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Abstract 

The application of copula has become popular in recent years. The use of correlation as a 

dependence measure has several pitfalls and hence the application of regression 

prediction model using this correlation may not be an appropriate method. In financial 

markets, there is often a non-linear dependence between returns. Thus, alternative 

methods for capturing co-dependency should be considered, such as copula based ones. 

This paper studies the dependence structure between the four largest African stock 

markets in terms of market capitalization and other developed stock markets over the 

period 2003 to 2018 using copula models. The value at risk was used to determine the 

risk associated with the stock. The ten copula models were fitted to the log returns 

calculated from the data, two countries at a time of the twenty-eight pairs and examined. 

The Gumbel copula gives the best fit in terms of log-likelihood values, value of the 

Akaike information criterion, value of the Bayesian information criterion, value of the 

consistent Akaike information criterion, value of the corrected Akaike information 

criterion, value of the Hannan Quinn criterion and p-value of the information matrix 

equality of White. Estimates of value at risk with probability p for daily returns were 

computed using the best fitted copula model, from these value at risk, it is seen that 

SA/FTSE100 have the least risk while EGY/KEN has the highest risk. Prediction is given 

in terms of correlation and value at risk.  
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1. Introduction 

The formation of regional bodies like African Union (AU), Economic Community of 

West African States (ECOWAS) does not only have political implications to the countries 

in question, but economic ones as well. Trade amongst the various countries in the region 

can lead to mutual benefits or losses. It is imperative to assess the extent to which 

dependence amongst these countries influence their economies. According to Bekaert and 

Harvey [6], though the joint distribution of multivariate variables are usually assumed to 

follow the normal distribution, economic variable like the stock market index do not 

follow the normal distribution since they tend to be skewed, peaked and have extreme 

values. 

Research in emerging stock markets has suggested a number of empirical 

characteristics that international investors should be aware of. In particular, there is a 

growing body of evidence that emerging market securities (such as African stock markets) 

tend to offer larger returns with higher volatility compared to developed stock markets 

(e.g. Harvey [29], Bekaert et al. [8], Bekaert and Harvey [7]). In addition, they show 

greater evidence of predictability (e.g. Harvey [29], Claessens and Gooptu [14]) and lower 

correlation with developed stock market securities implying significant risk diversification 

opportunities for international portfolios (e.g. Bailey and Stulz [5], Divecha et al. [19], 

Harvey [29] and Errunza and Hogan [21]). Although it is also argued that the behavior of 

emerging markets is affected to a greater extent by local political, economic and social 

events rather than global events (e.g. Aggarwal et al. [1], Bekaert and Harvey [7] and 

Susmel and Thompson [45]), more recent evidence has suggested that the diversification 

benefits of these markets have started to diminish because of changes in investment 

barriers for international investors (Errunza et al. [22], Bekaert and Harvey [7]). 

Melo Mendes [46] studied emerging stock markets of Brazil and Argentina using time 

varying copula models. They concluded that Student’s t copula gives the best fit. 

Ausin and Lopes [4] modeled the dependence between Dow Jones Industrial Average 

and DAX indices using a number of copula class of models. They observed that these 

stock indices are perfectly described by copula models. 

Nelsen [39] explains copula as a function which joins or copules a multivariate 

distribution function to its one-dimensional marginal distribution function. Indeed, copulas 

have been described as the “fundamental building blocks for studying multivariate 

distribution”. 
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Frees and Valdez [25] in their work, noted that the main attraction of a copula 

approach is that it enables us model the dependence structure of a multivariate distribution 

separately from the marginal distribution functions of the individual random variables. 

This ability to separate the dependence structure from the marginals makes copula much 

greater modeling flexible tool than is possible with traditional approaches to multivariate 

problems. 

Soytas and Sari [44] analyzed the relationship between energy consumption in 

industrial and manufacturing sector using multivariate model by incorporating capital and 

labour in production function. Their results indicated co-integration between the variables 

for long run relationship. The results of vector error correction (VECM) model reveal that 

there is unidirectional causality running from energy consumption to manufacturing GDP. 

Chukwudum [13] analyzed a homogenous portfolio consisting of the aggregate 

bivariate losses from the Nigerian insurance using the Generalized Pareto distribution 

(GPD) and the copula technique. It was observed that the correlation coefficient vary and 

is generally weak. With the aid of the Archimedean copula, the analysis makes use of the 

data pair exhibiting the highest correlation to draw particular attention to the importance of 

taken into account the extremely dependence structure when quantifying the risk capital, 

allocating risk and when estimating the net reinsurance premium under different 

reinsurance strategies. 

Chang [11] simultaneously investigate the dynamic process of crude oil spot and 

futures returns and the time-varying and asymmetric dependence between spot and futures 

returns. Using the Gumbel and Clayton copulas, the time-varying and asymmetric 

dependence was captured. It was found that jumping behavior is an important process for 

each market. Spot and futures returns do not have the same jump process and the tail 

dependence between spot and futures markets is time-varying and asymmetric with the 

magnitude of upper tail dependence being slightly weaker than that of lower tail 

dependence. 

Chen et al. [12] studied the dependence structure (copula) of multivariate financial 

time series of U.S. equity returns and exchange rates, considering collections of up to 30 

assets simultaneously using Student’s t copula and normal copula. Mixed evidence was 

found against the more flexible Student’s t copula; it appears adequate for even large 

collections of equity returns, but is still rejected for most exchange rate returns though it 

does provide a better fit than the normal copula. 
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Zeevi and Mashal [37] investigated the potential for extreme co-movements between 

financial assets and its dependence structure. Using likelihood ratio-based method, the 

Student’s t and Guassian copula they show that the presence of extreme co-movements is 

statistically significant in three asset markets (equities, currencies and commodities), as 

well as across international (G5) equity markets. The t-dependence structure is well suited 

for this objective in so far as it provides a natural ‘’first step’’ generalization of the 

correlation-based Guassian dependence structure. 

Patton [40] studied the time varying conditional joint distribution of the daily 

Deutsche mark-U.S. dollar and Yen-U.S. dollar exchange rates, over the period from 

January 1991 to December 2001 using standard AR-TGARCH models. These were 

employed for the marginal distributions of each exchange rate, and two different copulas 

were estimated: the bivariate normal distribution, and the ‘symmetrised Joe-Clayton’ 

copula. Dependence was greater during appreciations of the U.S. dollar than during 

depreciations of the U.S. dollar. 

Sadegh et al. [41] presented the Multivariate Copula Analysis Toolbox (MvCAT) 

which comprises different copula to model parameter uncertainty of assessment using 

joint precipitation-soil moisture anomalies in Del Norte county, California and flood peak 

and volume frequency analysis in the Saguenay River in Quebec, Canada. It shows that 

length of record significantly affects the uncertainty of results; MvCAT offers uncertainty 

bounds for the copula probability isolines. This information is particularly useful in 

multivariate frequency analysis studies. 

Fontaine et al. [24] analysed the censored cost-effectiveness using a copula-based 

modeling of the joint density and an estimation method of the costs, and quality adjusted 

life years (QALY) in a cost-effectiveness analysis in case of censoring. They concluded 

that for the cost-effectiveness such technique without any linearity assumption is a 

progress since it does not need the specification of a global linear regression model. 

Hence, the estimation of the marginal distributions for each therapeutic arm, the 

concordance measures between these populations and the right copulas families is now 

sufficient to process the whole Cost Effectiveness Analysis. 

