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Abstract 

In this paper, we introduce a new numerical scheme for approximation of highly 

oscillatory integrals having Bessel kernel. We transform the given integral to a special 

form having improper nonoscillatory Laguerre type and proper oscillatory integrals with 

Fourier kernels. Integrals with Laguerre weights over [ )∞,0  will be solved by Gauss-

Laguerre quadrature and oscillatory integrals with Fourier kernel can be evaluated by 

meshless-Levin method. Some numerical examples are also discussed to check the 

efficiency of proposed method. 

1. Introduction  

In this paper, we are concern with highly oscillatory integrals of the form [1] 

 [ ] ( ) ( )∫ κ= µ
b

a
dxxJxggI ,   (1) 

where ( )xg  is a smooth function, ( )xJ κµ  is Bessel function of first kind of order µ  and 

κ  is parameter of frequency. For large value of κ  the integral become highly oscillatory 

and cannot be approximate by usual quadrature rules. To handle this type of problems, 

we formulate special numerical schemes. 

Highly oscillatory integrals are applicable in many areas of science and engineering 
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technology like optics, astronomy, seismology image processing, electromagnetics, 

plasma transport and computerized tomography [3, 4, 7, 8, 11]. 

In [5], the author presented an efficient method for numerical approximation of 

oscillatory integrals with trigonometric and Bessel kernels and then extended this 

procedure in [6]. In [9], different approaches are presented for different types of 

oscillatory integrals, the method designed for Bessel type oscillatory integrals is based 

on Lagrange’s identity. Highly oscillatory integrals are evaluated by convolution 

quadrature in [13]. To check effectiveness of proposed method some test problems are 

included. In [10], the oscillatory integrals over infinite positive domain [ )∞,0  are 

evaluated by “integration then summation with extrapolation” (ISE) method. [14], 

proposed Filon-type method and Clenshaw-Curtis-Filon-type method based on Fast 

Fourier transform and fast computation of modified moments for evaluation of highly 

oscillatory integrals containing Bessel functions. The proposed methods are high 

accurate for large frequencies, which is clear from numerical examples. In [15] the 

authors proposed meshless procedure for approximation of oscillatory integrals with 

Bessel kernel, the case of singularity is handled with multi-resolution quadrature based 

on Haar wavelet quadrature and hybrid function. [2], has transformed Bessel oscillatory 

integrals to special type integrals with Fourier kernel and integrals with Laguerre weights 

and then used Levin type method with Gauss-Laguerre quadrature for approximation. 

In current work we extend [2], method with some modification. For transformation 

purpose the same approach can be used while for approximation we use meshless-Levin 

method based on Gauss-Laguerre quadrature. 

Symbols Chart 

Symbols Description 

κ  Frequency parameter 

µ  Order of Bessel function 

[ ]gQ
GL  Gauss-Laguerre quadrature 

[ ]gQ
GL
mL  Meshless-Levin method based on Gauss-Laguerre quadrature 

M Nodal points of meshless-Levin method 

N Nodal points of Gauss-Laguerre quadrature 
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2. Transformation of Integrals 

Bessel function of first kind can be determine as following [12] 

 ( ) ( )
( )

( )∫−
−µ

µ

µ −
+µΓπ

=
1

1

212 .1
21

2
dyey

x
xJ

ixy   (2) 

Substituting (2) into (1), we get 

 [ ] ( ) ( )
( )

( )∫ ∫−
−µ

µ
−

+µΓπ
=

b

a

ixy
dxdyey

x
xggI

1

1

212 .1
21

2
  (3) 

The analytic integral ( )∫−
−µ−

1

1

212 ,1 dyey
ixy  can be transformed to the following form 

with variable u [2], 

( )
( )

( )∫ ∫−
∞ −−µ

µ

κ−
κ−µ κ+

κ
=−

1

1 0

212

2

212 21 duexuiu
x

ie
dyey

u
xi

xyi  

( )
( )∫

∞ −−µ
µ

κ−
κ−

κ
−

0

212

2
2 duexuiu

x

ie u
xi

 (4) 

( )
( )

( )
( ),2212
x

x

ie
x

x

ie
xixi

Ψ
κ

−Ψ
κ

= µ

κ

µ

κ−
 (5) 

where,  

 ( ) ( )∫
∞ −−µκ+=Ψ
0

212
1 2 duexuiux

u   (5.1) 

and,  

 ( ) ( )∫
∞ −−µκ−=Ψ
0

212
2 .2 duexuiux

u   (5.2) 

( )x1Ψ  and ( )x2Ψ  are nonoscillatory integrals having Laguerre weights and can be 

evaluated by Gauss-Laguerre quadrature. 

