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Abstract

In this paper, we consider a new class of hemivariational inequalities,

which is called the trifunction bihemivariational inequality. We suggest and

analyze some iterative methods for solving the trifunction bihemivariational

inequality using the auxiliary principle technique. The convergence analysis

of these iterative methods is also considered under some mild conditions.

Several special cases are also considered. Results proved in this paper can

be viewed as a refinement and improvement of the known results.

1 Introduction

Variational inequalities theory introduced in 1964 by Stampacchia [31] can be

viewed as a novel and significant generalization of the variational principles.

The origin of the variational principles can be traced back to Euler, Newton,

Lagrange and Bernoulli’s brothers. These variational principles have emerged

as a powerful tool to investigate and study a wide class of unrelated problems

arising in industrial, regional, physical, pure and applied sciences in a unified and

general framework. Variational inequalities have been extended and generalized in

several direction using novel and new techniques. Panagiotopoulos [28] introduced

the hemivariational inequalities by using the concept of the generalized directional

derivatives of nonconvex and nondifferentiable functions. This class has important
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applications in structural analysis and nonconvex optimization. It has been

shown [7] that, if a nonsmooth and nonconvex superpotential of a structure is

quasidifferentiable, then these problems can be studied in the general framework

of hemivariational inequalities. The solution of the hemivariational inequalities

gives the position of the state equilibrium of the structure. We would like to

point out that the hemivariational inequalities include the problem of finding the

difference of two monotone operators, which is itself an interesting problem, see

[8, 28].

Noor and Oettli [16] introduced triequilibrium problems and have shown

variational inequalities, fixed-point problems, Nash equilibrium problems and

saddle-point problems can be studied in the framework of triequilibrium problems.

Thus it is clear that hemivariational inequalities and equilibrium problems

are different generalizations of variational inequalities. Noor and Noor [17]

investigated the trifunction hemivariational inequalities, which can be viewed a

significant extension of variational inequalities and hemivariational inequalities.

We would like to emphasize that hemivariational inequality theory provides us

with a simple, natural, unified, novel and general framework to study an extensive

range of unilateral, obstacle, free, moving and equilibrium problems arising

in fluid flow through porous media, elasticity, circuit analysis, transportation,

oceanography, operations research, finance, economics, and optimization.

Convexity theory is a branch of mathematical sciences with a wide range

of applications in industry, physics, social, regional and engineering sciences.

The general theory of the convexity started soon after the introduction of

differential and integral calculus by Newton and Leibnitz, although some

individual optimization problems had been investigated before that. It is worth

mentioning that variational inequalities represent the optimality conditions for

the differentiable convex functions on the convex sets. The convex sets and

convex functions have been extended and generalized in several directions using

innovative ideas to consider completed problems. See an excellent book by

Cristescu and Lupsa [3]. Inspired by the research work going on in this field,

Noor and Noor [21, 22, 23, 24] introduced and and considered a new class of
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nonconvex sets and nonconvex functions with respect to an arbitrary bifunction.

This class of nonconvex set is called the biconvex set and the noncovex function

is called biconvex function. functions is called the biconvex functions. Noor et

al [19, 21, 22, 23, 24, 26, 27] have studied some basic properties of the biconvex

functions. It have been shown that the biconvex functions have characterizations

as the convex functions enjoy. In particular, it have been shown that the

optimization conditions of the differentiable biconvex functions are characterized

by a class of variational inequalities, called the bivariational inequalities, see

[19, 21, 22, 23, 24, 26, 27] and references therein.

Variational inequalities and hemivariational inequalities have witnessed

an explosive growth in theoretical advances, algorithmic developments and

applications across almost all disciplines of engineering, pure and applied

sciences. There are several methods for solving variational inequalities and

bivariational inequalities. Due to the nature of the hemivariational inequalities,

projection and resolvent methods can not be applied for solving hemivariational

inequalities. In recent years, the auxiliary principle technique is being used to

suggest and analyze some iterative methods for solving variational inequalities

and equilibrium problems. Glowinski, Lions and Tremolieres [5] used this

technique to study the existence problem for mixed variational inequalities,

whereas Noor [8, 11, 12, 13, 14] and Zhu et al.[32] have used this approach

to suggest and analyze some iterative methods for solving various classes of

variational inequalities and equilibrium problems. In this paper, we again use

the auxiliary principle technique to suggest several new iterative schemes for

trifunction bihemivariational inequalities. We also prove that the convergence

of these methods require either pseudomonotonicity or partially relaxed strongly

monotonicity. These are weaker conditions than monotonicity. As a special

case, we obtain new iterative schemes for solving bihemivariational inequalities,

variational inequalities and optimization problem. The comparison of these

methods with other methods is a subject of future research.
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2 Preliminaries and Basic Results

Let H be a real Hilbert space, whose inner product and norm are denoted by 〈., .〉
and ‖.‖ respectively. Let K be a nonempty set in H.

We now recall some concepts of biconvex sets and biconvex functions, which

are mainly due to Noor et al. [21, 22, 23, 24].

Definition 2.1. The set Kβ in H is said to be biconvex set with respect to an

arbitrary bifunction β(· − ·), if

u+ λβ(v − u) ∈ Kβ, ∀u, v ∈ Kβ, λ ∈ [0, 1].

