [12, Theorem 1.2].

Note that from (1.8) and (1.10) we have

W1 − βW0 = W0α+ (W1 − rW0), (1.11)

W1 − αW0 = W0β + (W1 − rW0)β. (1.12)

For all integers n, (r, s) and Lucas (r, s) numbers (using initial conditions in

(1.8) or (1.10)) can be expressed using Binet’s formulas as

Gn =
αn

(α− β)
+

βn

(β − α)
,

Hn = αn + βn,

respectively.

1.2 Binet’s Formula for the Single Root Case

In this subsection, we assume that the roots α and β of characteristic equation

(1.6) are equal, i.e., α = β. So (1.6) can be written as

x2 − rx− s = (x− α)2 = x2 − 2αx+ α2 = 0.

Note that in this case,

α =
r

2
,

r = 2α,

s = −α2 = −r
2

4
,

r2 + 4s = 0.

Earthline J. Math. Sci. Vol. 7 No. 2 (2021), 333-367
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Using the root α and the recurrence relation, Binet’s formula can be given as

follows:

Theorem 6 (Single Root Case). Binet’s formula of generalized Fibonacci numbers

is

Wn = (D1 +D2n)αn (1.13)

where

D1 = W0,

D2 =
1

α
(W1 − αW0) .

Proof. For a proof, see Soykan [13].

Note that (1.13) can be written as

Wn = (W0 +
1

α
(W1 − αW0)n)αn

= (nW1 − α (n− 1)W0)α
n−1

= (nW1 −
r

2
(n− 1)W0)

(r
2

)n−1
.

We also see that

D1D2 =
W0(2W1 − rW0)

r
,

D1 +D2 = 2
W1

r
.

For all integers n, (r, s) and Lucas (r, s) numbers (using initial conditions in

(1.8) or (1.10)) can be expressed using Binet’s formulas as

Gn = nαn−1,

Hn = 2αn,

respectively.
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2 Generalized Oresme Sequence

In this paper we consider the case r = 1, s = −1
4 . A generalized Oresme sequence

{Wn}n≥0 = {Wn(W0,W1)}n≥0 is defined by the second-order recurrence relations

Wn = Wn−1 −
1

4
Wn−2 (2.1)

with the initial values W0 = c0,W1 = c1 not all being zero.

The sequence {Wn}n≥0 can be extended to negative subscripts by defining

W−n = 4W−(n−1) − 4W−(n−2)

for n = 1, 2, 3, .... Therefore, recurrence (2.1) holds for all integers n.

Eq. (1.13) can be used to obtain Binet formula of generalized Oresme numbers.

Binet formula of generalized Oresme numbers can be given as

Wn = (D1 +D2n)αn (2.2)

where

D1 = W0,

D2 =
1

α
(W1 − αW0) .

i.e.,

Wn = (W0 +
1

α
(W1 − αW0)n)αn.

Here, α = β = 1
2 are the roots of the quadratic equation

x2 − x+
1

4
= 0. (2.3)

i.e. the roots of characteristic equation (2.3) are equal. Note that

α+ β = 1,

αβ =
1

4
,

α− β = 0.

Earthline J. Math. Sci. Vol. 7 No. 2 (2021), 333-367
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and

Wn = (W0 + 2

(
W1 −

1

2
W0

)
n)× 1

2n
.

The first few generalized Oresme numbers with positive subscript and negative

subscript are given in the following Table 2.

Table 2: A few generalized Oresme numbers.

n Wn W−n

0 W0 W0

1 W1 4W0 − 4W1

2 W1 − 1
4W0 12W0 − 16W1

3 3
4W1 − 1

4W0 32W0 − 48W1

4 1
2W1 − 3

16W0 80W0 − 128W1

5 5
16W1 − 1

8W0 192W0 − 320W1

6 3
16W1 − 5

64W0 448W0 − 768W1

7 7
64W1 − 3

64W0 1024W0 − 1792W1

8 1
16W1 − 7

256W0 2304W0 − 4096W1

9 9
256W1 − 1

64W0 5120W0 − 9216W1

10 5
256W1 − 9

1024W0 11264W0 − 20480W1

Now we define three special cases of the sequence {Wn}. Modified Oresme

sequence {Gn}n≥0, Oresme-Lucas sequence {Hn}n≥0 and Oresme sequence

{On}n≥0 are defined, respectively, by the second-order recurrence relations

Gn+2 = Gn+1 −
1

4
Gn, G0 = 0, G1 = 1, (2.4)

Hn+2 = Hn+1 −
1

4
Hn, H0 = 2, H1 = 1, (2.5)

On+2 = On+1 −
1

4
On, O0 = 0, O1 =

1

2
. (2.6)

The sequences {Gn}n≥0, {Hn}n≥0 and {On}n≥0 can be extended to negative

http://www.earthlinepublishers.com
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subscripts by defining

G−n = 4G−(n−1) − 4G−(n−2),

H−n = 4H−(n−1) − 4H−(n−2),

O−n = 4O−(n−1) − 4O−(n−2),

for n = 1, 2, 3, ... respectively. Therefore, recurrences (2.4)-(2.6) hold for all

integers n.