Kumar and Shoukri [34] studied the application to an aortic regurgitation using copula 

based prediction models. They showed that copula-based prediction modeling is 

demonstrated to be an appropriate alternative to the conventional correlation-based 

prediction modeling since the correlation-based prediction models are not appropriate to 

model the dependence in populations with asymmetrical tails. They validated their 

proposed copula-based prediction model using the independent bootstrap samples. 
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Lien et al. [35] carried out a study investigating the co-movement and tail dependence 

between Chinese Yuan and New Taiwan Dollar non-delivery forward (NDF) rates against 

the U.S. dollar. The copula modeling approach to capture dynamics of correction and tail 

dependence between two NDF rates was used. It is shown that the interdependence 

between two NDF rates strengthens as time elapses. In particular, the degree of correlation 

surges sharply after April 9, 2008 while the degree of tail dependence increases 

significantly after February 10, 2009. Each time point of change is shown to be close to 

economic and political events that are supposed to have large impact on the relationship 

between Chinese Yuan and New Taiwan dollar. 

Diawara [18] carried out a study using copula densities to model class conditional 

distribution of pattern recognition with bayes decision rule. This was because these types 

of densities are useful when the marginal densities of a pattern vector are not normally 

distributed. Those models are also useful for a mixed pattern vectors. A simulation to 

compare the performance of the copula based classifier with classical normal distribution 

based model and the independent assumption based model was also carried out. 

Hu [30] studied dependence structures in Chinese and U.S. Financial Markets with 

other developed markets (Germany, France, Britain, and Japan) using time varying 

conditional copula (Normal and Joe Clayton copulas). The study was shown that Chinese 

is least affected by co-movement in the markets while western markets experience 

downturns during the ongoing global financial crisis. He suggested investors to increase 

weights on financial assets from Chinese financial markets in their portfolio for 

diversification purpose. 

2. Methodology 

2.1. Source of data 

The data used for this thesis are secondary data. The data are daily stock indices from 

the 29th April 2003 to the 5th of February 2018 of four African countries and four 

developed countries: Nigeria (NSE), Kenya (NSE20), Egypt (EGX30), South Africa 

(JSE40), UK (FTSE), US (SP500), Germany (DAX) and Canada (CAC40). The data 

were obtained from the database DataStream. Following the tradition, logarithmic returns 

were calculated as  

,
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where ,i tR  is the return on the index i  for period ,, i tt P  is the closing price of the index at 

the end of period t  and , 1i tP −  is the price of the index at the end of the period 1.t −   

2.2. Copula 

A p -dimensional copula is a function : [0,1] [0,1]p
C →  that satisfies  

  (i) ( )1 1 1, ..., , 0, , ..., 0i i pC u u u u− + =  for all 1 ;i p≤ ≤  

 (ii) ( )1, ...,1, ,1, ...,1C u u=  for u in each of the p arguments;  

(iii) for , 1, ..., ,i ia b i p≤ =  

( ) ( )
2 2

1
1, 1 ,

1 1 1

1 , ..., 0,i ip
i p ip

i ip

C u u
+ +

= =
− ≥  ⋯

⋯  

where ,1j ju a=  and ,2j ju b=  for 1, ..., .j p=  

A copula can be used to specify a multivariate distribution and every multivariate 

distribution gives a copula. If , 1,...,iF i p=  are one-dimensional cumulative distribution 

functions, then 

( ) ( )1 1 1, ..., ( ), ..., ( )p p pF x x C F x F x=  

is a p-dimensional cumulative distribution function. If F is a p-dimensional cumulative 

distribution function then 

( ) ( )1 1
1 1 1, ..., ( ), ...., ( )p p pC u u F F u F u− −=  

is a p-dimensional copula, where 10 1,u≤ ≤
 

1, ...,i p=  and 

( ) ( , ...., , , , ..., ),iF x F x= ∞ ∞ ∞ ∞
 

1, ...,i p=  with x being the ith argument. If  

( )1 1, ..., ... .p pC u u u u=  

Then the distribution is said to exhibit independence. If  
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( ) ( )1 1, ..., min , ..., .p pC u u u u=  

Then the distribution is said to exhibit complete dependence. 

Restricting attention to the bivariate case for the sake of simplicity, the copula 

approach to dependence modeling is rooted in a representation theorem due to Sklar [43] 

as earlier mentioned. The Sklar theorem states that the joint cumulative distribution 

function (cdf) ( , )H x y  of any pair ( ),X Y  of continuous random variables may be 

written in the form 

( , ) { ( ), ( )}, ,H x y C F x G y x y R= ∈                     (2) 

where ( )F x  and ( )G y =  marginal distributions; 2: [0,1] [0,1]C → = copula. While 

Sklar [43] showed that C, F and G are uniquely determined when H is known, a valid 

model for ( ),X Y  arises from equation 1 whenever the three are chosen from given 

parametric families of distribution, viz.: 

( ),F Fδ∈
 

( ),G Gη∈
 

( ).C Cθ∈  

Thus, for example, F might be normal with (bivariate) parameter 2( , );δ = µ σ  G might 

be gamma with parameter ( , );η = α λ  and C might be taking from the Farlie-Gumbel-

Morgenstern family of copulas, defined [ 1,1]θ ∈ −  by 

( , ) (1 )(1 ), , [0,1].C u v uv uv u v u vθ = + θ − − ∈              (3) 

2.3. Copula model specifications 

Let U and V be uniform [0, 1] random variables. A copula denoted by say ( ),C u v  is 

a joint cumulative distribution function of U and V. A copula density denoted by say 

( ),c u v  is the joint probability density function of U and V. Ten different models for 

copula were considered: 

2.3.1. The Guassian copula 

The Guassian copula defined by 

1 1( , ) ( ( ), ( )),pC u v u v
− −= Φ Φ Φ  

where Φ  denotes the cumulative distribution function of a standard normal random 
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variable and pΦ  denotes the joint cumulative distribution function of a bivariate normal 

random vector with zero means, unit variances and correlation .ρ  The corresponding 

copula density is 

( ) ( )1 1

2

( ) ( )
( , )

2 1

u v
c u v

− −φ Φ φ Φ
=

π − ρ  

1 2 1 2 1 1

2

[ ( )] [ ( )] 2 ( ) ( )
exp ,

2(1 )

u v u u
− − − − Φ + Φ − ρΦ Φ ⋅ − 

− ρ  
 

where φ  denotes the probability density function of a standard normal random variable. 

Independence of U and V corresponds to 0.ρ =  Complete dependence of U and V 

corresponds to 1.ρ =  

2.3.2. The t copula 

The t copula defined by 

1 1
,( , ) ( ( ), ( )),v v vC u v u v

− −
ρ= Τ Τ Τ  

where vΤ  denotes the cumulative distribution function of a Student’s t random variable 

with degrees of freedom ν  and ,p vΤ  denotes the joint cumulative distribution function 

of a bivariate t random vector with zero means, correlation ρ  and degrees of freedom .ν  

The corresponding copula density is 

1 1

2

( ( )) ( ( ))
( , )

2 1

t u t v
c u v

− −
ν ν ν νΤ Τ

=
π − ρ  

( 1)/21 2 1 2 1 1

2

[ ( )] [ ( )] 2 ( ) ( )
1 ,

(1 )

u v p u u
− ν+− − − −

ν ν ν ν Τ + Τ − Τ Τ ⋅ + 
ν − ρ  

 

where tν  denotes the probability density function of a Student’s t random variable with 

ν  degrees of freedom. 

2.3.3. The Ali-Mikhail-Haq copula 

The Ali-Mikhail-Haq copula due to Ali et al. [3] defined by 
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11 1
( , ) (1 ) .C u v

u v

−− α − α   = − α + α + α − α      
 

For 1 1,− ≤ α ≤  the corresponding copula density is 

2 2 2 2

3

1 2
( , ) .