The biconvex set Kβ is also called β-connected set. If β(v − u) = v − u, then

the biconvex set Kβ is a convex set, but the converse is not true. For example,

the set Kβ = R− (−1
2 ,

1
2) is an biconvex set with respect to β, where

β(v − u) =

{
v − u, for v > 0, u > 0 or v < 0, u < 0

u− v, for v < 0, u > 0 or v < 0, u < 0.

It is clear that Kβ is not a convex set.

Remark 2.1. We would like to emphasize that, if u+β(v−u) = v, ∀u, v ∈ Kβ,

then β(v−u) = v−u. Consequently, the β-biconvex set reduces to the convex set

K. Thus, Kβ ⊂ K. This implies that every convex set is a biconvex set, but the

converse is not true.

Definition 2.2. The function F on the biconvex set Kβ is said to be strongly

biconvex, if

F (u+ λβ(v − u)) ≤ (1− λ)F (u) + λF (v)

−νλ(1− λ)‖β(v − u)‖2, ∀u, v ∈ Kβ, λ ∈ [0, 1].

Note that every convex function is a biconvex, but the converse is not true.

If λ = 1
2 , then the function F satisfies

F (
2u+ β(v − u)

2
) ≤ 1

2
{F (u) + F (v)} − ν 1

4
‖β(v − u)‖2, ∀u, v ∈ Kβ,
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which is called Jensen biconvex function.

If ν = 0, then Definition(2.2) reduces to

Definition 2.3. The function F on the biconvex set Kβ is said to be biconvex, if

F (u+ λβ(v − u)) ≤ (1− λ)F (u) + λF (v) ∀u, v ∈ Kβ, λ ∈ [0, 1].

We now consider the biconvex function on the interval Iβ = [a, a+ β(b− a)].

Definition 2.4. Let Iβ = [a, a+ β(b− a)]. Then F is a biconvex function, if and

only if, ∣∣∣∣∣∣∣
1 1 1

a x a+ β(b− a)

F (a) F (x) F (b)

∣∣∣∣∣∣∣ ≥ 0; a ≤ x ≤ a+ β(b− a).

One can easily show that the following are equivalent:

1. F is a biconvex function.

2. F (x ≤ F (a) + F (b)−F (a)
β(b−a) (x− a).

3. F (x)−F (a)
x−a ≤ F (b)−F (a)

β(b−a) .

4. F (a)
(β(b−a)))(a−x) + F (x)

(x−a)−β(b−a))(a−x) + F (b)
β(b−a)(x−b) ≤ 0,

where x = a+ λβ(b− a) ∈ [a, a+ β(b− a)].

To derive the main results, we need the following assumption regarding the

bifunction β(· − ·).

Condition M. The bifunction β(,−, ) is said to satisfy the following assumptions:

(i). β(γβ(v − u)) = γβ(v − u), ∀u, v ∈ Kβ, γ ∈ Rn.

(ii). β(v − u− γβ(v − u)) = (1− γ)β(v − u), ∀u, v ∈ Kβ.

Remark 2.2. Let β(· − ·) : Kβ ×Kβ → H satisfy the assumption

β(v − u) = β(v − z) + β(z − u), ∀u, v, z ∈ Kβ.

Earthline J. Math. Sci. Vol. 7 No. 2 (2021), 287-313
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One can easily show that β(v− u) = 0 ⇔ u = v, ∀u, v ∈ Kβ. Consequently

β(v− u) = 0, for v = u ∈ Kβ. Also β(v− u) + β(u− v) = 0, ∀u, v, z ∈ Kβ. This

implies that the bifunction β(.− .) is skew symmetric.

Let f : H −→ R be a locally Lipschitz continuous function. Let Ω be an open

bounded subset of Rn. First of all, we recall the following concepts and results

from nonsmooth analysis [2].

Definition 2.5. Let f be locally Lipschitz continuous at a given point x ∈ H

and v be any other vector in H. The Clarke’s generalized bidirectional derivative

of f at x in the direction β(v − u), denoted by f0(x, β(v − u)), is defined as

f0(x, β(v − u)) = lim
t→0+

sup
h→0

f(x+ h+ tβ(v − u))− f(x+ h)

t
.

If β(v − u) = v, then Definition (2.5) reduces to the following concepts which

are mainly due to Clarke [2].

Definition 2.6. [2] Let f be locally Lipschitz continuous at a given point x ∈ H
and v be any other vector in H. The Clarke’s generalized bidirectional derivative

of f at x in the direction v, denoted by f0(x, v), is defined as

f0(x, v) = lim
t→0+

sup
h→0

f(x+ h+ tv)− f(x+ h)

t
.

The generalized gradient of f at x, denoted ∂f(x), is defined to be

subdifferential of the function f0(x; v) at 0. That is

∂f(x) = {w ∈ H : 〈w, v〉 ≤ f0(x; v), ∀v ∈ H.}.

If f is convex onK and locally Lipschitz continuous at x ∈ K, then ∂f(x) coincides

with the subdifferential f ′(x) of f at x in the sense of convex analysis , and

f0(x; v) coincides with the directional derivative f ′(x; v) for each v ∈ H, that is,

f0(x; v) = 〈f ′(x), v〉, ∀v ∈ H.

For a given nonlinear trifunction F (., ., .) : Kβ×Kβ×Kβ −→ H and a nonlinear

continuous operator T : Kβ −→ H, consider the problem of finding u ∈ Kβ such

http://www.earthlinepublishers.com
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that

F (u, Tu, β(v − u)) +

∫
Ω
f0(u;β(v − u))dΩ ≥ 0, ∀v ∈ Kβ, (2.1)

which is called the trifunction bihemivariational inequality.