Next, we present the first few values of the modified Oresme, Oresme-Lucas

and Oresme numbers with positive and negative subscripts:

Table 3: The first few values of the special second-order numbers with positive

and negative subscripts.

n 0 1 2 3 4 5 6 7 8 9 10 11

Gn 0 1 1 3
4

1
2

5
16

3
16

7
64

1
16

9
256

5
256

11
1024

G−n .... −4 −16 −48 −128 −320 −768 −1792 −4096 −9216 −20480 −45056

Hn 2 1 1
2

1
4

1
8

1
16

1
32

1
64

1
128

1
256

1
512

1
1024

H−n .... 4 8 16 32 64 128 256 512 1024 2048 4096

On 0 1
2

1
2

3
8

1
4

5
32

3
32

7
128

1
32

9
512

5
512

11
2048

O−n .... −2 −8 −24 −64 −160 −384 −896 −2048 −4608 −10240 −22528

For all integers n,modified Oresme, Oresme-Lucas and Oresme numbers (using

initial conditions in (2.2)) can be expressed using Binet’s formulas as

Gn = nαn−1 =
n

2n−1
,

Hn = 2αn =
1

2n−1
,

On = nαn =
n

2n
,

respectively.

Earthline J. Math. Sci. Vol. 7 No. 2 (2021), 333-367
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Note that

Gn = 2On,

Gn =
n

2n−1
= nHn,

On =
n

2n
=
n

2
Hn.

Next, we give the ordinary generating function
∞∑
n=0

Wnx
n of the sequence

{Wn}.

Lemma 7. Suppose that fWn(x) =
∞∑
n=0

Wnx
n is the ordinary generating function

of the generalized Oresme sequence {Wn}n≥0. Then,
∞∑
n=0

Wnx
n is given by

∞∑
n=0

Wnx
n = 4× W0 + (W1 −W0)x

(x− 2)2
. (2.7)

Proof. In Lemma 3, take r = 1, s = −1
4 .

The previous Lemma gives the following results as particular examples.

Corollary 8. Generated functions of modified Oresme, Oresme-Lucas and

Oresme numbers are

∞∑
n=0

Gnx
n =

4x

(x− 2)2
,

∞∑
n=0

Hnx
n = − 4

x− 2
,

∞∑
n=0

Onx
n =

2x

(x− 2)2
,

respectively.

Proof. In Lemma 7, take Wn = Gn with G0 = 0, G1 = 1, Wn = Hn with H0 =

2, H1 = 1 and Wn = On with O0 = 0, O1 = 1
2 , respectively.

http://www.earthlinepublishers.com
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3 Simson Formulas

There is a well-known Simson Identity (formula) for Fibonacci sequence {Fn},
namely,

Fn+1Fn−1 − F 2
n = (−1)n

which was derived first by R. Simson in 1753 and it is now called as Cassini

Identity (formula) as well. This can be written in the form∣∣∣∣∣ Fn+1 Fn

Fn Fn−1

∣∣∣∣∣ = (−1)n.

The following theorem gives generalization of this result to the generalized Oresme

sequence {Wn}n≥0.

Theorem 9 (Simson Formula of Generalized Oresme Numbers). For all integers

n, we have ∣∣∣∣∣ Wn+1 Wn

Wn Wn−1

∣∣∣∣∣ =

(
1

4

)n
∣∣∣∣∣ W1 W0

W0 W−1

∣∣∣∣∣ . (3.1)

Proof. For a proof of Eq. (3.1), see Soykan [11], just take s = −1
4 .

The previous theorem gives the following results as particular examples.

Corollary 10. For all integers n, modified Oresme, Oresme-Lucas and Oresme

numbers are given as ∣∣∣∣∣ Gn+1 Gn

Gn Gn−1

∣∣∣∣∣ =
−1

4n−1
,∣∣∣∣∣ Hn+1 Hn

Hn Hn−1

∣∣∣∣∣ = 0,∣∣∣∣∣ On+1 On

On On−1

∣∣∣∣∣ =
−1

4n
,

respectively.

Earthline J. Math. Sci. Vol. 7 No. 2 (2021), 333-367
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4 Some Identities

In this section, we obtain some identities of generalized Oresme, modified Oresme,

Oresme-Lucas and Oresme numbers. First, we can give a few basic relations

between {Wn} and {Gn}.