(1 )

uv uv u u v v
c u v

u v uv

− θ + θ + θ − θ + θ + θ − θ + θ=
− θ + θ + θ − θ

 

Independence of U and V corresponds to 0.α =  

2.3.4. The Clayton copula 

The Clayton copula due to Clayton [15] defined by 

1/
( , ) 1 .C u v u v

− α−α −α = + −   

For ,−∞ < α < ∞  the corresponding copula density is 

1/ 21( , ) (1 )( ) 1 .c u v uv u v
− α−−α− −α −α = + α + −   

Independence of U and V corresponds to 0.α =  Complete dependence of U and V 

correspond to .α = ∞  

2.3.5. The Farlie-Gumbel-Morgenstern copula 

The Farlie-Gumbel-Morgenstern copula (Morgenstern [38]) defined by 

[ ]( , ) 1 (1 )(1 ) .C u v uv u v= + θ − −  

For 1 1,− ≤ θ ≤  the corresponding copula density is 

( , ) 1 (1 2 2 4 ).c u v u v uv= + θ − − +  

Independence of U and V corresponds to 0.θ =  

2.3.6. The Cuadras-Augé copula 

The Cuadras-Augé copula due to Cuadras and Augé [16] defined by 

[ ] 1( , ) min( , ) ( ) .C u v u v uv
θ −θ=  

For 0 1,≤ θ ≤  the corresponding copula density is 
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( )
( )
( )
1 , ,

,
1 , .

v u v
c u v

u u v

−θ

−θ

 − θ ≤= 
− θ >

 

Independence of U and V corresponds to 0.θ =  Complete dependence of U and V 

corresponds to 1.θ =  

2.3.7. The Marshall-Olkin copula 

The Marshall-Olkin copula due to Marshall and Olkin [36] defined by 

( )
1

1

, if ,
,

, if .

u v u v
C u v

uv u v

−α α β

−β α β

 ≥= 
<

 

For 0 , 1,≤ α β ≤  the corresponding copula density is   

( )
( )
( )
1 , if ,

,
1 , if .

u u v
c u v

v u v

−α α β

−β α β

 − α ≥= 
− β <

  

Independence of U and V corresponds to 0.α = β =  Complete dependence of U and V 

corresponds to 1.α = β =  The Cuadras-Augé copula is the particular case of this copula 

for .α = β  

2.3.8. The Cubic copula 

The Cubic copula due to Durrleman et al. [20] defined by 

( , ) [1 ( 1)( 1)(2 1)(2 1)].C u v uv u v u v= + θ − − − −  

For 1 2,− ≤ θ ≤  the corresponding copula density is 

2 2( , ) 1 6 ( ) 6 ( ) 36 ( ) 36 (1 ).c u v u v u v uv u v uv uv= + θ − θ + + θ + − θ + + θ +  

Independence of U and V corresponds to 0.θ =  

2.3.9. The Gumbel copula 

The Gumbel copula due to Gumbel [27] defined by 

( , ) 1 (1 )(1 )exp[ ln(1 ) ln(1 )]C u v u v u v u v= + − + − − −θ − −  

For 0 1,≤ θ ≤  the corresponding copula density is 
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2( , ) [1 ln(1 ) ln(1 ) ln(1 ) ln(1 )]c u v u v u v= − θ − θ − − θ − + θ − −

}{.exp ln(1 ) ln (1 ) .u v− − −θ
 

Independence of U and V corresponds to 0.θ =  

2.3.10. The Joe copula 

The Joe copula due to Joe [33] defined by 

1/
( , ) 1 (1 ) (1 ) (1 ) (1 ) .C u v u v u v

θθ θ θ θ = − − + − − − −   

For 1 ,≤ θ < ∞  the corresponding copula density is 

1/ 21 1( , ) (1 ) (1 ) (1 ) (1 ) (1 ) (1 )c u v u v u v u v
θ−θ− θ− θ θ θ θ = − − − + − − − −   

(1 ) (1 ) (1 ) (1 ) 1 .u v u v
θ θ θ θ ⋅ − + − − − − + θ − 

 

Independence of U and V corresponds to 1.θ =  

Note that the t and Marshall-Olkin copulas have two parameters each. The remaining 

copulas have one parameter each. 

To fit these ten models to stock data from two countries at time, the following 

procedure are followed: let 1 2, ,..., nx x x  denote the log returns of the stock for one of the 

country and 1 2, ,..., ny y y  denote the log returns of the stock for the other country; 

transform iu =  rank ( ) ( 1)ix n +  and iv = rank ( ) ( 1)iy n + ; fit the copula by the method 

of maximum likelihood to the data on ( , ); 1,2,..., .i iu v i n=  this amounts to maximizing 

the likelihood 

1

( ) ( , ; )
n

i i

i

L c u v

=

Θ = Θ∏  

or the log-likelihood 

1

ln ( ) ln ( , ; ),
n

i i

i

L c u v

=
Θ = Θ  

where 1 2( , , ..., )kΘ = θ θ θ is a vector of parameters specifying (.,.).c  We shall let �Θ =

� � �
1 2( , , ..., )kθ θ θ  denotes the maximum likelihood estimate of .Θ  The maximization was 
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performed using the routine nlm in the R software package (R Development Core Team, 

2020). The standard errors of �Θ  were computed by approximating the covariance matrix 

of  �Θ  by the inverse of observed information matrix, i.e., 

Cov �

1

2 2 2

2
1 2 11

2 2 2

2
2 1 22

2
2 2

2

1 2

ln ln ln

ln ln ln
( ) .

1
ln ln

k

k

k
k k

L L L

L L L

nL
L L

−

Θ=Θ

 
 
 ∂ ∂ ∂ 

∂θ ∂θ ∂θ ∂θ ∂θ
 
 ∂ ∂ ∂Θ ≈  ∂θ ∂θ ∂θ ∂θ∂θ 
 
 
 ∂
 ∂ ∂

∂θ ∂θ ∂θ ∂θ ∂θ  ⌢

⋯

⋯

⋮
⋮ ⋮

 

Discrimination among the fitted models was performed using various criteria: 

• The  Akaike information criterion due to Akaike [2] defined by 

AIC = �2 2ln ( );k L− Θ  

• The Bayesian information criterion due to Schwarz [42] defined by 

BIC = �ln 2ln ( );k n L− Θ  

• The consistent Akaike information criterion(CAIC) due to Bozdogan [9] defined 

by 

CAIC = �2ln ( ) (ln 1);L k n− Θ + +  

• The corrected Akaike information criterion (AICc) due to Hurvich and Tsai [32] 

defined by 

AICc = AIC +
2 ( 1)

1

k k

n k

+
− −

; 

• The Hannan-Quinn criterion due to Hannan and Quinn [28] defined by 

HQC = �2ln ( ) 2 ln ln .L k n− Θ +   

The smaller the value of the criteria the better the fit. For more discussion on these 

criteria, see Burnham and Anderson [10] and Fang [23]. 



Fitted Copula Statistical Models for Four African and Four Major Stock Markets 

Earthline J. Math. Sci. Vol. 7 No. 1 (2021), 195-227 

207

3. Analysis and Results 

From the processed data (using equation 1), which is the logarithmic difference of the 

daily closing index values, the series of daily returns over non-overlapping successive 

selection intervals were obtained. The following summary statistics for the daily log 

returns are computed and given in Table 3.1: number of observations (n), the minimum 

(Min), first quartile (Q1), median, mean, third quartile (Q3), the maximum (Max), 

standard deviation, coefficient of variation (CV), skewness, kurtosis, interquartile range 

(IQR), range and variance.   