Here f0(u;β(v−u)) := f0(x, u;β(v−u)) := f0(x, u(x);β(v(x)−u(x))) denotes

the generalized bidirectional derivative of the function f(x, .) at u(x) in the

direction v(x)− u(x).

We now discuss some special cases of the trifunction bihemivariational

inequalities (2.1).

(I). If F (u, Tu, β(v−u)) = W (u, β(v−u)), where B(., .) is a continuous bifunction,

then problem (2.1) is equivalent to finding u ∈ Kβ such that

W (u, β(v − u)) +

∫
Ω
f0(u;β(v − u))dΩ ≥ 0, ∀v ∈ Kβ, (2.2)

which is called the bifunction bihemivariational inequality and appears to be a

new one.

(II). If F (u, Tu, β(v−u)) = 〈Au, β(v−u)〉, where A is a nonlinear operator, then

problem (2.1) is equivalent to finding u ∈ Kβ such that

〈Au, β(v − u)〉+

∫
Ω
f0(u;β(v − u))dΩ ≥ 0, ∀v ∈ Kβ, (2.3)

which is known as the bihemivariational inequality.

(III). If F (u, Tu, β(v − u)) = 〈Au, v − u〉, where A is a nonlinear operator, then

problem (2.1) is equivalent to finding u ∈ K such that

〈Au, v − u〉+

∫
Ω
f0(u; v − u)dΩ ≥ 0, ∀v ∈ K, (2.4)

which is known as the hemivariational inequality introduced and studied by

Panagiotopoulos [28, 29] in order to formulate variational principles connected

to energy functions which are neither convex nor smooth. It is has been shown

that the technique of hemivariational inequalities is very efficient to describe the

behaviour of complex structure arising in engineering and industrial sciences.

Earthline J. Math. Sci. Vol. 7 No. 2 (2021), 287-313
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(IV). If f is a differentiable convex function, then problem (2.1) is equivalent to

finding u ∈ Kβ such that

F (u, Tu, β(v − u)) + 〈f ′(u), β(v − u)〉 ≥ 0, ∀v ∈ Kβ, (2.5)

which is known as the mildly nonlinear trifunction bihemivariational inequality

and appear to be a new one.

(V). If f = 0, then problem (2.1) is equivalent to finding u ∈ Kβ such that

F (u, Tu, β(v − u)) ≥ 0, ∀v ∈ Kβ, (2.6)

which is called the trifunction bivariational inequality.

In brief, for suitable and appropriate choice of the trifunction, one can obtain

several classes of bihemivariational and bivariational inequalities. This clear shows

that the problem (2.1) is more general and flexible and includes the previous ones

as special cases.

Definition 2.7. The trifunction F (., ., .) and the operator T is said to be:

(a) jointly bimonotone, if

F (u, Tu, β(v − u)) + F (v, Tv, β(u− v)) ≤ 0, ∀u, v ∈ Kβ.

(b) jointly pseudo-bimonotone with respect to
∫

Ω f
0(u;β(v − u))dΩ, if

F (u, Tu, β(v − u)) +

∫
Ω
f0(u;β(v − u))dΩ ≥ 0

=⇒

−F (v, Tv, β(u− v))−
∫

Ω
f0(u;β(v − u))dΩ ≥ 0, ∀u, v ∈ Kβ.

(c) partially relaxed strongly jointly bimonotone, if there exists a constant γ > 0

such that

F (u, Tu, β(v − u)) + F (v, Tv, β(z − v)) ≤ γ‖β(u− z)‖2, ∀u, v, z ∈ Kβ.

Note that for z = u partially relaxed strongly jointly bimonotonicity reduces

to jointly bimonotonicity. This shows that partially relaxed strongly jointly

bimonotonicity implies jointly bimonotonicity, but the converse is not true.
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Definition 2.8. The function
∫

Ω f
0(u;β(v− u))dΩ is said to be partially relaxed

strongly bimonotone, if there exists a constant α > 0 such that∫
Ω
f0(u;β(v − u))dΩ +

∫
Ω
f0(z;β(u− v))dΩ ≤ α‖β(z − v)‖2, ∀u, v, z ∈ H.

Note that for z = v, partially relaxed strongly bimonotonicity reduces to

relaxed strongly bimonotonicity.

3 Main Results

In this section, we suggest and analyze some iterative methods for solving

trifunction bihemivariational inequality (2.1) using the auxiliary principle

technique of Glowinski, Lions and Tremolieres [5] involving Bregman distance

function as developed by Noor [11, 12, 13, 14, 15], Noor et al. [17, 18, 19, 20] and

Zhu et al. [32].

For the readers convenience, we recall some basic properties of the Bregman

convex functions [2]. For strongly convex functions f, we define the Bregman

distance function as

B(v, u) = f(v)− f(u)− 〈f ′(u), v − u〉 ≥ α‖v − u‖2, ∀u, v ∈ K. (3.1)

It is important to emphasize that various types of function f give different

Bregman distance function. We give the following important examples of some

practical important types of function f and their corresponding Bregman distance

functions.

Examples

1. If f(v) = ‖v‖2, then B(v, u) = ‖v − u‖, which is the squared Euclidean

distance (SE).