Lemma 11. The following equalities are true:

Wn = 16 (2W0 − 3W1)Gn+4 − 4 (5W0 − 8W1)Gn+3, (4.1)

Wn = 4 (3W0 − 4W1)Gn+3 − 4 (2W0 − 3W1)Gn+2,

Wn = 4 (W0 −W1)Gn+2 − (3W0 − 4W1)Gn+1,

Wn = W0Gn+1 − (W0 −W1)Gn,

Wn = W1Gn −
1

4
W0Gn−1,

and

(W0 − 2W1)
2Gn = 64(W0 − 3W1)Wn+4 − 16(3W0 − 8W1)Wn+3,

(W0 − 2W1)
2Gn = 16(W0 − 4W1)Wn+3 − 16(W0 − 3W1)Wn+2,

(W0 − 2W1)
2Gn = −16W1Wn+2 − 4(W0 − 4W1)Wn+1,

(W0 − 2W1)
2Gn = −4W0Wn+1 + 4W1Wn,

(W0 − 2W1)
2Gn = −4(W0 −W1)Wn +W0Wn−1.

Proof. Note that all the identities hold for all integers n. We prove (4.1). To show

(4.1), writing

Wn = a×Gn+4 + b×Gn+3

and solving the system of equations

W0 = a×G4 + b×G3

W1 = a×G5 + b×G4

we find that a = 16 (2W0 − 3W1) , b = −4 (5W0 − 8W1) . The other equalities can

be proved similarly.
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Note that all the identities in the above Lemma can be proved by induction

as well.

Next, we present a few basic relations between {Hn} and {Wn}.

Lemma 12. The following equalities are true:

(W0 − 2W1)Hn = −32Wn+4 + 16Wn+3,

(W0 − 2W1)Hn = −16Wn+3 + 8Wn+2,

(W0 − 2W1)Hn = −8Wn+2 + 4Wn+1,

(W0 − 2W1)Hn = −4Wn+1 + 2Wn,

(W0 − 2W1)Hn = −2Wn +Wn−1.

Now, we give a few basic relations between {Wn} and {On}.

Lemma 13. The following equalities are true:

Wn = 32 (2W0 − 3W1)On+4 − 8 (5W0 − 8W1)On+3,

Wn = 8 (3W0 − 4W1)On+3 − 8 (2W0 − 3W1)On+2,

Wn = 8 (W0 −W1)On+2 − 2 (3W0 − 4W1)On+1,

Wn = 2W0On+1 − 2 (W0 −W1)On,

Wn = 2W1On −
1

2
W0On−1,

and

(W0 − 2W1)
2On = 32(W0 − 3W1)Wn+4 − 8(3W0 − 8W1)Wn+3,

(W0 − 2W1)
2On = 8(W0 − 4W1)Wn+3 − 8(W0 − 3W1)Wn+2,

(W0 − 2W1)
2On = −8W1Wn+2 − 2(W0 − 4W1)Wn+1,

(W0 − 2W1)
2On = −2W0Wn+1 + 2W1Wn,

(W0 − 2W1)
2On = −2(W0 −W1)Wn +

1

2
W0Wn−1.

Now, we give a few basic relations between {Gn}, {Hn} and {On}.

Earthline J. Math. Sci. Vol. 7 No. 2 (2021), 333-367



348 Yüksel Soykan

Lemma 14. The following equalities are true:

Hn = 16Gn+4 − 8Gn+3,

Hn = 8Gn+3 − 4Gn+2,

Hn = 4Gn+2 − 2Gn+1,

Hn = 2Gn+1 −Gn,

Hn = Gn −
1

2
Gn−1,

and

On = −24Gn+4 + 16Gn+3,

On = −8Gn+3 + 6Gn+2,

On = −2Gn+2 + 2Gn+1,

On =
1

2
Gn,

and

Gn = −96On+4 + 64On+3,

Gn = −32On+3 + 24On+2,

Gn = −8On+2 + 8On+1,

Gn = 2On,

and

Hn = 32On+4 − 16On+3,

Hn = 16On+3 − 8On+2,

Hn = 8On+2 − 4On+1,

Hn = 4On+1 − 2On,

Hn = 2On −On−1,

and

Gn =
n

2n−1
= nHn,

On =
n

2n
=
n

2
Hn.
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We now present a few special identities for the generalized Oresme sequence

{Wn}.

Theorem 15 (Catalan’s identity of the generalized Oresme sequence). For all

integers n and m, the following identity holds:

Wn+mWn−m −W 2
n = −m

2

22n
(W0 − 2W1)

2 .

Proof. We use the identity

Wn = (W0 + 2

(
W1 −

1

2
W0

)
n)× 1

2n
.

As special cases of the above theorem, we have the following corollary.

Corollary 16. For all integers n and m, the following identities hold:

(a) Gn+mGn−m −G2
n = − m2

22n−2 .

(b) Hn+mHn−m −H2
n = 0.

(c) On+mOn−m −O2
n = −m2

22n
.

Note that for m = 1 in Catalan’s identity of the generalized Oresme sequence,

we get the Cassini identity for the generalized Oresme sequnce.

Theorem 17 (Cassini’s identity of the generalized Oresme sequence). For all

integers n, the following identity holds:

Wn+1Wn−1 −W 2
n = − 1

22n
(W0 − 2W1)

2 .

As special cases of the above theorem, we have the following corollary.

