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Abstract

In this paper, we introduce and clarify a new presentation between the

n-exact sequence and the n-injective module and n-projective module. Also,

we obtain some new results about them.

1 Introduction

Category theory formalizes mathematical structures and their concepts in terms

of a labeled directed graph called a category, whose nodes are called objects, and

their edges called arrows (or morphisms). This category has two basic properties:

the ability to compose the arrows associatively and the existence of an identity

arrow for each object. The language of category theory has been employed to

formalize concepts of other high-level abstractions such as sets, rings, and groups.

Several terms were utilized in category theory, including the âmorphismâ that is

used differently from their usage in the rest of mathematics. In category theory,

morphisms obey specific conditions of theory. Samuel Eilenberg and Saunders Mac

Lane introduced the concepts of categories, functors, and natural transformations
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in 1942-45 in their study of algebraic topology, to understand the processes that

preserve the mathematical structure. Category theory has practical applications

in programming language theory, for example, the usage of monads in functional

programming. It may also be used as an axiomatic foundation for mathematics, as

an alternative to set theory and other proposed foundations. In mathematics, an

abelian category is a category in which morphisms and objects can be added

and in which kernels and cokernels exist and have desirable properties. The

motivating prototype example of an abelian category is the category of abelian

groups, Ab. The theory originated to unify several cohomology theories by

Alexander Grothendieck and independently in the slightly earlier work of David

Buchsbaum. Abelian categories are very stable categories. For example, they

are regular and satisfy the snake lemma. The class of Abelian categories is

closed under several categorical constructions, for instance, the category of chain

complexes of an Abelian category, or the category of functors from a small category

to an Abelian category are Abelian as well. These stability properties make

them inevitable in homological algebra and beyond. This theory has significant

applications in algebraic geometry, cohomology, and pure category theory. The

Abelian categories are named after Niels Henrik Abel. An exact sequence is a

concept in mathematics, especially in group theory, ring, and module theory,

homological algebra, as well as in differential geometry. An exact sequence is a

sequence, either finite or infinite, of objects and morphisms between them such

that the image of one morphism equals the kernel of the next. Homological algebra

is the branch of mathematics that studies homology in a general algebraic setting.

It is a relatively young discipline, whose origins can be traced to investigations in

combinatorial topology (a precursor to algebraic topology) and abstract algebra

(theory of modules and syzygies) at the end of the 19th century, chiefly by Henri

Poincaré and David Hilbert. The development of homological algebra has closely

intertwined with the emergence of category theory. By and large, homological

algebra is the study of homological functors and the intricate algebraic structures

that they entail. One quite useful and ubiquitous concept in mathematics is

that of chain complexes, which can be studied both through their homology

and cohomology. Homological algebra affords the means to extract information
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contained in these complexes and present it in the form of homological invariants

of rings, modules, topological spaces, and other âtangibleâ mathematical objects.

A powerful tool for doing this is provided by spectral sequences. From its very

origins, homological algebra has played an enormous role in algebraic topology. Its

sphere of influence has gradually expanded and presently includes commutative

algebra, algebraic geometry, algebraic number theory, representation theory,

mathematical physics, operator algebras, complex analysis, and the theory of

partial differential equations. K-theory is an independent discipline that draws

upon methods of homological algebra, as does the noncommutative geometry of

Alain Connes. This paper is organized as follows.

In this paper, we show to prove the important theorems of n-injective modules

and n-projective modules. Finally, we recall the definition of n-projective module,

and we give an open problem about some theorems of n-projective modules.

2 Preliminaries

All rings R in this paper are assumed to have an identity element 1 (or unit)

(where r1 = r = 1r for all r ∈ R). We do not insist that 1 6= 0; however, should

1 = 0, then R is the zero ring having only one element.

In this section, we recall some of the fundamental concepts and definitions,

which are necessary for this paper. For details, we refer to [4,6,7,9,10,11].