2. If f(v) =
∑n

i=1 ai log vi, which is known as Shannon entropy, then its

corresponding Bregman distance is given as

B(v, u) =

n∑
i=1

(
vi log(

vi
ui

) + ui − vi
)
,

Earthline J. Math. Sci. Vol. 7 No. 2 (2021), 287-313
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This distance is called Kullback-Leibler distance (KL) and has become a

very important tool in several areas of applied mathematics such as machine

learning.

3. If f(v) = −
∑n

i=1 log vi, which is called Burg entropy, then its corresponding

Bregman distance is given as

B(v, u) =
n∑
i=1

(
log

vi
ui

+
vi
ui
− 1

)
.

This is called Itakura-Saito distance (IS), which is very important in the

information theory, data analysis and machine learning.

Remark 3.1. It is a challenging problem to explore the applications of Bregman

distance function for other types of nonconvex functions such as biconvex,

k-convex functions, preinvex functions and harmonic functions.

For a given u ∈ Kβ satisfying (2.1), consider the auxiliary problem of finding

w ∈ Kβ such that

ρF (w, Tw, β(v − w)) + 〈E′(w)− E′(u), β(v − w)〉

+ ρ

∫
Ω
f0(w;β(v − w))dΩ ≥ 0, ∀v ∈ Kβ, (3.2)

where ρ > 0 is a constant and E′(u) is the differential biconvex function E(u) at

u ∈ Kβ.

We note that, if w = u, then clearly w is solution of the problem (2.1). This

observation enables us to suggest and analyze the following iterative method for

solving (2.1).

Algorithm 3.1. For a given u0 ∈ H, compute the approximate solution un+1 by

the iterative scheme

ρF (un+1, Tun+1, β(v − un+1)) + 〈E′(un+1)− E′(un), v − un+1〉

+ρ

∫
Ω
f0(un+1;β(v − un+1))dΩ ≥ 0, ∀v ∈ Kβ. (3.3)

http://www.earthlinepublishers.com
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Algorithm 3.1 is called the proximal method for solving problem (2.1). In

passing, we remark that the proximal point method was suggested by Martinet

[6] in the context of convex programming problems as regularization technique.

For the recent developments and applications of the proximal point algorithms,

see [11, 12, 13, 14, 15, 19, 32] and the references therein.

If F (u, Tu, β(v − u)) = W (u, β(v − u)), then Algorithm 3.1 collapses to the

following method for solving the bifunction bihemivariational inequality (2.2).

Algorithm 3.2. For a given u0 ∈ H, compute the approximate solution un+1 by

the iterative scheme

ρW (un+1, β(v − un+1)) + 〈E′(un+1)− E′(un), β(v − un+1)〉

+ρ

∫
Ω
f0(un+1;β(v − un+1))dΩ ≥ 0, ∀v ∈ Kβ,

If F (u, Tu, β(v − u)) = 〈Au, β(v − u)〉, then Algorithm 3.1 reduces to:

Algorithm 3.3. For a given u0 ∈ H, calculate the approximate solution un+1 by

the iterative schemes

〈ρAun+1 + E′(un+1)− E′(un), β(v − un+1)〉

+ρ

∫
Ω
f0(un+1;β(v − un+1))dΩ ≥ 0, ∀v ∈ Kβ,

is called the proximal point method for solving bihemivariational inequalities (2.3)

and appears to be a new one.

If f(x, u) = 0, then Algorithm 3.1 collapses to:

Algorithm 3.4. For a given u0 ∈ H, compute the approximate solution un+1 by

the iterative scheme

ρF (un+1, Tun+1, β(v − un+1)) + 〈E′(un+1)− E′(un), β(v − un+1)〉 ≥ 0, ∀v ∈ Kβ.

In brief, for suitable and appropriate choice of the operators and the

spaces, one can obtain a number of known and new algorithms for solving

variational-hemivariational inequalities and related problems.

Earthline J. Math. Sci. Vol. 7 No. 2 (2021), 287-313
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We now study the convergence analysis of Algorithm 3.1, which is the main

motivation of our next result.

Theorem 3.1. Let F (., ., .) and the operator T be jointly pseudomonotone with

respect to
∫

Ω f
0(u;β(v− u))dΩ. Let E be differentiable strongly biconvex function

with module µ > 0. Then the approximate solution un+1 obtained from Algorithm

3.1 converges to a solution u ∈ Kβ satisfying (2.1).

Proof. Let u ∈ Kβ be a solution of (2.1). Then

F (u, Tu, β(v − u)) +

∫
Ω
f0(u;β(v − u))dΩ ≥ 0, ∀v ∈ Kβ,

implies that

−F (v, Tv, β(u− v))−
∫

Ω
f0(x, u;β(v − u))dΩ ≥ 0, ∀v ∈ Kβ, (3.4)

since F (., ., .) is jointly pseudomonotone with respect to
∫

Ω f
0(u;β(v − u))dΩ.