Corollary 18. For all integers n, the following identities hold:

(a) Gn+1Gn−1 −G2
n = − 1

22n−2 .
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(b) Hn+1Hn−1 −H2
n = 0.

(c) On+1On−1 −O2
n = − 1

22n
.

The d’Ocagne’s, Gelin-Cesàro’s and Melham’ identities can also be obtained

by using

Wn = (W0 + 2

(
W1 −

1

2
W0

)
n)× 1

2n
.

The next theorem presents d’Ocagne’s, Gelin-Cesàro’s and Melham’ identities of

generalized Oresme sequence {Wn}.

Theorem 19. Let n and m be any integers. Then the following identities are

true:

(a) (d’Ocagne’s identity)

Wm+1Wn −WmWn+1 = −(m− n)

2m+n+1
(W0 − 2W1)

2 .

(b) (Gelin-Cesàro’s identity)

Wn+2Wn+1Wn−1Wn−2 −W 4
n

= − 1

24n
(4(5n2−4)W 2

1 +(5n2−10n+1)W 2
0−4(5n2−5n−4)W1W0) (W0 − 2W1)

2 .

(c) (Melham’s identity)

Wn+1Wn+2Wn+6−W 3
n+3 = − 1

23n+9
(2(7n+15)W1−(7n+8)W0) (W0 − 2W1)

2 .

Proof. Use the identity Wn = (W0 + 2
(
W1 − 1

2W0

)
n)× 1

2n .

As special cases of the above theorem, we have the following three corollaries.

First one presents d’Ocagne’s, Gelin-Cesàro’s and Melham’ identities of modified

Oresme sequence {Gn}.

Corollary 20. Let n and m be any integers. Then the following identities are

true:
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(a) (d’Ocagne’s identity)

Gm+1Gn −GmGn+1 = −(m− n)

2m+n−1 .

(b) (Gelin-Cesàro’s identity)

Gn+2Gn+1Gn−1Gn−2 −G4
n = −

(
5n2 − 4

)
24n−4

.

(c) (Melham’s identity)

Gn+1Gn+2Gn+6 −G3
n+3 = −(7n+ 15)

23n+6
.

Second one presents d’Ocagne’s, Gelin-Cesàro’s and Melham’ identities of

Oresme-Lucas sequence {Hn}.

Corollary 21. Let n and m be any integers. Then the following identities are

true:

(a) (d’Ocagne’s identity)

Hm+1Hn −HmHn+1 = 0.

(b) (Gelin-Cesàro’s identity)

Hn+2Hn+1Hn−1Hn−2 −H4
n = 0.

(c) (Melham’s identity)

Hn+1Hn+2Hn+6 −H3
n+3 = 0.

Third one presents d’Ocagne’s, Gelin-Cesàro’s and Melham’ identities of

Oresme sequence {On}.

Corollary 22. Let n and m be any integers. Then the following identities are

true:
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(a) (d’Ocagne’s identity)

Om+1On −OmOn+1 = −(m− n)

2m+n+1
.

(b) (Gelin-Cesàro’s identity)

On+2On+1On−1On−2 −O4
n = −

(
5n2 − 4

)
24n

.

(c) (Melham’s identity)

On+1On+2On+6 −O3
n+3 = −(7n+ 15)

23n+9
.

5 On the Recurrence Properties of Generalized

Oresme Sequence

Taking r = 1, s = −1
4 in Theorem 1 (a) and (b), we obtain the following

Proposition.

Proposition 23. For n ∈ Z, generalized Oresme numbers (the case r = 1, s =

−1
4) have the following identity:

W−n = (−1)n+1

(
−1

4

)−n
(Wn −HnW0)

=
(−1)n+1

(
−1

4

)−n
−W 2

1 − 1
4W

2
0 +W0W1

((2W1 −W0)W0Wn+1 − (W 2
1 −

1

4
W 2

0 )Wn).

From the above Proposition, we have the following corollary which gives

the connection between the special cases of generalized Oresme sequence at the

positive index and the negative index: for modified Oresme, Oresme-Lucas and

Oresme numbers: take Wn = Gn with G0 = 0, G1 = 1, take Wn = Hn with

H0 = 2, H1 = 1 and Wn = On with O0 = 0, O1 = 1
2 , respectively. Note that in

this case Hn = Hn.

Corollary 24. For n ∈ Z, we have the following recurrence relations:
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(a) modified Oresme sequence:

G−n = −4nGn = −n× 2n+1.

(b) Oresme-Lucas sequence:

H−n = 4nHn = 2n+1.

(c) Oresme sequence:

O−n = −4nOn = −n× 2n.

6 The Sum Formula
∑n

k=0 x
kWmk+j of Generalized

Oresme Numbers

In this section, we present sum formulas of generalized Oresme numbers.