Definition 2.1. An R-module M is injective provided that for every

R-monomorphism g : A −→ B between R-modules, any R-homomorphism

f : A −→ M can be extended to an R-homomorphism h : B −→ M such that

hg = f ; i.e., the following diagram commutes

0 A B

M

g

f
h

Definition 2.2. An R-module P is projective provided that for every

R-epimorphism g : A −→ B between R-modules and R-homomorphism f :
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P −→ B, there exists an R-homomorphism f : P −→ B, there exists an

R-homomorphism h : P −→ A such that gh = f ; i.e., the following diagram

commutes

P

A B 0

h
f

g

Definition 2.3. A left R-module F is a free left R-module if F is isomorphic to

a direct sum of copies of R; that is, there is a (possibly infinite) index set B with

F = ⊕b∈BRb, where Rb = 〈b〉 ∼= R for all b ∈ B. We call B a basis of F .

Definition 2.4. Let M be an R-module. An element m ∈M is divisible provided

that for any r ∈ R that is not a righ zero-divisor, there exists an x ∈M such that

m = rx. We also say that M is a divisible module module provided that every

element of M is divisible. Note that a divisible group is a divisible Z-module.

Definition 2.5. Let C be an additive category and f : A −→ B a morphism in

C. A weak cokernel of f is a morphism g : B −→ C such that for all C ′ ∈ C the

sequence of abelian groups

C(C,C ′) g∗−→ C(B,C ′) f∗−→ C(A,C ′)

Definition 2.6. A category C is abelian if

1. C has a zero object.

2. For every pair of objects there is a product and a sum.

3. C Every map has a kernel and cokernel.

4. C Every monomorphism is a kernel of a map.

5. C Every epimorphism is a cokernel of a map.
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Definition 2.7. A category C is additive if

1. Hom(A,B) is an (additive) abelian group for every A,B ∈ obj(C)

2. the distributive laws hold: given morphisms

X
a−→ A

f−→ B
b−→ Y

and

X
a−→ A

g−→ B
b−→ Y

where X and Y ∈ obj(C), then

b(f + g) = bf + bg

and a↔ [under]overb

(f + g)a = fa+ ga

3. C has a zero object.

4. C has finite product and finite coproduct.

Definition 2.8. An abelian group D is said to be divisible if given any y ∈ D
and 0 6= n ∈ Z, there exists x ∈ D such that nx = y.

Example 2.9.

1. Note that Q is a divisible Z-module since for every q ∈ Q, where q = a
b for

integers a, b ∈ Z with b 6= 0, and for every 0 6= z ∈ Z, there exists x ∈ Q
such that x = a

zb so that q = zx.

2. Note that Z is not a divisible Z-module since there is no x ∈ Z with 3 = 2x.

Definition 2.10. Let Mii∈Z be a family of R-modules, and let fii∈Z be a family

of R-homomorphisms such that Mi−1
fi−→Mi for every i ∈ Z. Then the sequence

...
f−1−→M−1

f0−→M0
f1−→M1

f2−→M2
f3−→ ... (2.1)
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is said to be exact provided that Im(fi− 1) = Ker(fi) for every i ∈ Z. Note that

0 −→ A
f−→ B

g−→ C −→ 0 (2.2)

is exact if and only if f is an R-monomorphism, g is an R-epimorphism, and

Im(f) = Ker(g)

This type of sequence is called short exact.

Definition 2.11. Let C be an additive category and f : A −→ B a morphism in

C. A weak cokernel of f is a morphism g : B −→ C such that for all C ′ ∈ C the

sequence of abelian groups

C(C,C ′) ĝ−→ C(B,C ′) f̂−→ C(A,C ′)

is exact. Equivalently, g is a weak cokernel of f if fg = 0 and for each morphism

h : B −→ C ′ such that fh = 0 there exists a (not necessarily unique) morphism

p : C −→ C ′ such that h = gp. These properties are subsumed in the following

commutative diagram:

A B C

C ′

f

0

g

∀h
∃p

Clearly, a weak cokernel g of f is a cokernel of f if and only if g is an epimorphism.

The concept of weak kernel is defined dually.