Using (5) in (3) we get, 

 [ ]
( )

( ) ( ) ( ) ( ) 




 Ψ−Ψ
+µΓπκ

= ∫∫
κ

µ
κ−

µµµ

b

a

xi
b

a

xi
dxxe

x

xg
dxxe

x

xgi
gI 21

212
 (6) 
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(6) is a special type integral containing nonoscillatory improper Laguerre type integrals 

and proper oscillatory integrals with Fourier kernels. (6) can be written in more 

simplified as, 

 [ ]
( )

( ) ( )[ ],,,
212

21 κ−κ
+µΓπκ

= µµ gIgI
i

gI  (7) 

where,  

 ( ) ( ) ( )∫ Ψ=κ κ−
µ

b

a

xi
dxxe

x

xg
gI 11 ,   (7.1) 

and,  

 ( ) ( ) ( )∫ Ψ=κ κ
µ

b

a

xi
dxxe

x

xg
gI ., 22   (7.2) 

From (7.1) and (7.2) we see that the proposed method fails at ,0=x  so we choose the 

domain .0 ba <<  

3. Meshless-Levin Method based on Gauss-Laguerre Quadrature 

Integrals (5.1) and (5.2) contains Gauss-Laguerre weights, can be evaluated by 

Gauss-Laguerre quadrature as 

  ( ) ( ) ( ) ( )
( )

( )( )∫ ∑
∞

=
∞<ζ<ζ+Ω=

0
1

2
2

0,
!2

!
N

j

N
jj

x
g

N

N
dxxgxdxexg  

[ ] .rr
GL

EgQ +=  

The weights functions ( )jxΩ  is given by [16] 

( )
( ) [ ( ) ]

....,,3,2,1,
1

2
1

2
Nj

xLx

x
x

jN

j
j =

+
=Ω

+
 

The quadrature points of Gauss-Laguerre quadrature are the zeros of the following 

polynomial 

( ) ( )
( ) ( )∑

= −
−=

N

j

jj

N
jjN

Nx
xL

0
2

.
!!

!1
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After computing ( )x1Ψ  and ( )x2Ψ  by Gauss-Laguerre quadrature [ ],gQ
GL  (6) can be 

written as 

 [ ]
( )

( ) ( ) ,
212

21 




 −
+µΓπκ

= ∫∫ κκ−
µµ

b

a

xi
b

a

xi
dxexGdxexG

i
gI  (8) 

where,  

 ( ) ( ) ( )x
x

xg
xG 11 Ψ= µ   (8.1) 

and,  

 ( ) ( ) ( ).22 x
x

xg
xG Ψ= µ   (8.2) 

Finally we got the highly oscillatory integral with Fourier kernels, which can be 

evaluated by Leven type method based on multiquadric radial basis functions (MQ RBF) 

as following. 

Let the approximate solution ( ) ( )∑ = φα= M

j j xxy
0

 satisfies the following ODE [17] 

 ( )[ ] ( ) [ ] .0and,, ≠∈=θ xbaxxGxD   (9) 

The differential operator D can be defined as 

( )[ ] ( ) ( ).xixx DDD κ+′=θ  

For weights ,jα  applying interpolation condition on (9) as under 

 ( )[ ] ( ) MjxGxy j ...,,2,1,0, ==D   (10) 

(10) gives a system of linear equations, which can be written in matrix form as following 

 GA =α   (11) 

where A is square matrix while α and G are column vectors. 

( )xφ  can be defined as 

( ) ( ) ,22 ε+=φ xrx j         ( ) ,2
c
jj xxxr −=  

where, ε  is shape parameter of multiquadric radial basis function (MQ RBF). 
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Solution of linear equations system (11) for α gives the approximate solution ( ),xy  

and hence the value of integral (1) can be determined as 

[ ] ( ) ( ) .
aibiGL

mL eayebygQ
κκ −=  

4. Error Analysis 

Theorem. Let the integral (6) has no stationary point in [ ]., ba  Then the error bound 

of proposed method is given by 

[ ] [ ] ( )
,

3

1
1

1 µ+

−

κ
−ρ≤−=

M
GL
mLrr

xb
gQgIE  

where, 1ρ  is real constant free of κ  and x. 

Proof. The integrals (5.1) and (5.2) can be computed by [ ]gQ
GL  as following, 

 ( ) ( )∫
∞ −=Ψ
0

, dueuxgx
u  

 ( ) ( ) ( )
( )

( )( )∑
=

∞<ζ<ζ+Ω=
N

j

N
jj xg

N

N
uxgx

1

2
2

,0,,
!2

!
,   (12) 

where, ( ) ( ) 2

1
2 2,

−µκ+= xuiuuxg  or ( ) ( ) .2, 2

1
2 −µκ−= xuiuuxg   

So (6) can be written as following, 

[ ]
( )

( ) [ ] ( ) [ ]









 −

+µΓπκ
= ∫∫ κ

µ
κ−

µµµ

b

a

xiGL
b

a

xiGL
dxegQ

x

xg
dxegQ

x

xgi
gI

212
 

( )
( )

( ) ( )( ) ( ) ( )( ) 









 ζ−ζ+ ∫ ∫ κ

µ
κ−

µ

b

a

b

a
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dxexg

x
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x

xg

N

N
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!2
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( )
( )
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( ) ( ) ,




 −ρ= ∫ ∫ κκ−b

a

b

a

xixi
dxexFdxexF   (13) 

where, ( ) ( ) ( )( )ζ= µ ,2
xg

x

xg
xF

N  and 
( )

( )
( )

.
!2

!