Table 1. Descriptive statistics of daily log returns for the period 2003-2018 for the Egypt, 

Nigeria, South Africa, and Kenya stock markets.  
Region Statistics EGY NGR SA KEN 

African stock 

Markets 

n 3200 3200 3200 3200 

Min -4.880034 -4.855714 -4.867219 -4.899312 

Q1 -1.956204 -1.953400 -1.952901 -1.955992 

Median -0.823661 -0.819936 -0.821138 -0.817985 

Mean 0.001136 -0.001014 0.001874 -0.000296 

Q3 2.050203 2.054370 2.055497 2.053494 

Max 5.760113 5.750136 5.758117 5.822058 

SD 2.884172 2.876822 2.875992 2.876261 

CV 2.539024x103 -2.838366x103 -2.838366x103 -9.709959x103 

Skewness 0.438087 0.449077 0.446973 0.440617 

Kurtosis -0.818216 -0.801830 -0.807303 -0.810961 

IQR 4.006407 4.00777 4.008398 4.009486 

Range 10.64015 10.60585 10.62534 10.72137 

Variance 8.318451 8.276105 8.271330 8.272878 

Table 2. Descriptive statistics of daily log returns for period 2003-2018 for the 

FTSE100(UK), S&P500(US), DAX(Germany), and CAC40(Canada) stock markets.  
Region Statistics FTSE100 S&P500 DAX CAC40 

Developed 

stock Markets 

n 3200 3200 3200 3200 

Min -4.875787 -4.884073 -4.867334 -4.854716 

Q1 -1.960951 -1.958513 -1.960432 -1.959067 

Median -0.825349 -0.823479 -0.832005 -0.826930 

Mean 0.000861 0.000191 0.000191 0.000643 

Q3 2.060841 2.052970 2.053530 2.050269 

Max 5.808555 5.802305 5.810057 5.774394 

SD 2.885481 2.883154 2.886818 2.880741 

CV 3.350895x103 1.508616x104 1.508874x104 4.478388x103 

Skewness 0.434958 0.439833 0.446592 0.444802 

Kurtosis -0.825809 -0.815856 -0.814897 -0.813456 

IQR 4.021792 4.011483 4.013962 4.009336 

Range 10.68434 10.68638 10.67739 10.62911 

Variance 8.325999 8.312574 8.333717 8.298669 
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From the Tables 1 and 2, as expected, the minimum values and values of the first 

quartile are negative for the eight countries. The smallest of the minimum is for KEN. 

The largest of the minimum is for CAC40. The smallest of the first quartile is for 

FTSE100. The largest of the first quartile is for NGR. The values of the mean are all 

positive and close to zero for the countries except for NGR and KEN. The values of the 

median are all negative and close to zero for the eight countries. The median is largest for 

KEN and smallest for DAX. The mean is smallest for KEN and largest for FTSE100. The 

third quartile is smallest for FTSE100 and largest for EGY. The maximum is smallest for 

NGR and largest for KEN. The inter quartile range is smallest for EGY and largest for 

FTSE100. The range is smallest for NGR and largest for KEN. The standard deviation is 

smallest for SA and largest for DAX. The variance is also smallest for SA and largest for 

DAX. The skewness is positive for all the four countries. The log returns are least skewed 

for FTSE100. The log returns are most skewed for NGR. The kurtosis is smaller than that 

for the normal distribution for all countries. The kurtosis is smallest for FTSE100. The 

kurtosis is largest for NGR. The values of the coefficient of variation are generally 

positive for all the developed markets and negative for the African markets with 

exception of EGY. The coefficient of variation is smallest for KEN and largest for the 

CAC40. 

The ten models were fitted to log returns from two of the countries at a time. There 

are eight countries. So, the ten models were fitted to log returns from the twenty eight 

pairs of countries: EGY/NGR, EGY/SA, EGY/KEN, EGY/FTSE100, EGY/SP500, 

EGY/DAX, EGY/CAC40, NGR/SA, NGR/KEN, NGR/FTSE100, NGR/SP500, 

NGR/DAX, NGR/CAC40, SA/KEN, SA/FTSE100, SA/SP500, SA/DAX, SA/CAC40, 

KEN/FTSE100, KEN/SP500, KEN/DAX, KEN/CAC40, FTSE100/SP500, 

FTSE100/DAX, FTSE100/CAC40, SP500/DAX, SP500/CAC40, DAX/CAC40. The 

method of maximum likelihood was used. The log-likelihood values, the AIC values, the 

BIC values, the CAIC values, the AICc values and the HQC values for the fitted models 

are given in Tables 3 to 30.  
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Table 3.  Fitted models, log-likelihood values and selection criteria for EGY/NGR. 

Model -In L AIC BIC CAIC AICc HQC 

T -76.4 -148.8 -136.6 -134.6 -148.8 -144.4 

AMH -74.5 -146.9 -140.8 -139.8 -146.9 -144.7 

Clayton -316.1 -630.2 -624.1 -623.1 -630.2 -628.0 

Joe 0.0 2.0 8.1 9.1 2.0 4.2 

Gumbel -4425.8 -8849.7 -8843.6 -8842.6 -8849.7 -8847.5 

FGM -122.6 -243.3 -237.2 -236.2 -243.3 -241.1 

Cuadras-Auge 0.0 2.0 8.1 9.1 2.0 4.2 

Marshall-Olkin 0.0 4.0 16.1 18.1 4.0 8.4 

Cubic -131.1 -260.1 -254.0 -253.0 -260.1 -257.9 

Guassian -45.2 -88.4 -82.3 -81.3 -88.4 -86.2 

Table 4.  Fitted models, log-likelihood values and selection criteria for EGY/SA. 

Model -In L AIC BIC CAIC AICc HQC 

T -166.9 -329.7 -317.6 -315.6 -329.7 -325.3 

AMH -127.8 -253.5 -247.4 -246.4 -253.5 -251.3 

Clayton -94.1 -186.2 -180.2 -179.2 -186.2 -184.0 

Joe -90.8 -179.5 -173.4 -172.4 -179.5 -177.3 

Gumbel -4778.3 -9554.6 -9548.5 -9547.5 -9554.6 -9552.4 

FGM -161.6 -321.2 -315.1 -314.1 -321.2 -319.0 

Cuadras-Auge 0.0 2.0 8.1 9.1 2.0 4.2 

Marshall-Olkin 0.0 4.0 16.1 18.1 4.0 8.4 

Cubic -7.9 -13.8 -7.7 -6.7 -13.8 -11.6 

Guassian 0.0 2.0 8.0 9.1 2.0 4.2 

Table 5.  Fitted models, log-likelihood values and selection criteria for EGY/KEN. 

Model -In L AIC BIC CAIC AICc HQC 

T -172.8 -341.6 -329.5 -327.5 -341.5 -337.3 

AMH -147.1 -292.1 -286.0 -285.0 -292.1 -289.9 

Clayton 4.5 11.1 17.2 18.2 11.1 13.3 

Joe 0.0 20. 8.1 9.1 2.0 4.2 

Gumbel -5650.6 -11299.2 -11293.2 -11292.2 -11299.2 -11297.1 

FGM -126.2 -250.5 -244.4 -243.4 -250.5 -248.3 

Cuadras-Auge 0.0 2.0 8.1 9.1 2.0 4.2 

Marshall-Olkin 0.0 4.0 16.1 18.1 4.0 8.4 

Cubic -165.5 -329.1 -323.0 -322.0 -329.1 -326.9 

Guassian -157.9 -313.9 -307.8 -306.8 -313.9 -311.7 
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Table 6.  Fitted models, log-likelihood values and selection criteria for EGY/FTSE. 

Model -In L AIC BIC CAIC AICc HQC 

T -93.1 -182.1 -170.0 -168.0 -182.1 -177.8 

AMH -139.7 -277.4 -271.3 -270.3 -277.4 -275.2 

Clayton -520.1 -1038.2 -1032.1 -1031.1 -1038.2 -1036.0 

Joe 0.0 2.0 8.1 9.1 2.0 4.2 

Gumbel -4183.2 -8364.4 -8358.4 -8357.4 -8364.4 -8362.3 

FGM -240.6 -479.1 -473.0 -472.0 -479.1 -476.9 

Cuadras-Auge 0.0 2.0 8.1 9.1 2.0 4.2 

Marshall-Olkin 0.0 4.0 16.1 18.1 4.0 8.4 

Cubic -332.2 -662.5 -656.4 -655.4 -662.5 -660.3 

Guassian -72.7 -143.4 -137.4 -136.4 -143.4 -141.2 

Table 7.  Fitted models, log-likelihood values and selection criteria for EGY/S&P500. 