Definition 2.12. A morphism f : A −→ B in C is called X -monic if

C(B,X)
C(f,X)−→ C(A,X) −→ 0

is exact for any object X ∈ X . A morphism f : A −→ X in C is called a

left X -approximation of A if f is X -monic and X ∈ X . The subcategory X is

said to be a covariantly finite subcategory of C if any object A of C has a left

X -approximation. We can defined X -epic morphism, right X - approximation and

contravariantly finite subcategory dually. The subcategory X is called functorially

finite if it is both contravariantly finite and covariantly finite.
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Definition 2.13. Let C be an additive category and d0 : X0 −→ X1 a morphism

in C. An n-coker of d0 is a sequence

(d1, ..., dn) : X1 d1−→ X2 d2−→ ...
dn−→ Xn+1

such that, for all Y ∈ C the induced sequence of abelian groups

0 −→ C(Xn+1, Y )
d̂n−→ C(Xn, Y )

d̂n−1

−→ ...
d̂1−→ C(X1, Y )

d̂0−→ C(X0, Y )

is exact. Equivalently, the sequence (d1, ..., dn) is an n-coker of d0 if, for all

1 ≤ k ≤ n− 1 the morphism dk is a weak cokernel of dk−1, and dn is moreover a

cokernel of dn−1. In this case, we say the sequence

X0 d0−→ X1 d1−→ X2 d2−→ ...
dn−→ Xn+1

is right n-exact.

Remark 2.14. When we say n-cokernel we always means that n is a positive

integer. We note that the notion of 1-cokernel is the same as cokernel. we can

define n- kernel and left n-exact sequence dually.

Definition 2.15. Let C be an additive category. An n-exact sequence in C is a

complex

X0 d0−→ X1 d1−→ ...
dn−1

−→ Xn dn−→ Xn+1 (2.3)

in Chn(C) such that (d0, ..., dn−1) is an n-ker of dn, and (d1, ..., dn) is an n-coker of

d0. The sequence (3.1) is called n-exact if it is both right n-exact and left n-exact.

Theorem 2.16. Let A,B, {Bi|i ∈ I}, {Aj |j ∈ J, Jisfinite} be modules over a

ring R . Then there is isomorphisms of abelian groups:

1. HomR(A,
∏
i∈I Bi)

∼=
∏
i∈I HomR(A,Bi).

2. HomR(⊕j∈JAj , B) ∼= ⊕j∈JHomR(Aj , B).

Theorem 2.17. Let A,B, {Bi|i ∈ I} be modules over a ring R. Then if I is finite

there is isomorphisms of abelian groups: HomR(A,⊕i∈IBi) ∼= ⊕i∈IHomR(A,Bi).
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Proposition 2.18. A direct product of R-modules
∏
i∈I Ji is injective if only if

Ji is injective for every i ∈ I.

Corollary 2.19. Let R be an integral domain and let K the field of fractions of

R. Then K is an injective R-module.

Corollary 2.20. Let {Mλ}λ∈Λ be a family of R-modules. If Λ is finite and Mλ

is injective for every λ ∈ Λ, then ⊕λ∈ΛMλ is also injective.

Theorem 2.21. Let M be an R-module. Then M is injective if and only if for

every short exact sequence 0 −→ A
θ−→ B

ψ−→ C −→ 0 of R-modules,

0 −→ HomR(C,M)
Ψ−→ HomR(B,M)

Θ−→ HomR(A,M) −→ 0

is also a short exact sequence, where Ψ(f) = fψ and Θ(f) = fθ.

Proposition 2.22. Let R be a ring. A direct sum of R-modules
∑

i∈I Pi is

projective if only if each Pi is projective.

Proposition 2.23. Every free left R-module is projective.

Theorem 2.24. A left R-module P is projective if and only if P is a direct

summand of a free left R-module.

Corollary 2.25.

1. Every direct summand of a projective module is itself projective.

2. Every direct sum of projective modules is projective.

Lemma 2.26. Let R be a ring with identity. A unitary R-module J is injective

if and only if for every left ideal L of R, any R-module homomorphism L −→ J

may be extended to an R-module homomorphism R −→ J :

Example 2.27.

1. Q is an injective Z-module by Lemma (2.26) since for every

Z-homomorphism f : nZ −→ Q, where nZ is an ideal of Z for 0 6= n ∈ Z,

there exists a Z-homomorphism g : Z −→ Q defined by g(z) = zf(n)
n , so

g(nz) = (nz)f(n)
n = zf(n) = f(nz) for every nz ∈ Z.
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2. Note that Z is not an injective Z-module since using the Z-homomorphism

f : 2Z −→ Z given by f(2z) = z, there is no Z-homomorphism g : Z −→ Z

such that g(2z) = f(2z) for every 2z ∈ 2Z. Otherwise, 1 = f(2) = g(2) =

2g(1), implying that g(1) = 1
2 . However, since g(1) ∈ Z, this is impossible.