Theorem 25. Let x be a real (or complex) number. For all integers m and j, for

generalized Oresme numbers, we have the following sum formulas:

(a) If 2−2mx2 − xHm + 1 6= 0 6= 0, then

n∑
k=0

xkWmk+j =

(2−2mx−Hm)xn+1Wmn+j

+ 2−2mxn+1Wmn+j−m +Wj − 2−2mxWj−m
2−2mx2 − xHm + 1

. (6.1)

(b) If 2−2mx2 − xHm + 1 = u(x− a)(x− b) = 0 for some u, a, b ∈ C with u 6= 0

and a 6= b, i.e., x = a or x = b, then

n∑
k=0

xkWmk+j =

(x(n+ 2)2−2m − (n+ 1)Hm)xnWj+mn

+ 2−2m(n+ 1)xnWmn+j−m − 2−2mWj−m
2−2m+1x−Hm

.

(c) If 2−2mx2 − xHm + 1 = u(x − c)2 = 0 for some u, c ∈ C with u 6= 0, i.e.,

x = c, then

n∑
k=0

xkWmk+j =

(n+ 1)
(
2−2m(n+ 2)xn − nxn−1Hm

)
Wmn+j

+ n(n+ 1)2−2mxn−1Wmn+j−m
2−2m+1

.
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Proof. Take r = 1, s = −1
4 and Hn = Hn in Theorem 2.

Note that (6.1) can be written in the following form

n∑
k=1

xkWmk+j =

(2−2mx−Hm)xn+1Wmn+j + 2−2mxn+1Wmn+j−m
+ x(Hm − 2−2mx)Wj − 2−2mxWj−m
2−2mx2 − xHm + 1

.

As special cases of m and j in the last Theorem, we obtain the following

proposition.

Proposition 26. For generalized Oresme numbers, we have the following sum

formulas:

(a) (m = 1, j = 0)

If 1
4 (x− 2)2 6= 0, i.e., x 6= 2, then

n∑
k=0

xkWk =
(x− 4)xn+1Wn + xn+1Wn−1 + 4W0 + 4(W1 −W0)x

(x− 2)2
,

and

if 1
4 (x− 2)2 = 0, i.e., x = 2, then

n∑
k=0

xkWk =
(n+ 1)((x− 4)n+ 2x)xn−1Wn + n(n+ 1)xn−1Wn−1

2
.

(b) (m = 2, j = 0)

If 1
16 (x− 4)2 6= 0, i.e., x 6= 4, then

n∑
k=0

xkW2k =
(x− 8)xn+1W2n + xn+1W2n−2 + 16W0 + 4 (4W1 − 3W0)x

(x− 4)2
,

and

if 1
16 (x− 4)2 = 0, i.e., x = 4, then

n∑
k=0

xkW2k =
(n+ 1)((x− 8)n+ 2x)xn−1W2n + n(n+ 1)xn−1W2n−2

2
.
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(c) (m = 2, j = 1)

If 1
16 (x− 4)2 6= 0, i.e., x 6= 4, then

n∑
k=0

xkW2k+1 =
(x− 8)xn+1W2n+1 + xn+1W2n−1 + 16W1 + 4(W1 −W0)x

(x− 4)2
,

and

if 1
16 (x− 4)2 = 0, i.e., x = 4, then

n∑
k=0

xkW2k+1 =
(n+ 1)((x− 8)n+ 2x)xn−1W2n+1 + n(n+ 1)xn−1W2n−1

2
.

(d) (m = −1, j = 0)

If (2x− 1)2 6= 0, i.e., x 6= 1
2 , then

n∑
k=0

xkW−k =
4xn+1W−n+1 + 4 (x− 1)xn+1W−n +W0 − 4xW1

(2x− 1)2
,

and

if (2x− 1)2 = 0, i.e., x = 1
2 , then

n∑
k=0

xkW−k =
n(n+ 1)xn−1W−n+1 + (n+ 1)((x− 1)n+ 2x)xn−1W−n

2
.

(e) (m = −2, j = 0)

If (4x− 1)2 6= 0, i.e., x 6= 1
4 , then

n∑
k=0

xkW−2k =
16xn+1W−2n+2 + 8 (2x− 1)xn+1W−2n +W0 − 4 (4W1 −W0)x

(4x− 1)2
,

and

if (4x− 1)2 = 0, i.e., x = 1
4 , then

n∑
k=0

xkW−2k =
2n(n+ 1)xn−1W−2n+2 + (n+ 1)((2x− 1)n+ 4x)xn−1W−2n

4
.
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(f) (m = −2, j = 1)

If (4x− 1)2 6= 0, i.e., x 6= 1
4 , then

n∑
k=0

xkW−2k+1 =
16xn+1W−2n+3 + 8 (2x− 1)xn+1W−2n+1 +W1 − 4 (3W1 −W0)x

(4x− 1)2
,

and

if (4x− 1)2 = 0, i.e., x = 1
4 , then

n∑
k=0

xkW−2k+1 =
2n(n+ 1)xn−1W−2n+3 + (n+ 1)((2x− 1)n+ 4x)xn−1W−2n+1

4
.