Model -In L AIC BIC CAIC AICc HQC 

T -174.5 -345.0 -332.8 -330.8 -345.0 -340.6 

AMH -148.4 -294.8 -288.8 -287.8 -294.8 -292.6 

Clayton 4.5 11.0 17.0 18.0 11.0 13.1 

Joe 0.0 2.0 8.1 9.1 2.0 4.2 

Gumbel -5659.6 -11317.1 -11311.0 -11310.0 -11317.1 -11314.9 

FGM -125.7 -249.5 -243.4 -242.4 -249.5 -247.3 

Cuadras-Auge 0.0 2.0 8.1 9.1 2.0 4.2 

Marshall-Olkin 0.0 4.0 16.1 18.1 4.0 8.4 

Cubic -169.9 -337.8 -331.8 -330.8 -337.8 -335.7 

Guassian -160.7 -319.4 -313.3 -312.3 -319.4 -317.2 

Table 8.  Fitted models, log-likelihood values and selection criteria for EGY/DAX. 

Model -In L AIC BIC CAIC AICc HQC 

T -174.8 -345.5 -333.4 -331.4 -345.5 -341.2 

AMH -132.6 -263.1 -257.1 -256.1 -263.1 -261.0 

Clayton -95.6 -189.1 -183.1 -182.1 -189.1 -187.0 

Joe -95.7 -189.4 -183.4 -182.4 -189.4 -187.3 

Gumbel -4771.8 -9541.6 -9535.5 -9534.5 -9541.6 -9539.4 

FGM -172.8 -343.7 -337.6 -336.6 -343.7 -341.5 

Cuadras-Auge 0.0 2.0 8.1 9.1 2.0 4.2 

Marshall-Olkin 0.0 4.0 16.1 18.1 4.0 8.4 

Cubic -9.4 -16.8 -10.7 -9.7 -16.8 -14.6 

Guassian 0.0 2.0 8.0 9.0 2.0 4.2 
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Table 9.  Fitted models, log-likelihood values and selection criteria for EGY/CAC. 

Model -In L AIC BIC CAIC AICc HQC 

t  -69.5 -135.0 -122.9 -120.9 -135.0 -130.7 

AMH -68.1 -134.2 -128.1 -127.1 -134.2 -132.0 

Clayton -317.1 -632.2 -626.1 -625.1 -632.2 -630.0 

Joe 0.0 2.0 8.1 9.1 2.0 4.2 

Gumbel -4436.8 -8871.6 -8865.5 -8864.5 -8871.6 -8869.4 

FGM -107.6 -213.1 -207.1 -206.1 -213.1 -210.9 

Cuadras-Auge 0.0 2.0 8.1 9.1 2.0 4.2 

Marshall-Olkin 0.0 4.0 16.2 18.2 4.0 8.4 

Cubic -117.7 -233.4 -227.4 -226.4 -233.4 -231.3 

Guassian -37.4 -72.8 -66.7 -65.7 -72.8 -70.6 

Table 10.  Fitted models, log-likelihood values and selection criteria for NGR/SA. 

Model -In L AIC BIC CAIC AICc HQC 

t  -75.4 -146.9 -134.8 -132.8 -146.9 -142.5 

AMH -72.6 -143.3 -137.2 -136.2 -143.3 -141.1 

Clayton -318.1 -634.2 -628.1 -627.1 -634.2 -632.0 

Joe 0.0 2.0 8.1 9.1 2.0 4.2 

Gumbel -4426.5 -8851.0 -8845.0 -8844.0 -8851.0 -8848.8 

FGM -119.1 -236.1 -230.1 -229.1 -236.1 -234.0 

Cuadras-Auge 0.0 2.0 8.1 9.1 2.0 4.2 

Marshall-Olkin 0.0 4.0 16.1 18.1 4.0 8.4 

Cubic -128.3 -254.7 -248.6 -247.6 -254.7 -252.5 

Guassian -44.5 -86.9 -80.8 -79.8 -86.9 -84.7 

Table 11.  Fitted models, log-likelihood values and selection criteria for NGR/KEN. 

Model -In L AIC BIC CAIC AICc HQC 

t  -166.7 -329.4 -317.3 -315.3 -329.4 -325.1 

AMH -127.3 -252.6 -246.6 245.6 -252.6 -250.5 

Clayton -94.0 -186.1 -180.0 -179.0 -186.1 -183.9 

Joe -90.3 -178.5 -172.5 -171.5 -178.5 -176.3 

Gumbel -4782.0 -9862.1 -9556.0 -9555.0 -9562.1 -9559.9 

FGM -161.3 -320.7 -314.6 -313.6 -320.7 -318.5 

Cuadras-Auge 0.0 2.0 8.1 9.1 2.0 4.2 

Marshall-Olkin 0.0 4.0 16.1 18.1 4.0 8.4 

Cubic -7.8 -13.6 -7.5 -6.5 -13.6 -11.4 

Guassian 0.0 2.0 8.1 9.1 2.0 4.2 
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Table 12.  Fitted models, log-likelihood values and selection criteria for NGR/FTSE. 

Model -In L AIC BIC CAIC AICc HQC 

t  -170.4 -336.7 -324.6 -322.6 -336.7 -332.4 

AMH -143.0 -283.9 -277.8 -276.8 -283.9 -281.7 

Clayton 4.5 11.0 17.0 18.0 11.0 13.1 

Joe 0.0 2.0 8.1 9.1 2.0 4.2 

Gumbel -5655.3 -11308.6 -11302.5 -11301.5 -11308.6 -11306.4 

FGM -121.9 -241.9 -235.8 -234.8 -241.9 -239.7 

Cuadras-Auge 0.0 2.0 8.1 9.1 2.0 4.2 

Marshall-Olkin 0.0 4.0 16.1 18.1 4.0 8.4 

Cubic -167.7 -333.4 -327.3 -326.3 -333.4 -331.2 

Guassian 153.0 -304.0 -297.9 -296.9 -304.0 -301.8 

Table 13.  Fitted models, log-likelihood values and selection criteria for NGR/S&P. 

Model -In L AIC BIC CAIC AICc HQC 

t  -95.9 -187.7 -175.6 -173.6 -187.7 -183.4 

AMH -143.9 -285.9 -279.8 -278.8 -285.9 -283.7 

Clayton -516.1 -1030.2 -1024.1 -1023.1 1030.2 1028.0 

Joe 0.0 2.0 8.1 9.1 2.0 4.2 

Gumbel -4191.3 -8380.6 -8374.6 -8373.6 -8380.6 -8378.5 

FGM -244.9 -487.9 -481.8 480.8 487.8 -485.7 

Cuadras-Auge 0.0 2.0 8.1 9.1 2.0 4.2 

Marshall-Olkin 0.0 4.0 16.2 18.2 4.0 8.4 

Cubic -331.1 -660.2 -654.1 -653.1 -660.2 -658.0 

Guassian -76.3 -150.6 -144.5 -143.5 150.6 -148.4 

Table 14.  Fitted models, log-likelihood values and selection criteria for NGR/DAX. 