212

2

N

N

k

i

+µΓπ
=ρ µµ  

Since the oscillatory function of (13) is linear, therefore the error bound of proposed 

method which is used for approximation of (13) with M collocation points 

bxxx M =<<< ⋯21  is given by [18], 

[ ] [ ] ( )
,

3

1
1

κ
−ρ≤−=

−M
GL
mLrr

xb
gQgIE  

( )
,

3

1
1

1 µ+

−

κ
−ρ=

M
xb

 

where, 
( )

( )
( )

,
!2

!

212

2

1
N

Ni

+µΓπ
=ρ µ  independent of κ  and x. 

This completes the proof. 

5. Numerical Examples 

In this section some numerical examples are discussed. For exact solution Maple 16 

has been used while numerical computation is done by Matlab 2015a by hp core-i5 

laptop with 2.5 GHz processor and 4 GB of RAM. 

Example 1. 

[ ] ( )∫ κ
+

=
2

1
021 .

1

1
dxxJ

x
gI  

[ ]gI1  is a highly oscillatory integral which is clear from Figure 1. The oscillation 

increases as value of κ increases. The proposed method is implemented for evaluation of 

integral and results are compared with exact solution. Comparison of exact and 

approximate solution is shown in Figure 2 from which it is clear that the approximate 

solution is very close to exact solution. The results for higher frequencies are given in 

term of absolute error in Table 1, which shows that the proposed method gives high 
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accuracy for higher frequencies. Figure 3 shows the asymptotic order of convergence of 

proposed method for [ ].1 gI  

 

Figure 1. Oscillatory behavior of [ ]gI1  for, 50=κ  (left) and 100=κ  (right). 

 

Figure 2. Comparison of exact and approximate solutions of [ ]gI1  for different values 

of κ. 

Table 1. Absolute error of [ ]gI1  for higher frequencies. 

κ 010  110  210  310  410  510  

Absolute 

error 

31033.1 −×
 

41065.2 −×  51016.2 −×  81021.7 −×  81056.1 −×  101024.9 −×  
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Figure 3. Absolute error scaled by ,3 µ+κ  for [ ].1 gI  

Example 2. 

[ ] ( ) ( )∫ κ
+

=
2

1
232 .

1

cos
dxxJ

x

x
gI  

The oscillatory integral [ ]gI2  is approximated by the proposed method. Comparison 

of exact and approximate solutions is shown in Figure 5 for different values of κ. Results 

for higher frequencies are calculated in term of absolute error at different values of N and 

M. Table 2 shows that at fixed 40=N  the absolute error for higher frequencies 

decreases as M increases. Similarly Table 3 shows that at fixed 15=M  the absolute 

error for higher frequencies decreases as N increases. From Figure 5, we see that plot of 

exact and approximate solution overlap each other, which proves the efficiency of 

method. Figure 4 shows that the oscillations increase with increasing κ. The asymptotic 

order of convergence is shown in Figure 6 for this example. 
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Figure 4. Oscillatory behavior of [ ]gI2  for, 50=κ  (left) and 100=κ  (right). 

Table 2. Absolute error of [ ],2 gI  for higher frequencies at different values of M and 

fixed .40=N  

κ 5=M  10=M  15=M  

0
10  3

1037.4
−×  4

1055.3
−×  14

1071.2
−×  

110  51015.5 −×  61087.2 −×  71014.4 −×  

2
10  7

1000.2
−×  8

1028.1
−×  9

1010.5
−×  

310  91014.3 −×  101032.4 −×  111052.5 −×  

410  111006.1 −×  121027.2 −×  131018.8 −×  

510  141015.5 −×  141014.3 −×  141079.2 −×  

Table 3. Absolute error of [ ],2 gI  for higher frequencies at different values of N and 

fixed .15=M  

κ 20=N  30=N  40=N  

010  51082.2 −×  51073.2 −×  141071.2 −×  

1
10  7

1097.2
−×  7

1088.3
−×  7

1014.4
−×  

210  91089.1 −×  91054.3 −×  91010.5 −×  

3
10  12

1038.4
−×  11

1018.4
−×  11

1052.5
−×  

410  121062.3 −×  121044.1 −×  131018.8 −×  

5
10  13

1057.1
−×  14

1069.5
−×  14

1079.2
−×  
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Figure 5. Comparison of exact and approximate solutions of [ ]gI2 , for different values 

of κ. 

 

Figure 6. Absolute error scaled by ,3 µ+κ  for [ ].2 gI  

6. Conclusion 

Numerical method [ ]gQ
GL
mL  proposed for integrals with Bessel oscillatory kernels. 

With the help of numerical examples it is proved that the main advantage of the proposed 

method is high accuracy for higher frequencies. The accuracy also improves with 
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increase in values of M as well as N. The asymptotic order of convergence of proposed 

method is ( ( ) ).3 µ+−κO  
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