From the above proposition, we have the following corollary which gives sum

formulas of modified Oresme numbers (take Wn = Gn with G0 = 0, G1 = 1).

Corollary 27. For n ≥ 0, modified Oresme numbers have the following properties:

(a) (m = 1, j = 0)

If 1
4 (x− 2)2 6= 0, i.e., x 6= 2, then

n∑
k=0

xkGk =
(x− 4)xn+1Gn + xn+1Gn−1 + 4x

(x− 2)2
,

and

if 1
4 (x− 2)2 = 0, i.e., x = 2, then

n∑
k=0

xkGk =
(n+ 1)((x− 4)n+ 2x)xn−1Gn + n(n+ 1)xn−1Gn−1

2
.

(b) (m = 2, j = 0)

If 1
16 (x− 4)2 6= 0, i.e., x 6= 4, then

n∑
k=0

xkG2k =
(x− 8)xn+1G2n + xn+1G2n−2 + 16x

(x− 4)2
,
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and

if 1
16 (x− 4)2 = 0, i.e., x = 4, then

n∑
k=0

xkG2k =
(n+ 1)((x− 8)n+ 2x)xn−1G2n + n(n+ 1)xn−1G2n−2

2
.

(c) (m = 2, j = 1)

If 1
16 (x− 4)2 6= 0, i.e., x 6= 4, then

n∑
k=0

xkG2k+1 =
(x− 8)xn+1G2n+1 + xn+1G2n−1 + 4x+ 16

(x− 4)2
,

and

if 1
16 (x− 4)2 = 0, i.e., x = 4, then

n∑
k=0

xkG2k+1 =
(n+ 1)((x− 8)n+ 2x)xn−1G2n+1 + n(n+ 1)xn−1G2n−1

2
.

(d) (m = −1, j = 0)

If (2x− 1)2 6= 0, i.e., x 6= 1
2 , then

n∑
k=0

xkG−k =
4xn+1G−n+1 + 4 (x− 1)xn+1G−n − 4x

(2x− 1)2
,

and

if (2x− 1)2 = 0, i.e., x = 1
2 , then

n∑
k=0

xkG−k =
n(n+ 1)xn−1G−n+1 + (n+ 1)((x− 1)n+ 2x)xn−1G−n

2
.

(e) (m = −2, j = 0)

If (4x− 1)2 6= 0, i.e., x 6= 1
4 , then

n∑
k=0

xkG−2k =
16xn+1G−2n+2 + 8 (2x− 1)xn+1G−2n − 16x

(4x− 1)2
,
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and

if (4x− 1)2 = 0, i.e., x = 1
4 , then

n∑
k=0

xkG−2k =
2n(n+ 1)xn−1G−2n+2 + (n+ 1)((2x− 1)n+ 4x)xn−1G−2n

4
.

(f) (m = −2, j = 1)

If (4x− 1)2 6= 0, i.e., x 6= 1
4 , then

n∑
k=0

xkG−2k+1 =
16xn+1G−2n+3 + 8 (2x− 1)xn+1G−2n+1 + 1− 12x

(4x− 1)2
,

and

if (4x− 1)2 = 0, i.e., x = 1
4 , then

n∑
k=0

xkG−2k+1 =
2n(n+ 1)xn−1G−2n+3 + (n+ 1)((2x− 1)n+ 4x)xn−1G−2n+1

4
.

Taking Wn = Hn with H0 = 2, H1 = 1 in the last proposition, we have the

following corollary which presents sum formulas of Oresme-Lucas numbers.

Corollary 28. For n ≥ 0, Oresme-Lucas numbers have the following properties:

(a) (m = 1, j = 0)

If 1
4 (x− 2)2 6= 0, i.e., x 6= 2, then

n∑
k=0

xkHk =
(x− 4)xn+1Hn + xn+1Hn−1 + 8− 4x

(x− 2)2
,

and

if 1
4 (x− 2)2 = 0, i.e., x = 2, then

n∑
k=0

xkHk =
(n+ 1)((x− 4)n+ 2x)xn−1Hn + n(n+ 1)xn−1Hn−1

2
.
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(b) (m = 2, j = 0)

If 1
16 (x− 4)2 6= 0, i.e., x 6= 4, then

n∑
k=0

xkH2k =
(x− 8)xn+1H2n + xn+1H2n−2 + 32− 8x

(x− 4)2
,

and

if 1
16 (x− 4)2 = 0, i.e., x = 4, then

n∑
k=0

xkH2k =
(n+ 1)((x− 8)n+ 2x)xn−1H2n + n(n+ 1)xn−1H2n−2

2
.

(c) (m = 2, j = 1)

If 1
16 (x− 4)2 6= 0, i.e., x 6= 4, then

n∑
k=0

xkH2k+1 =
(x− 8)xn+1H2n+1 + xn+1H2n−1 + 16− 4x

(x− 4)2
,

and

if 1
16 (x− 4)2 = 0, i.e., x = 4, then

n∑
k=0

xkH2k+1 =
(n+ 1)((x− 8)n+ 2x)xn−1H2n+1 + n(n+ 1)xn−1H2n−1

2
.