Model -In L AIC BIC CAIC AICc HQC 

t  -174.7 -345.4 -333.2 -331.2 -345.4 341.4-0 

AMH -148.5 -295.1 -289.0 -288.0 -295.1 -292.9 

Clayton 4.5 11.1 17.1 18.1 11.1 13.2 

Joe 0.0 2.0 8.1 9.1 2.0 4.2 

Gumbel -5656.9 -11311.8 -11305.7 -11304.7 -11311.8 -11309.6 

FGM -127.1 -252.2 -246.1 -245.1 -252.2 250.0 

Cuadras-Auge 0.0 2.0 8.1 9.1 2.0 4.2 

Marshall-Olkin 0.0 4.0 16.2 18.2 4.0 8.4 

Cubic -162.5 -323.0 -316.9 -315.9 -323.0 -320.8 

Guassian -160.4 -318.9 -312.8 -311.8 -318.9 -316.7 
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Table 15.  Fitted models, log-likelihood values and selection criteria for NGR/CAC. 

Model -In L AIC BIC CAIC AICc HQC 

t  -172.8 -341.6 -329.4 -327.4 -341.6 -337.2 

AMH -133.7 -265.3 -259.2 -258.2 -265.3 -263.1 

Clayton -97.6 -193.1 -187.0 -186.0 -193.1 -190.9 

Joe -94.5 -187.1 -181.0 -180.0 -187.1 -184.9 

Gumbel -4777.1 -9552.3 -9546.2 -9545.2 -9552.3 -9550.1 

FGM -170.0 -338.0 -331.9 -330.9 -338.0 -335.8 

Cuadras-Auge 0.0 2.0 8.1 9.1 2.0 4.2 

Marshall-Olkin 0.0 4.0 16.1 18.1 4.0 8.4 

Cubic -7.9 -13.8 -7.7 -6.7 -13.8 -11.6 

Guassian 0.0 2.0 8.1 9.1 2.0 4.2 

Table 16.  Fitted models, log-likelihood values and selection criteria for SA/KEN. 

Model -In L AIC BIC CAIC AICc HQC 

t  -77.4 -150.8 -138.7 -136.7 -150.8 -146.4 

AMH -74.6 -147.3 -141.2 -140.2 -147.3 -145.1 

Clayton -124.9 -247.9 -241.8 -240.8 -247.9 -245.7 

Joe 0.0 2.0 8.1 9.1 2.0 4.2 

Gumbel -4428.8 -8855.6 -8849.5 -8848.5 -8855.6 -8853.4 

FGM -123.0 -243.9 -237.9 -236.9 -243.9 -241.8 

Cuadras-Auge 0.0 2.0 8.1 9.1 2.0 4.2 

Marshall-Olkin 0.0 4.0 16.1 18.1 4.0 8.4 

Cubic -128.9 -255.7 -249.6 -248.6 -255.7 -253.5 

Guassian -45.3 -88.6 -82.5 -81.5 -88.6 -86.4 

Table 17. Fitted models, log-likelihood values and selection criteria for SA/FTSE. 

Model -In L AIC BIC CAIC AICc HQC 

T -171.3 -338.7 -326.5 -324.5 -338.7 -334.3 

AMH -131.6 -261.2 -255.1 -254.1 -261.2 -259.0 

Clayton -96.9 -191.8 -185.7 -184.7 -191.8 -189.6 

Joe -92.4 -182.8 -176.7 -175.7 -182.8 -180.6 

Gumbel -4783.2 -9564.5 -9558.4 -9557.4 -9564.5 -9562.3 

FGM -167.0 -332.0 -325.9 -324.9 -332.0 -329.8 

Cuadras-Auge 0.0 2.0 8.1 9.1 2.0 4.2 

Marshall-Olkin 0.0 4.0 16.1 18.1 4.0 8.4 

Cubic -7.6 -13.2 -7.1 -6.1 -13.2 -11.0 

Guassian 0.0 2.0 8.1 9.1 2.0 4.2 



N. F. Adum, H. O. Obiora-Ilouno and F. C. Eze 

http://www.earthlinepublishers.com 

214

Table 18.  Fitted models, log-likelihood values and selection criteria for SA/S&P. 

Model -In L AIC BIC CAIC AICc HQC 

T -168.5 -332.9 -320.8 -318.8 -332.9 -328.6 

AMH -144.4 -286.7 -280.6 -279.6 -286.7 -284.5 

Clayton 4.5 11.0 17.1 18.1 11.0 13.2 

Joe 0.0 2.0 8.1 9.1 2.0 4.2 

Gumbel -5634.4 -11266.9 -11260.8 -11259.8 -11266.9 -11264.7 

FGM -124.1 -246.1 -240.1 -239.1 -246.1 -243.9 

Cuadras-Auge 0.0 2.0 8.1 9.1 2.0 4.2 

Marshall-Olkin 0.0 4.0 16.1 18.1 4.0 8.4 

Cubic -155.8 -309.6 -303.6 -302.6 -309.6 -307.5 

Guassian -153.3 -304.6 -298.5 -297.5 -304.6 -302.4 

Table 19.  Fitted models, log-likelihood values and selection criteria for SA/DAX. 

Model -In L AIC BIC CAIC AICc HQC 

T -95.5 -186.9 -174.8 -172.8 -186.9 -182.6 

AMH -143.0 -283.9 -277.8 -276.8 -283.9 -281.7 

Clayton -512.1 -1022.2 -1016.1 -1015.1 -1022.2 -1020.0 

Joe 0.0 2.0 8.1 9.1 2.0 4.2 

Gumbel -4188.4 -8374.7 -8368.6 -8367.6 -8374.7 -8372.5 

FGM -244.4 -486.7 -480.7 -479.7 -486.7 -484.6 

Cuadras-Auge 0.0 2.0 8.1 9.1 2.0 4.2 

Marshall-Olkin 0.0 4.0 16.1 18.1 4.0 8.4 

Cubic -330.5 -658.9 -652.9 -651.9 -658.9 -656.8 

Guassian -73.6 -145.2 -139.2 -138.2 -145.2 -143.1 

Table 20. Fitted models, log-likelihood values and selection criteria for SA/CAC. 

Model -In L AIC BIC CAIC AICc HQC 

T -174.7 -345.3 -333.2 -331.2 -345.3 -341.0 

AMH -146.0 -290.0 -283.9 -282.9 -290.0 -287.8 

Clayton 4.5 11.0 17.1 18.0 11.0 13.2 

Joe 0.0 2.0 8.1 9.1 2.0 4.2 

Gumbel -5664.2 -11326.5 -11320.4 -11319.4 -11326.5 -11324.3 

FGM -125.1 -248.1 -242.0 -241.0 -248.1 -245.9 

Cuadras-Auge 0.0 2.0 8.1 9.1 2.0 4.2 

Marshall-Olkin 0.0 4.0 16.1 18.1 4.0 8.4 

Cubic -171.2 -340.3 -334.2 -333.2 -340.3 -338.1 

Guassian -152.6 -303.1 -297.0 -296.0 -303.1 -300.9 
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Table 21. Fitted models, log-likelihood values and selection criteria for KEN/FTSE. 

Model -In L AIC BIC CAIC AICc HQC 

T -73.7 -143.4 -131.3 -129.3 -143.4 -139.1 

AMH -70.7 -139.3 -133.3 -132.3 -139.3 -137.2 

Clayton -325.1 -648.2 -642.1 -641.1 -648.2 -646.0 

Joe 0.0 2.0 8.1 9.1 2.0 4.2 

Gumbel -4421.4 -8840.8 -8834.7 -8833.7 -8840.8 -8838.6 

FGM -116.8 -231.6 -225.6 -224.6 -231.6 -229.5 

Cuadras-Auge 0.0 2.0 8.1 9.1 2.0 4.2 

Marshall-Olkin 0.0 4.0 16.2 18.2 4.0 8.4 

Cubic -130.4 -258.8 -252.7 -251.7 -258.8 -256.6 

Guassian -42.7 -83.4 -77.3 -76.3 -83.4 -81.2 

Table 22.  Fitted models, log-likelihood values and selection criteria for KEN/S&P. 