Taking v = u in (3.3) and v = un+1 in (3.4), we have

ρF (un+1, Tun+1, β(u− un+1)) + 〈E′(un+1)− E′(un), β(u− un+1)〉

≥ −ρ
∫

Ω
f0(un+1;β(u− un+1))dΩ. (3.5)

and

−F (un+1, Tun+1, β(u− un+1))−
∫

Ω
f0(u;β(un+1 − u))dΩ ≥ 0. (3.6)

We now consider the function Bregman distance function

B(u,w) = E(u)− E(w)− 〈E′(w), β(u− w)〉

≥ µ‖β(u− w)‖2, (using strongly biconvexity of E). (3.7)

where µ > 0 is a constant.
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Now combining (3.7) and (3.4), we have

B(u, un)−B(u, un+1) = E(un+1)− E(un)− 〈E′(un+1), β(un+1 − un)〉

+〈E′(un+1)− E′(un), β(u− un+1)〉

≥ µ‖β(un+1 − un)‖2 + 〈E′(un+1)− E′(un), β(u− un+1)〉

≥ µ‖β(un+1 − un)‖2 − ρF (un+1, Tun+1, β(u− un+1))

−ρ
∫

Ω
f0(un;β(u− un+1))dΩ

≥ µ‖β(un+1 − un)‖2,

where we have used (3.6).

If un+1 = un, then clearly un is a solution of the trifunction bihemivariational

inequality (2.1). Otherwise, it follows that B(u, un) − B(u, un+1) is nonnegative

and we must have

lim
n→∞

‖β(un+1 − un)‖ = 0⇒ lim
n→∞

un+1 = u.

Now using the technique of Zhu and Marcotte [20], it can be shown that the

entire sequence {un} converges to the cluster point u satisfying the trifunction

bihemivariational inequality (2.1).

It is well-known that to implement the proximal point methods, one has to

find the approximate solution implicitly, which is itself a difficult problem. To

overcome this drawback, we now consider another method for solving (2.1) using

the auxiliary principle technique.

For a given u ∈ Kβ satisfying (2.1), find w ∈ Kβ such that

ρF (u, Tu, β(v − w)) + 〈E′(w)− E′(u), β(v − w)〉

+ ρ

∫
Ω
f0(u;β(v − w))dΩ, ∀v ∈ Kβ, (3.8)

where E′(u) is the differential of a strongly biconvex function E(u) at u ∈ Kβ.

Earthline J. Math. Sci. Vol. 7 No. 2 (2021), 287-313
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Note that problems (3.2) and (3.8) are quite different problems.It is clear that

for w = u, w is a solution of (2.1). This fact allows us to suggest and analyze

another iterative method for solving trifunction bihemivariational inequality (2.1).

Algorithm 3.5. For a given u0 ∈ H, compute the approximate solution un+1 by

the iterative scheme

ρF (wn, Twn, β(v − un+1)) + 〈E′(un+1)− E′(wn), β(v − un+1)〉

≥ −ρ
∫

Ω
(wn;β(v − un+1))dΩ, ∀v ∈ Kβ, (3.9)

µF (un, Tun, β(v − wn)) + 〈E′(wn)− E′(un), β(v − wn)〉

≥ −µ
∫

Ω
(un;β(v − wn))dΩ, ∀v ∈ Kβ. (3.10)

Note that for F (u, Tu, β(v − u)) = W (u, β(v − u)), Algorithm 3.5 reduces to:

Algorithm 3.6. For a given u0 ∈ H, compute the approximate solution un+1 by

the iterative scheme

ρW (wn, β(v − un+1)) + 〈E′(un+1)− E′(wn), β(v − un+1)〉

≥ −ρ
∫

Ω
(wn;β(v − un+1))dΩ, ∀v ∈ Kβ,

µW (un, β(v − wn)) + 〈E′(wn)− E′(un), β(v − wn)〉

≥ −µ
∫

Ω
(un;β(v − wn))dΩ, ∀v ∈ Kβ,

which is called the predictor-corrector method for solving the bifunction

bihemivariational inequality (2.3).

For F (u, Tu, β(v−u)) = 〈Au, β(v−u)〉 Algorithm 3.5 collapses to the method

for solving the bivariational inequalities (2.2).

Algorithm 3.7. For a given u0 ∈ H, compute the approximate solution un+1 by

the iterative scheme

〈ρAwn + E′(un+1)− E′(wn), β(v − un+1)〉 ≥ −ρ
∫

Ω
(wn;β(v − un+1))dΩ,∀v ∈ Kβ,

〈µAun + E′(wn)− E′(un), β(v − wn)〉 ≥ −µ
∫

Ω
(un;β(v − wn))dΩ, ∀v ∈ Kβ,
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which is called the predictor-corrector method for solving the bihemivariational

inequalities (2.2).

If f(.; .) = 0, then Algorithm 3.5 reduces to the following iterative method for

solving trifunction bivaraiational inequalities (2.5).

Algorithm 3.8. For a given u0 ∈ H, compute the approximate solution un+1 by

the iterative scheme

ρF (wn, Twn, β(v − un+1)) + 〈E′(un+1)− E′(wn), β(v − un+1)〉 ≥ 0, ∀v ∈ Kβ,

µF (un, Tun, β(v − wn)) + 〈E′(wn)− E′(un), β(v − wn)〉 ≥ 0, ∀v ∈ Kβ.

Similarly for suitable and appropriate choice of the operators and the spaces,

one can obtain various known and new algorithms for solving hemivariational and

variational inequalities.

We now consider the convergence analysis of Algorithm 3.5 using essentially

the technique of Theorem 3.1. For the sake of completeness and to convey an idea

of the technique, we sketch the main points.

Theorem 3.2. Let F (., ., .) and the operator T be partially relaxed strongly jointly

bimonotone with a constant γ > 0 and let
∫

Ω f
0(u; v − u)dΩ be partially relaxed

strongly bimonotone with a constant α > 0. If E is strongly biconvex function

with modulus β > 0 and 0 < ρ < β/(α + γ), 0 < µ < β/(α + γ), then the

approximate solution un+1 obtained from Algorithm 3.5 converges to a solution

u ∈ Kβ of (2.1).