(d) (m = −1, j = 0)

If (2x− 1)2 6= 0, i.e., x 6= 1
2 , then

n∑
k=0

xkH−k =
4xn+1H−n+1 + 4 (x− 1)xn+1H−n + 2− 4x

(2x− 1)2
,

and

if (2x− 1)2 = 0, i.e., x = 1
2 , then

n∑
k=0

xkH−k =
n(n+ 1)xn−1H−n+1 + (n+ 1)((x− 1)n+ 2x)xn−1H−n

2
.
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(e) (m = −2, j = 0)

If (4x− 1)2 6= 0, i.e., x 6= 1
4 , then

n∑
k=0

xkH−2k =
16xn+1H−2n+2 + 8 (2x− 1)xn+1H−2n + 2− 8x

(4x− 1)2
,

and

if (4x− 1)2 = 0, i.e., x = 1
4 , then

n∑
k=0

xkH−2k =
2n(n+ 1)xn−1H−2n+2 + (n+ 1)((2x− 1)n+ 4x)xn−1H−2n

4
.

(f) (m = −2, j = 1)

If (4x− 1)2 6= 0, i.e., x 6= 1
4 , then

n∑
k=0

xkH−2k+1 =
16xn+1H−2n+3 + 8 (2x− 1)xn+1H−2n+1 + 1− 4x

(4x− 1)2
,

and

if (4x− 1)2 = 0, i.e., x = 1
4 , then

n∑
k=0

xkH−2k+1 =
2n(n+ 1)xn−1H−2n+3 + (n+ 1)((2x− 1)n+ 4x)xn−1H−2n+1

4
.

From the above proposition, we have the following corollary which gives sum

formulas of Oresme numbers (take Wn = On with O0 = 0, O1 = 1
2).

Corollary 29. For n ≥ 0, Oresme numbers have the following properties:

(a) (m = 1, j = 0)

If 1
4 (x− 2)2 6= 0, i.e., x 6= 2, then

n∑
k=0

xkOk =
(x− 4)xn+1On + xn+1On−1 + 2x

(x− 2)2
,
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and

if 1
4 (x− 2)2 = 0, i.e., x = 2, then

n∑
k=0

xkOk =
(n+ 1)((x− 4)n+ 2x)xn−1On + n(n+ 1)xn−1On−1

2
.

(b) (m = 2, j = 0)

If 1
16 (x− 4)2 6= 0, i.e., x 6= 4, then

n∑
k=0

xkO2k =
(x− 8)xn+1O2n + xn+1O2n−2 + 8x

(x− 4)2
,

and

if 1
16 (x− 4)2 = 0, i.e., x = 4, then

n∑
k=0

xkO2k =
(n+ 1)((x− 8)n+ 2x)xn−1O2n + n(n+ 1)xn−1O2n−2

2
.

(c) (m = 2, j = 1)

If 1
16 (x− 4)2 6= 0, i.e., x 6= 4, then

n∑
k=0

xkO2k+1 =
(x− 8)xn+1O2n+1 + xn+1O2n−1 + 2x+ 8

(x− 4)2
,

and

if 1
16 (x− 4)2 = 0, i.e., x = 4, then

n∑
k=0

xkO2k+1 =
(n+ 1)((x− 8)n+ 2x)xn−1O2n+1 + n(n+ 1)xn−1O2n−1

2
.

(d) (m = −1, j = 0)

If (2x− 1)2 6= 0, i.e., x 6= 1
2 , then

n∑
k=0

xkO−k =
4xn+1O−n+1 + 4 (x− 1)xn+1O−n − 2x

(2x− 1)2
,
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and

if (2x− 1)2 = 0, i.e., x = 1
2 , then

n∑
k=0

xkO−k =
n(n+ 1)xn−1O−n+1 + (n+ 1)((x− 1)n+ 2x)xn−1O−n

2
.

(e) (m = −2, j = 0)

If (4x− 1)2 6= 0, i.e., x 6= 1
4 , then

n∑
k=0

xkO−2k =
16xn+1O−2n+2 + 8 (2x− 1)xn+1O−2n − 8x

(4x− 1)2
,

and

if (4x− 1)2 = 0, i.e., x = 1
4 , then

n∑
k=0

xkO−2k =
2n(n+ 1)xn−1O−2n+2 + (n+ 1)((2x− 1)n+ 4x)xn−1O−2n

4
.

(f) (m = −2, j = 1)

If (4x− 1)2 6= 0, i.e., x 6= 1
4 , then

n∑
k=0

xkO−2k+1 =
32xn+1O−2n+3 + 16 (2x− 1)xn+1O−2n+1 + 1− 12x

2 (4x− 1)2
,

and

if (4x− 1)2 = 0, i.e., x = 1
4 , then

n∑
k=0

xkO−2k+1 =
2n(n+ 1)xn−1O−2n+3 + (n+ 1)((2x− 1)n+ 4x)xn−1O−2n+1

4
.