Model -In L AIC BIC CAIC AICc HQC 

T -164.9 -325.8 -313.7 -311.7 -325.8 -321.5 

AMH -128.8 -255.5 -249.5 -248.5 -255.5 -253.4 

Clayton -95.4 -188.7 -182.7 -181.7 -188.7 -186.5 

Joe -90.0 -177.9 -171.8 -170.8 -177.9 -175.7 

Gumbel -4793.6 -9585.3 -9579.2 -9578.2 -9585.3 -9583.1 

FGM -158.0 -313.9 -307.8 -306.8 -313.9 -311.7 

Cuadras-Auge 0.0 2.0 8.1 9.1 2.0 4.2 

Marshall-Olkin 0.0 4.0 16.1 18.1 4.0 8.4 

Cubic -6.0 -9.9 -3.8 -2.8 -9.9 -7.7 

Guassian 0.0 2.0 8.1 9.1 2.0 4.2 

Table 23.  Fitted models, log-likelihood values and selection criteria for KEN/DAX. 

Model -In L AIC BIC CAIC AICc HQC 

T -165.7 -327.4 -315.2 -313.2 -327.4 -323.0 

AMH -144.0 -286.0 -280.0 -279.0 -286.0 -283.8 

Clayton 4.5 10.9 17.0 18.0 10.9 13.1 

Joe 0.0 2.0 8.1 9.1 2.0 4.2 

Gumbel -5641.7 -11281.4 -11275.3 -11274.3 -11281.4 -11279.2 

FGM -123.1 -244.2 -238.1 -237.1 -244.2 -242.0 

Cuadras-Auge 0.0 2.0 8.1 9.1 2.0 4.2 

Marshall-Olkin 0.0 4.0 16.1 18.1 4.0 8.4 

Cubic -156.8 -311.7 -305.6 -304.6 -311.7 -309.5 

Guassian -150.8 -299.5 -293.4 -292.4 -299.5 -297.3 
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Table 24.  Fitted models, log-likelihood values and selection criteria for KEN/CAC. 

Model -In L AIC BIC CAIC AICc HQC 

T -91.6 -179.1 -167.0 -165.0 -179.1 -174.8 

AMH -138.6 -275.1 -269.1 -268.1 -275.1 -273.0 

Clayton 6.8 15.6 21.7 22.7 15.6 17.8 

Joe 0.0 2.0 8.1 9.1 2.0 4.2 

Gumbel -4181.3 -8360.5 -8354.5 -8353.5 -8360.5 -8358.4 

FGM -237.7 -473.4 -467.3 -466.3 -473.4 -471.2 

Cuadras-Auge 0.0 2.0 8.1 9.1 2.0 4.2 

Marshall-Olkin 0.0 4.0 16.2 18.2 4.0 8.4 

Cubic -332.8 -663.6 -657.5 -656.5 -663.6 -661.4 

Guassian -73.5 -145.0 -138.9 -137.9 -145.0 -142.8 

Table 25.  Fitted models, log-likelihood values and selection criteria for FTSE/S&P. 

Model -In L AIC BIC CAIC AICc HQC 

T -75.6 -147.3 -135.2 -133.2 -147.3 -142.9 

AMH -73.5 -144.9 -138.9 -137.9 -144.9 -142.8 

Clayton -123.5 -245.0 -238.9 -237.9 -245.0 -242.8 

Joe 0.0 2.0 8.1 9.1 2.0 4.2 

Gumbel -4426.0 -8850.0 -8844.0 -8843.0 -8850.0 -8847.9 

FGM -121.5 -241.0 -235.0 -234.0 -241.0 -238.9 

Cuadras-Auge 0.0 2.0 8.1 9.1 2.0 4.2 

Marshall-Olkin 0.0 4.0 16.2 18.2 4.0 8.4 

Cubic -130.5 -259.1 -253.0 -252.0 -259.1 -256.9 

Guassian -43.7 -85.4 -79.4 -78.4 -85.4 -83.3 

Table 26.  Fitted models, log-likelihood values and selection criteria for FTSE/DAX. 

Model -In L AIC BIC CAIC AICc HQC 

T -165.3 -326.7 -314.5 -312.5 326.7 -322.3 

AMH -126.6 -251.3 -245.2 -244.2 -251.3 -249.1 

Clayton -93.0 -184.1 -178.0 -177.0 -184.1 -181.9 

Joe -94.9 -187.9 -181.8 -180.8 -187.9 -185.7 

Gumbel -4789.5 -9577.0 -9570.9 -9569.9 -9576.9 -9574.8 

FGM -158.0 -314.0 -307.9 -306.9 -314.0 -311.8 

Cuadras-Auge 0.0 2.0 8.1 9.1 2.0 4.2 

Marshall-Olkin 0.0 4.0 16.1 18.1 4.0 8.4 

Cubic -7.2 -12.4 -6.3 -5.3 -12.4 -10.2 

Guassian 0.0 2.0 8.1 9.1 2.0 4.2 
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Table 27.  Fitted models, log-likelihood values and selection criteria for FTSE/CAC. 

Model -In L AIC BIC CAIC AICc HQC 

T -176.0 -348.0 -335.9 -333.9 -348.0 -343.7 

AMH -145.2 -288.3 -282.3 -281.3 -288.3 -286.2 

Clayton 4.6 11.1 17.2 18.2 11.1 13.3 

Joe -0.2 1.7 7.7 8.7 1.7 3.9 

Gumbel -5640.5 -11279.1 -11273.0 -11272.0 -11279.1 -11276.9 

FGM -127.4 -252.9 -246.8 -245.8 -252.9 -250.7 

Cuadras-Auge 0.0 2.0 8.1 9.1 2.0 4.2 

Marshall-Olkin 0.0 4.0 16.1 18.1 4.0 8.4 

Cubic -159.0 -315.9 -309.9 -308.9 -315.9 -313.8 

Guassian -133.9 -265.7 -259.6 -258.6 -265.7 -263.5 

Table 28.  Fitted models, log-likelihood values and selection criteria for S&P/DAX. 

Model -In L AIC BIC CAIC AICc HQC 

T -75.3 -146.5 -134.4 -132.4 -146.5 -142.2 

AMH -73.0 -143.9 -137.9 -136.9 -143.9 -141.8 

Clayton -122.8 -243.7 -237.6 -236.6 -243.7 -241.5 

Joe 0.0 2.0 8.1 9.1 2.0 4.2 

Gumbel -4429.8 -8857.6 -8851.6 -8850.6 -8857.6 -8855.5 

FGM -119.9 -237.7 -231.6 -230.6 -237.7 -235.5 

Cuadras-Auge 0.0 2.0 8.1 9.1 2.0 4.2 

Marshall-Olkin 0.0 4.0 16.2 18.2 4.0 8.4 

Cubic -127.6 -253.3 -247.2 -246.2 -253.3 -251.1 

Guassian -43.0 -84.0 -77.9 -76.9 -84.0 -81.8 

Table 29.  Fitted models, log-likelihood values and selection criteria for S&P/CAC. 

Model -In L AIC BIC CAIC AICc HQC 

T -165.6 -327.1 -315.0 -313.0 -327.1 -322.8 

AMH -127.7 -253.3 -247.2 -246.2 -253.3 -251.1 

Clayton -94.3 -186.6 -180.5 -179.5 -186.6 -184.4 

Joe -89.5 -177.0 -170.9 -169.9 -177.0 -174.8 

Gumbel -4779.2 -9556.4 -9550.3 -9549.3 -9556.4 -9554.2 

FGM -161.6 -321.1 -315.0 -314.0 -321.1 -318.9 

Cuadras-Auge 0.0 2.0 8.1 9.1 2.0 4.2 

Marshall-Olkin 0.0 4.0 16.2 18.2 4.0 8.4 

Cubic -8.4 -14.9 -8.8 -7.8 -14.8 -12.7 

Guassian 0.0 2.0 8.1 9.1 2.0 4.2 
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Table 30.  Fitted models, log-likelihood values and selection criteria for DAX/CAC. 