3 n-injective Module

Definition 3.1. Let C be an category of R-modules, Xi ∈ obj(C) for all 0 ≤ i ≤ n,

and di for all 0 ≤ i ≤ n− 1 is a morphism in C. An R-module M is n-injective if

the sequence of R-module in C is left n-exact

X0 d0−→ X1 d1−→ X2 d2−→ ...
dn−1

−→ Xn dn−→ Xn+1

if there is M ∈ C the induced sequence of abelian groups

0 −→ HomC(X
n+1,M)

d̂n−→ HomC(X
n,M)

ˆdn−1

−→

...
d̂1−→ HomC(X

1,M)
d̂0−→ HomC(X

0,M)

is right n-exact.

Proposition 3.2. Let C be an category of R-modules, Xi ∈ obj(C) for all 0 ≤ i ≤
n, and di for all 0 ≤ i ≤ n− 1 is a morphism in C. A direct product of R-modules∏
i∈I Ji is n-injective if only if Ji is n-injective for every i ∈ I.

Proof. Let C be an category of R-modules, Xi ∈ obj(C) for all 0 ≤ i ≤ n, and di

for all 0 ≤ i ≤ n− 1 is a morphism in C. The sequence of R-module in C

X0 d0−→ X1 d1−→ X2 d2−→ ...
dn−1

−→ Xn dn−→ Xn+1

is left n-exact.

Suppose that
∏
i∈I Ji is n-injective. To show that, Ji is n-injective for each

i ∈ I. Now if there is
∏
i∈I Ji the induced sequence of abelian groups this sequence

is

0 −→ HomC(X
n+1,

∏
i∈I

Ji)
d̂n−→ HomC(X

n,
∏
i∈I

Ji)
ˆdn−1

−→ HomC(X
n−1,

∏
i∈I

Ji)
ˆdn−2

−→
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...
d̂2−→ HomC(X

2,
∏
i∈I

Ji)
d̂1−→ HomC(X

1,
∏
i∈I

Ji)
d̂0−→ HomC(X

0,
∏
i∈I

Ji)

is right n-exact. By Theorem 2.16, (1),

HomC(X
i,
∏
i∈I

Ji) ∼=
∏
i∈I

HomR(Xi, Ji)

for each i ∈ I. Then this sequence

0 −→
∏
i∈I

HomC(X
n+1, Ji)

d̂n−→
∏
i∈I

HomC(X
n, Ji)

ˆdn−1

−→
∏
i∈I

HomC(X
n−1, Ji)

ˆdn−2

−→

...
d̂1−→

∏
i∈I

HomC(X
1, Ji)

d̂2−→
∏
i∈I

HomC(X
2, Ji)

d̂0−→
∏
i∈I

HomC(X
0, Ji)

is right n-exact. Then Ji is n-injective for each i ∈ I.
Conversely, suppose that Ji is n-injective. To show that,

∏
i∈I Ji is n-injective

for each i ∈ I. Now if there is Ji the induced sequence of abelian groups this

sequence is

0 −→
∏
i∈I

HomC(X
n+1, Ji)

d̂n−→
∏
i∈I

HomC(X
n, Ji)

ˆdn−1

−→
∏
i∈I

HomC(X
n−1, Ji)

ˆdn−2

−→

...
d̂1−→

∏
i∈I

HomC(X
1, Ji)

d̂2−→
∏
i∈I

HomC(X
2, Ji)

d̂0−→
∏
i∈I

HomC(X
0, Ji)

is right n-exact. By Theorem 2.16, (1). Then this sequence

0 −→ HomC(X
n+1,

∏
i∈I

Ji)
d̂n−→ HomC(X

n,
∏
i∈I

Ji)
ˆdn−1

−→ HomC(X
n−1,

∏
i∈I

Ji)
ˆdn−2

−→

...
d̂2−→ HomC(X

2,
∏
i∈I

Ji)
d̂1−→ HomC(X

1,
∏
i∈I

Ji)
d̂0−→ HomC(X

0,
∏
i∈I

Ji)

is right n-exact. Then
∏
i∈I Ji is also n-injective.