Taking x = 1 in the last three corollaries we get the following corollary.

Corollary 30. For n ≥ 0, modified Oresme numbers, Oresme-Lucas numbers and

Oresme numbers have the following properties:
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1.

(a)
∑n

k=0Gk = −3Gn +Gn−1 + 4.

(b)
∑n

k=0G2k = 1
9(−7G2n +G2n−2 + 16).

(c)
∑n

k=0G2k+1 = 1
9(−7G2n+1 +G2n−1 + 20).

(d)
∑n

k=0G−k = 4(G−n+1 − 1).

(e)
∑n

k=0G−2k = 8
9(2G−2n+2 +G−2n − 2).

(f)
∑n

k=0G−2k+1 = 1
9(16G−2n+3 + 8G−2n+1 − 11).

2.

(a)
∑n

k=0Hk = −3Hn +Hn−1 + 4.

(b)
∑n

k=0H2k = 1
9(−7H2n +H2n−2 + 24).

(c)
∑n

k=0H2k+1 = 1
9(−7H2n+1 +H2n−1 + 12).

(d)
∑n

k=0H−k = 2(2H−n+1 − 1).

(e)
∑n

k=0H−2k = 2
9(8H−2n+2 + 4H−2n − 3).

(f)
∑n

k=0H−2k+1 = 1
9(16H−2n+3 + 8H−2n+1 − 3).

3.

(a)
∑n

k=0Ok = −3On +On−1 + 2.

(b)
∑n

k=0O2k = 1
9(−7O2n +O2n−2 + 8).

(c)
∑n

k=0O2k+1 = 1
9(−7O2n+1 +O2n−1 + 10).

(d)
∑n

k=0O−k = 2(2O−n+1 − 1).

(e)
∑n

k=0O−2k = 8
9(2O−2n+2 +O−2n − 1).

(f)
∑n

k=0O−2k+1 = 1
18(32O−2n+3 + 16O−2n+1 − 11).
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7 Matrices Related with Generalized Oresme

Numbers

We define the square matrix A of order 2 as:

A =

(
1 −1

4

1 0

)

such that detA = 1
4 . Then, we have(

Wn+1

Wn

)
=

(
1 −1

4

1 0

)(
Wn

Wn−1

)
(7.1)

and (
Wn+1

Wn

)
=

(
1 −1

4

1 0

)n(
W1

W0

)
.

If we take Wn = Gn in (7.1) we have(
Gn+1

Gn

)
=

(
1 −1

4

1 0

)(
Gn

Gn−1

)
. (7.2)

We also define

Bn =

(
Gn+1 −1

4Gn

Gn −1
4Gn−1

)
and

Cn =

(
Wn+1 −1

4Wn

Wn −1
4Wn−1

)
.

Theorem 31. For all integers m,n, we have

(a) Bn = An

(b) C1A
n = AnC1

(c) Cn+m = CnBm = BmCn.

Proof. Take r = 1, s = −1
4 in Soykan [12, Theorem 5.1.].
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Corollary 32. For all integers n, we have the following formulas for the modified

Oresme, Oresme-Lucas and Oresme numbers.

(a) Modified Oresme Numbers.

An =

(
1 −1

4

1 0

)n

=

(
Gn+1 −1

4Gn

Gn −1
4Gn−1

)
.

(b) Oresme-Lucas Numbers.

An =

(
1 −1

4

1 0

)n

=

(
(n+ 1)Hn+1 −1

4nHn

nHn −1
4(n− 1)Hn−1

)
.

(c) Oresme Numbers.

An =

(
1 −1

4

1 0

)n

=

(
2On+1 −1

2On

2On −1
2On−1

)
.

Proof. (a) It is given in Theorem 31 (a).

(b) Note that, from Lemma 14, we have

Gn = nHn.

Using the last equation and (a), we get required result.

(c) Note that, from Lemma 14, we have

Gn = 2On.

Using the last equation and (a), we get required result.

Theorem 33. For all integers m,n, we have

Wn+m = WnGm+1 −
1

4
Wn−1Gm (7.3)

Proof. Take r = 1, s = −1
4 in Soykan [12, Theorem 5.2.].
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By Lemma 11, we know that

(W0 − 2W1)
2Gm = −4W0Wm+1 + 4W1Wm,

so (7.3) can be written in the following form

(W0 − 2W1)
2Wn+m = Wn(4(W1−W0)Wm+1+W0Wm)+Wn−1(W0Wm+1−W1Wm).

Corollary 34. For all integers m,n, we have

Gn+m = GnGm+1 −
1

4
Gn−1Gm,

Hn+m = HnGm+1 −
1

4
Hn−1Gm,

On+m = OnGm+1 −
1

4
On−1Gm,

and

On+m = 2OnOm+1 −
1

2
On−1Om.
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