Proof. Let u ∈ Kβ be solution of (2.1). Then

ρ{F (u, Tu, β(v − u)) +

∫
Ω
f0(u;β(v − u))dΩ} ≥ 0, ∀v ∈ Kβ (3.11)

µ{F (u, Tu, β(v − u)) +

∫
Ω
f0(u;β(v − u))dΩ} ≥ 0, ∀v ∈ Kβ, (3.12)

where ρ > 0 and µ > 0 are constants.

Setting v = un+1 in (3.11) and v = u in (3.9), we have

ρ{F (u, Tu, β(un+1 − u)) +

∫
Ω
f0(x, u;β(un+1 − u))dΩ} ≥ 0. (3.13)
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and

ρF (wn, Twn, β(u− un+1)) + 〈E′(un+1)− E′(wn), β(u− un+1)〉

≥ −ρ
∫

Ω
f0(x,wn;β(u− un+1))dΩ. (3.14)

As in Theorem 3.1 and from (3.13) and (3.13), we have

B(u,wn)−B(u, un+1)

= E(un+1)− E(wn)− 〈E′(un+1), β(un+1 − wn)〉

+〈E′(un+1)− E′(wn), β(u− un+1)〉

≥ µ‖β(un+1 − wn)‖2 + 〈E′(un+1)− E′(wn), β(u− un+1)〉

≥ µ‖β(un+1 − wn)‖2 − ρF (wn, Twn, β(u− un+1))

−ρ
∫

Ω
f0(wn;β(u− un+1))dΩ

≥ µ‖β(un+1 − wn)‖2

−ρ{F (wn, Twn, β(u− un+1)) + F (u, Tu, β(un+1 − u))}

−ρ{
∫

Ω
f0(u;β(un+1 − u))dΩ +

∫
Ω
f0(wn;β(u− un+1))dΩ}

≥ µ‖β(un+1 − wn)‖2 − ρ(α+ γ)‖β(un+1 − wn)‖2

= {µ− ρ(α+ γ)}‖β(un+1 − wn)‖2,

where we have used the fact that F (., ., .) and
∫

Ω f
0(.; .)dΩ are partially relaxed

strongly bimonotone with constants α > 0 and γ > 0 respectively.

In a similar way, we can obtain

B(u, un)−B(u,wn) ≥ {β − µ(α+ γ)}‖β(wn − un)‖2.

If un+1 = wn = un, then clearly un is a solution of the trifunction hemivariational

inequality (2.1). Otherwise, for 0 < ρ < β
α+γ and 0 < µ < β

α+γ , it follows that the

sequences B(u,wn)−B(u, un+1) and B(u, un)−B(u,wn) are nonnegative and we

must have

lim
n→∞

‖β(un+1 − wn)‖ = 0 and lim
n→∞

‖β(wn − un)‖ = 0.
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Thus

lim
n→∞

‖β(un+1 − un)‖ = lim
n→∞

‖β(un+1 − wn)‖+ lim
n→∞

‖β(wn − un)‖ = 0

Now using the technique of Zhu and Marcotte [20], it can be shown that the

entire sequence {un} converges to the cluster point u satisfying the trifunction

bihemivariational inequality (2.1).

We now suggest and analyze some new iterative methods for solving

the trifunction bihemivariational inequality (2.1) using the auxiliary principle

technique of Glowinski, Lions and Tremolieres [10] without the Bregman distance

function as developed by Noor [16-24].

For a given u ∈ Kβ satisfying (2.1), find w ∈ Kβ such that

ρF (u, Tu, β(v − w)) + 〈w − u, v − w〉

+ ρ

∫
Ω
f0(u;β(v − w))dΩ ≥ 0, ∀v ∈ Kβ, (3.15)

where ρ > 0 is a constant. Problem (3.15) is known as the auxiliary trifunction

bihemivariational inequality. We note that if w = u, then clearly w is a solution

of the (2.1). This observation enables us to suggest and analyze the following

iterative method for solving (2.1).

Algorithm 3.9. For a given u0 ∈ H, compute the approximate solution un+1 by

the iterative scheme

ρF (wn, Twn, β(v − wn)) + 〈un+1 − wn, v − un+1〉

+ ρ

∫
Ω
f0(u;β(v − un+1))dΩ ≥ 0, ∀v ∈ Kβ (3.16)

ηF (un, Tun, v − un) + 〈wn − un, v − wn〉

+ η

∫
Ω
f0(u;β(v − wn))dΩ ≥ 0, ∀v ∈ Kβ, (3.17)

where ρ > 0 and η > 0 are constants. Algorithm 3.9 is called the

predictor-corrector method for solving the trifunction bihemivariational inequality

(2.1).

We now study the convergence analysis of Algorithm 3.9.
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Theorem 3.3. Let ū ∈ Kβ be a solution of (2.1) and un+1 be the approximate

solution obtained from Algorithm 3.9 . If F (., .) is partially relaxed strongly

monotone with a constant α > 0 and the operator
∫

Ω f
0(u;−, )dΩ is partially

relaxed strongly monotone with a constant γ > 0, then

‖un+1 − ū‖2 ≤ ‖wn − ū‖2 − (1− 2ρ(α+ γ))‖un+1 − wn‖2 (3.18)

‖wn − ū‖2 ≤ ‖un − ū‖2 − (1− 2β(α+ γ))‖wn − un‖2. (3.19)

Proof. Let ū ∈ Kβ be a solution of (2.1). Then

ρF (ū, T ū, β(v − ū) + ρ

∫
Ω
f0(ū;β(v − ū))dΩ ≥ 0, ∀v ∈ Kβ (3.20)

ηF (ū, T ū, β(v − ū) + η

∫
Ω
f0(ū;β(v − ū))dΩ ≥ 0, ∀v ∈ Kβ, (3.21)

where ρ > 0 and η > 0 are constants.