Corollary 3.3. Let C be an category of R-modules, Xi ∈ obj(C) for all 0 ≤ i ≤ n,

and di for all 0 ≤ i ≤ n− 1 is a morphism in C. Let R be an integral domain and

let K the field of fractions of R. Then K is an n-injective R-module.
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Proof. By Corollary 2.19, k is injective R-module. Let C be an category of

R-modules, Xi ∈ obj(C) for all 0 ≤ i ≤ n, and di for all 0 ≤ i ≤ n − 1 is a

morphism in C. The sequence of R-module in C

X0 d0−→ X1 d1−→ X2 d2−→ ...
dn−1

−→ Xn dn−→ Xn+1

is left n-exact. By Theorem 2.21

0 −→ HomC(X
n+1,K)

d̂n−→ HomC(X
n,M)

ˆdn−1

−→

...
d̂1−→ HomC(X

1,K)
d̂0−→ HomC(X

0,K)

is right n-exact. Then K is n-injective module.

Corollary 3.4. Let {Mλ}λ∈Λ be a family of R-modules. If Λ is finite and Mλ is

n-injective for every λ ∈ Λ, then ⊕λ∈ΛMλ is also n-injective.

Proof. Let C be an category of R-modules, Xi ∈ obj(C) for all 0 ≤ i ≤ n, and di

for all 0 ≤ i ≤ n− 1 is a morphism in C. The sequence of R-module in C

X0 d0−→ X1 d1−→ X2 d2−→ ...
dn−1

−→ Xn dn−→ Xn+1

is left n-exact.

Suppose that Mλ is n-injective. To show that, ⊕λ∈ΛMλ is n-injective for each

λ ∈ Λ. Now if there is Mλ the induced sequence of abelian groups this sequence

is

0 −→ ⊕λ∈ΛHomC(X
n+1,Mλ)

d̂n−→ ⊕λ∈ΛHomC(X
n,Mλ)

ˆdn−1

−→

⊕λ∈ΛHomC(X
n−1,Mλ)

ˆdn−2

−→ ...
d̂2−→ ⊕λ∈ΛHomC(X

2,Mλ)

d̂1−→ ⊕λ∈ΛHomC(X
1,Mλ)

d̂0−→ ⊕λ∈ΛHomC(X
0,Mλ)

is right n-exact. If Λ is finite by Theorem 2.17,

HomC(X
i,⊕λ∈ΛMλ) ∼= ⊕λ∈ΛHomR(Xi,Mλ)
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for every λ ∈ Λ, Then this sequence

0 −→ HomC(X
n+1,⊕λ∈ΛMλ)

d̂n−→ HomC(X
n,⊕λ∈ΛMλ)

ˆdn−1

−→ HomC(X
n−1,⊕λ∈ΛMλ)

ˆdn−2

−→ ...
d̂2−→ HomC(X

2,⊕λ∈ΛMλ)

d̂1−→ HomC(X
1,⊕λ∈ΛMλ)

d̂0−→ HomC(X
0,⊕λ∈ΛMλ)

is right n-exact. Then ⊕λ∈ΛMλ is also n-injective.

Proposition 3.5. Every R-module injective is not n-injective.

Proof. Let {Mλ}λ∈Λ be a family of R-modules. If ⊕λ∈ΛMλ is injective, then Mλ

is injective for every λ ∈ Λ but ⊕λ∈ΛMλ is not n-injective for every λ ∈ Λ and

then, Mλ is n-injective for every λ ∈ Λ.

Definition 3.6. Let C be an category of R-modules, Y i ∈ obj(C) for all 0 ≤ i ≤
n+1, and f i for all 0 ≤ i ≤ n is a morphism in C. An R-module P is n-projective

if the sequence of R-module in C is rightt n-exact

Y 0 f0−→ Y 1 f1−→ Y 2 f2−→ ...
fn−1

−→ Y n fn−→ Y n+1

if there is P ∈ C the induced sequence of abelian groups

HomC(P, Y
0)

f̂0−→ HomC(P, Y
1)

f̂1−→ HomC(P, Y
2)

f̂2−→

...
ˆfn−2

−→ HomC(P, Y
n−1)

ˆfn−1

−→ HomC(P, Y
n)

f̂n−→ HomC(P, Y
n+1) −→ 0

is left n-exact.