Now taking v = un+1 in (3.20) and v = ū in (3.16), we have

ρF (ū, T ū, un+1 − ū) + ρ

∫
Ω
f0(u;β(un+1 − u))dΩ ≥ 0 (3.22)

ρF (wn, Twn, ū− wn) + 〈un+1 − wn, ū− un+1〉

+ρ

∫
Ω
f0(u;β(ū− un+1))dΩ ≥ 0. (3.23)

Adding (3.22) and (3.23), we have

〈un+1 − wn, ū− un+1〉

≥ −ρ{F (wn, Twn, β(ū− wn)) + F (ū, T ū, β(un+1 − ū))}

−ρ{
∫

Ω
f0(u;β(un+1 − ū))dΩ +

∫
Ω
f0(u;β(ū− un+1))dΩ}

≥ −(α+ γ)ρ‖un+1 − wn‖2, (3.24)

where we have used the fact that F (., ., .) is relaxed strongly monotone with

constants α > 0.

Recall the following result,

2〈u, v〉 = ‖u+ v‖2 − ‖u‖2 − ‖v‖2, ∀a, b ∈ H, (3.25)
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Setting u = ū− un+1 and v = un+1 − wn in (3.25), (3.24) can be written as

‖un+1 − ū‖2 ≤ ‖ū− wn‖2 − (1− 2(α+ γ)ρ)‖un+1 − wn‖2,

the required (3.18).

Taking v = ū in (3.21) and v = wn in (3.17), we obtain

ηF (ū, T ū, β(wn − ū)) + η

∫
Ω
f0(u;β(wn − ū))dΩ ≥ 0 (3.26)

ηF (un, Tun, β(ū− un)) + 〈wn − un, ū− wn〉

+η

∫
Ω
f0(un;β(ū− wn))dΩ ≥ 0. (3.27)

Adding (3.26), (3.27) and rearranging the terms, we have

〈wn − un, ū− wn〉 ≥ −β(α+ γ)‖un − wn‖2, (3.28)

since F (., ., .) and
∫

Ω f
0(u;−))dΩ are partially relaxed strongly monotone with

constants α > 0 and γ > 0 respectively.

Now taking v = wn − un and u = ū− wn in (3.25), (3.28) can be written as

‖wn − ū‖2 ≤ ‖ū− un‖2 − (1− 2(α+ γ)β)‖wn − un‖2,

the required (3.19).

Theorem 3.4. Let H be a finite dimensional space and let 0 < ρ < 1/2(α+ γ),

0 < β < 1/2(α + γ). If ū ∈ Kβ is a solution of (1) and un+1 is an approximate

solution obtained from Algorithm 3.10, then

lim
n−→∞

(un) = ū.

Proof. Let ū ∈ Kβ be a solution of (2.1). Since 0 < ρ < 1/2(α + γ) and 0 <

β < 1/2(α + γ), it follows from (3.18)and (3.19) that the sequences {‖wn − ū‖}
and {‖ū− un‖} are nonincreasing and consequently {un} and {wn} are bounded.
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Furthermore, we have

∞∑
n=0

(1− 2(α+ γ)ρ)‖un+1 − wn‖2 ≤ ‖w0 − ū‖2

∞∑
n=0

(1− 2(α+ γ)β)‖wn − un‖2 ≤ ‖u0 − ū|2,

which implies that

lim
n−→∞

‖un+1 − wn‖ = 0 and lim
n−→∞

‖wn − un‖ = 0.

Thus

lim
n−→∞

‖un+1 − un‖ ≤ lim
n−→∞

‖un+1 − wn‖+ lim
n−→∞

‖wn − un‖ = 0. (3.29)

Let û be a cluster point of {un} and the subsequence {unj} of the sequence {un}
converge to û ∈ H. Replacing wn by unj in (3.15), (3.16) and taking the limit

nj −→∞ and using (3.29), we have

F (û, T û, v − û) +

∫
Ω
f0(û;β(v − û))dΩ ≥ 0, ∀v ∈ K,

which implies that û solves the trifunction bihemivariational inequality (2.1) and

‖un+1 − û‖2 ≤ ‖un − û‖2.

Thus, it follows from the above inequality that the sequence {un} has exactly one

cluster point û and

lim
n−→∞

(un) = û,

the required result.

In recent years, inertial proximal methods [1] have been suggested and

analyzed for maximal monotone operators associated with the discretizations

of the differential equations in times, whereas Noor [12] has used the auxiliary

principle technique to suggest an inertial method for variational inequalities,

the converges of which requires only pseudomonotonicity, which is a weaker
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condition than monotonicity. This clearly improves the convergence criteria of

the inertial proximal method. We again use the auxiliary principle to suggest and

analyze an inertial proximal method for solving the trifunction bihemivariational

inequality(2.1).

For a given u ∈ Kβ satisfying (2.1), consider the problem of finding w ∈ Kβ

such that

ρF (w, Tw, β(v − w)) + 〈w − u− α(u− u), v − w〉

+ρ

∫
Ω
f0(u;β(v − w))dΩ ≥ 0, ∀v ∈ Kβ, (3.30)

where ρ > 0 and α > 0 are constants.

It is clear that, if w = u, then u is a solution of (2.1). This fact

allows us to suggest and analyze an iterative method for solving the trifunction

bihemivariational inequality (2.1).

Algorithm 3.10. For a given u0 ∈ H, compute the approximate solution un+1

by the iterative scheme

ρF (un+1, Tun+1, β(v − un+1))

+〈un+1 − un − αn(un − un−1), v − un+1〉

+ρ

∫
Ω
f0(u;β(v − un+1))dΩ ≥ 0, ∀v ∈ Kβ. (3.31)

For αn = 0, Algorithm 3.11 reduces to :

Algorithm 3.11. For a given u0 ∈ H, compute the approximate solution un+1

by the iterative scheme

ρF (un+1, Tun+1, v − un+1) + 〈un+1 − un, v − un+1〉

+ρ

∫
Ω
f0(u;β(v − un+1))dΩ ≥ 0, ∀v ∈ Kβ,

which is known as the proximal method for solving trifunction bihemivariational

inequality (2.1).
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In a similar way for F (u, Tu, v − u) = 〈Au, v − u〉, one can obtain a

number of new and known proximal methods from Algorithm 3.11 for solving

bihemivariational inequalities (2.2) and its special cases. This shows that the

new methods suggested in this paper are unifying one and more general than the

previous ones.

For the convergence analysis of Algorithm 3.11, we need the following result.

Theorem 3.5. Let ū ∈ Kβ be a solution of (2.1) and let un+1 be the

approximate solution obtained from Algorithm 3.10. If the trifunction F (., ., .)

is pseudomonotone with respect to
∫

Ω f
0(.;−))dΩ and the operator

∫
Ω f

0(.; .))dΩ

is monotone, then

‖un+1 − ū‖2 ≤ ‖un − ū‖2 − ‖un+1 − un − αn(un − un−1)‖2

+αn{‖un − ū‖2 − ‖un−1 − ū‖2 + 2‖un − un−1‖2}. (3.32)

Proof. Let ū ∈ Kβ be a solution of (2.1). Then

−F (v, Tv, β(ū− v)) +

∫
Ω
f0(ū;β(v − ū)dΩ ≥ 0, ∀v ∈ Kβ, (3.33)

since F (., ., .) is pseudomonotone with respect to
∫

Ω f
0(.; .))dΩ.

Taking v = un+1 in (3.33), we have

F (un+1, Tun+1, β(ū− un+1)) +

∫
Ω
f0(ū;β(ū− un+1))dΩ ≥ 0. (3.34)

Now taking v = ū in (3.31), we obtain

ρF (un+1, Tun+1, ū− un+1) + 〈un+1 − un − αn(un − un−1), ū− un+1〉

+ ρ

∫
Ω
f0(un+1;β(ū− un+1))dΩ ≥ 0. (3.35)
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From (23), (24) and using the monotonicity of
∫

Ω f
0(.; .))dΩ we have

〈un+1 − un − αn(un − un−1), ū− un+1〉

≥ −ρF (un+1, Tun+1, ū− un+1)− ρJ0(un+1; û− un+1)

≥ −ρ
∫

Ω
f0(un+1;β(û− un+1))dΩ

+

∫
Ω
f0(û;β(un+1 − û))dΩ} ≥ 0, (3.36)

which implies that

〈un+1 − un, ū− un+1〉 ≥ αn〈un − un−1, ū− un + un − un+1〉. (3.37)

Using (3.25) and rearranging the terms in (3.37), one can easily obtain (3.32), the

required result.

Theorem 3.6. Let H be a finite dimensional space. Let un+1 be the approximate

solution obtained from Algorithm 3.9 and ū ∈ Kβ be a solution of (2.1). If there

exists α ∈ (0, 1) such that 0 ≤ αn ≤ α, ∀n ∈ N and
∑∞

n=1 αn‖un − un−1‖2 ≤
∞, then limn−→∞ un = ū.

Proof. Let û ∈ Kβ be a solution of (2.1). First we consider the case αn = 0. Using

the technique of Theorem 3.3, we can prove that limn−→∞ un = û.

Now we consider the case αn > 0. From (3.32), we have

∞∑
n+1

‖un+1 − un − αn(un − un−1)‖2

≤ ‖u0 − ū‖2 +
∞∑
n=1

{α‖un − ū‖2 + 2‖un − un−1‖2} ≤ ∞,

which implies that

lim
n−→∞

‖un+1 − un − αn(un − un−1)‖2 = 0.

Repeating the arguments as in Theorem 3.3, one can easily show that

limn→∞ un = û, the required result.
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Conclusion

In this paper, we have introduced and studied the trifunction bihemivariational

inequalities. Several special cases are discussed as applications of the trifunction

bihemivariational inequalities. The auxiliary principle technique is used to

suggest several implicit and explicit iterative methods for solving the trifunction

bihemivariational inequalities, Convergence criteria of the proposed methods is

discussed under suitable mild conditions. Results obtained in this paper continue

to hold for the special cases. Comparison of the proposed methods with other

methods need further efforts. The ideas and techniques of this paper stimulate

further research in these dynamic fields
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