Proposition 3.7. Let C be an category of R-modules, Y i ∈ obj(C) for all 0 ≤ i ≤
n + 1, and f i for all 0 ≤ i ≤ n is a morphism in C. A direct sum of R-modules

⊕i∈IPi is n-projective if only if Pi is n-projective for every i ∈ I and I is finite.

Proof. Let C be an category of R-modules, Y i ∈ obj(C) for all 0 ≤ i ≤ n+ 1, and

f i for all 0 ≤ i ≤ n− 1 is a morphism in C. The sequence of R-module in C

Y 0 f0−→ Y 1 f1−→ Y 2 f2−→ ...
fn−1

−→ Y n fn−→ Y n+1
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is right n-exact.

Suppose that ⊕i∈IPi is n-projective. To show that, Pi is n-projective for each

i ∈ I. Now if there is ⊕i∈IPi the induced sequence of abelian groups this sequence

is

HomC(⊕i∈IPi, Y 0)
f̂0−→ HomC(⊕i∈IPi, Y 1)

f̂1−→ HomC(⊕i∈IPi, Y 2)
f̂2−→

...
ˆfn−1

−→ HomC(⊕i∈IPi, Y n)
f̂n−→ HomC(⊕i∈IPi, Y n+1) −→ 0

is left n-exact. If I is finite by Theorem 2.16, (2)

HomC(⊕i∈IPi, Y j) ∼= ⊕i∈IHomC(Pi, Y j)

for every i ∈ I, Then this sequence

⊕i∈IHomC(Pi, Y 0)
f̂0−→ ⊕i∈IHomC(Pi, Y 1)

f̂1−→ HomC(Pi, Y
2)

f̂2−→

...
ˆfn−1

−→ ⊕i∈IHomC(Pi, Y n)
f̂n−→ ⊕i∈IHomC(Pi, Y n+1) −→ 0

is left n-exact. Then Pi is n-projective for each i ∈ I.
Conversely, suppose that Pi is n-projective. To show that, ⊕i∈IPi is

n-projective for every i ∈ I and I is finite. Now if there is Pi the induced sequence

of abelian groups this sequence is

⊕i∈IHomC(Pi, Y 0)
f̂0−→ ⊕i∈IHomC(Pi, Y 1)

f̂1−→ HomC(Pi, Y
2)

f̂2−→

...
ˆfn−1

−→ ⊕i∈IHomC(Pi, Y n)
f̂n−→ ⊕i∈IHomC(Pi, Y n+1) −→ 0

is left n-exact. If I is finite by Theorem 2.16, (2)

HomC(⊕i∈IPi, Y j) ∼= ⊕i∈IHomC(Pi, Y j)

for every i ∈ I. Then this sequence

HomC(⊕i∈IPi, Y 0)
f̂0−→ HomC(⊕i∈IPi, Y 1)

f̂1−→ HomC(⊕i∈IPi, Y 2)
f̂2−→

...
ˆfn−1

−→ HomC(⊕i∈IPi, Y n)
f̂n−→ HomC(⊕i∈IPi, Y n+1) −→ 0

is left n-exact. Then ⊕i∈IPi is also n-projective.
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4 One Open Problem

Using the following definitions, can we prove the following theorems about

n-projective module and free R-module.

Proposition 4.1. Every free left R-module is n-projective.

Proposition 4.2.

1. Every finite direct summand of a n-projective module is itself n-projective.

2. Every finite direct sum of n-projective modules is n-projective.

Definition 4.3. Let n be a positive integer. An n-abelian category is an additive

category C which satisfies the following axioms;

(A0) The category C is idempotent complete.

(A1) Every morphism in C has n-ker and n-coker.

(A2) for every monomorphism f0 : X0 −→ X1 in C and, for every n-coker

(f0, f1, ..., fn−1) of f0, the following sequence n-exact:

X0 f0−→ X1 f1−→ ...
fn−1

−→ Xn fn−→ Xn+1.

(A2op) for every epimorphism gn : Xn −→ Xn+1 in C and, for every n-ker

(g0, g1, ..., gn−1) of gn, the following sequence n-exact:

X0 g0−→ X1 g1−→ ...
gn−1

−→ Xn gn−→ Xn+1.

Now one can investigate a divisible modules in n-additive abelian category.

Next one can obtain all of the result of them as we obtained in this paper, and it

is an open problem.
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