Model -In L AIC BIC CAIC AICc HQC 

T -73.8 -143.7 -131.5 -129.5 -143.7 -139.3 

AMH -73.4 -144.9 -138.8 -137.8 -144.9 -142.7 

Clayton -314.1 -626.2 -620.1 -619.1 -626.2 -624.0 

Joe -0.2 1.6 7.7 8.7 1.6 3.8 

Gumbel -4431.6 -8861.1 -8855.0 -8854.0 -8861.1 -8858.9 

FGM -119.4 -236.8 -230.7 -229.7 -236.8 -234.6 

Cuadras-Auge 0.0 2.0 8.1 9.1 2.0 4.2 

Marshall-Olkin 0.0 4.0 16.1 18.1 4.0 8.4 

Cubic -123.7 -245.3 -239.3 -238.3 -245.3 -243.2 

Guassian -34.7 -67.4 -61.3 -60.3 -67.4 -65.3 

From these tables, it can be observed that the Gumbel copula in spite of having only 

one parameter gives the smallest values for the negative log-likelihood, the AIC, the BIC, 

the CAIC, the AICc, and the HQC for every pair. The t copula or the Clayton copula 

gives the second smallest values for the negative log-likelihood, the AIC, the BIC, the 

CAIC, the AICc and the HQC for every pair. The Marshall-Olkin copula gives the largest 

value for the negative log-likelihood, the AIC, the BIC, the CAIC, the AICc and the HQC 

for every pair. The Cuadras-Augé and Guassian copulas give the second largest values 

for the negative log-likelihood, the AIC, the BIC, the CAIC, the AICc and the HQC for 

every pair. The Cuadras-Augé and Guassia copulas appear to give the same values for the 

negative log-likelihood, the AIC, the BIC, the CAIC, the AICc and the HQC. 

The goodness of the best fitting Gumbel copula was tested using the information 

matrix equality of White [47]. This test was further investigated by Huang and Prokhorov 

[31]. The contribution is that under correct copula model specification, the Fisher 

Information can be equivalently calculated as minus the expected Hessian matrix or as 

the expected outer product of the score function. The p-value shown in Table 31 confirms 

the goodness of fit of the Gumbel copula. 
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Table 31. p-value of the goodness of fit of the best fitting copula (Gumbel) using the 

information matrix equality test of White [47]. 

Pair p-value Pair p-value 

EGY/NGR 0.532 EGY/SA 0.722 

EGY/KEN 0.621 EGY/FTSE100 0.256 

EGY/SP500 0.933 EGY/DAX 0.662 

EGY/CAC40 0.754 NGR/SA 0.953 

NGR/KEN 0.418 NGR/FTSE100 0.853 

NGR/SP500 0.183 NGR/DAX 0.729 

NGR/CAC40 0.986 SA/KEN 0.805 

SA/FTSE100 0.682 SA/SP500 0.294 

SA/DAX 0.119 SA/CAC40 0.935 

KEN/FTSE100 0.100 KEN/SP500 0.512 

KEN/DAX 0.218 KEN/CAC40 0.429 

FTSE100/SP500 0.904 FTSE100/DAX 0.895 

FTSE100/CAC40 0.502 SP500/DAX 0.742 

SP500/CAC40 0.314 DAX/CAC40 0.244 

The parameter estimates and tail dependence coefficient for the best copula model 

from the twenty eight pairs of countries are given in Table 32. The K-plots are given in 

Figure 1. 
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Figure 1. K-plots of daily log returns for the EGY v NGR, EGY v SA, EGY v KEN, 

EGY v FTSE, EGY v SP, NGR v SA, NGR v KEN, NGR v FTSE, (FIRST ROW) and 

NGR v SP, SA v KEN, SA v FTSE, FTSE v SP, SA v SP, KEN v FTSE, KEN v SP 

(SECOND ROW). 

From the K-plots in Figure 1, evidence of possible tail dependence in African stock 

markets suspected. Note that K-plots are rank-based graphical tool for visualizing 

dependence (Genest and Boies [26]).   

If we suppose X and Y to be random variables representing any set of pairs of daily 

log returns from these stock markets with marginal distribution functions F and G. The 

coefficients of lower and upper tails dependence can be estimated by 

1 1

0
lim ( ) | ( )L

t

pr Y G t X F t
+

− −

→
 λ = ≤ ≤   

and 

1 1

1
lim Pr ( ) | ( ) ,U

t

Y G t X F t
−

− −

→
 λ = > >   

Respectively, if ,L Uλ = λ  then X and Y are said to be symmetrically dependent in 

the tail, else they are asymmetric. It is important to note that joint extremes are more 

likely to occur with large values of Uλ  than for small values. 
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Table 32. Parameter estimates and tail dependence coefficients for the best copula model. 

Country pairs Copula Parameter Upper tail 

EGY/NGR Gumbel 1.2610 0.2673 

EGY/SA Gumbel 1.1932 0.2124 

EGY/KEN Gumbel 1.0224 0.0301 

EGY/FTSE100 Gumbel 1.3396 0.3223 

EGY/SP500 Gumbel 1.1672 0.1891 

EGY/DAX Gumbel 1.0484 0.0630 

EGY/CAC40 Gumbel 1.2193 0.2344 

NGR/SA Gumbel 1.0857 0.1065 

NGR/KEN Gumbel 1.2882 0.2872 

NGR/FTSE100 Gumbel 1.0374 0.0494 

NGR/SP500 Gumbel 1.3415 0.3235 

NGR/DAX Gumbel 1.2679 0.2724 

NGR/CAC40 Gumbel 1.0639 0.0816 

SA/KEN Gumbel 1.4685 0.3967 

SA/FTSE100 Gumbel 1.2555 0.2631 

SA/SP500 Gumbel 1.0624 0.0798 

SA/DAX Gumbel 1.4037 0.3615 

SA/CAC40 Gumbel 1.0927 0.1142 

KEN/FTSE100 Gumbel 1.3152 0.3061 

KEN/SP500 Gumbel 1.1190 0.1422 

KEN/DAX Gumbel 1.1639 0.1816 

KEN/CAC40 Gumbel 1.4632 0.3963 

FTSE100/SP500 Gumbel 1.2655 0.2633 

FTSE100/DAX Gumbel 1.0724 0.0799 

FTSE100/CAC40 Gumbel 1.4137 0.3715 

SP500/DAX Gumbel 1.1927 0.1242 

SP500/CAC40 Gumbel 1.4152 0.4061 

DAX/CAC40 Gumbel 1.1290 0.1432 

The value at risk and expected shortfall based on the best fitting copula model is 

computed. These two risk measures are the most popular and celebrated financial risk 

measures (Danielsson and de Vries [17]). Their popularity stems from its endorsement by 

the Basel committee as a standard for risk management. The results are given in Table 

33. 
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Table 33. Value at risk values based on the best performing models. 

Country pairs Value at risk 

EGY/NGR 0.57125817 

EGY/SA 0.73853789 

EGY/KEN 0.99733551 

EGY/FTSE100 0.66329118 

EGY/SP500 0.21345670 

EGY/DAX 0.80904588 

EGY/CAC40 0.89909111 

NGR/SA 0.22234378 

NGR/KEN 0.71946335 

NGR/FTSE100 0.25826023 

NGR/SP500 0.86496638 

NGR/DAX 0.70241798 

NGR/CAC40 0.67201969 

SA/KEN 0.70858934 

SA/FTSE100 0.01118940 

SA/SP500 0.06823602 

SA/DAX 0.05963419 

SA/CAC40 0.80024248 

KEN/FTSE100 0.54397889 

KEN/SP500 0.29555464 

KEN/DAX 0.56262578 

KEN/CAC40 0.40052473 

FTSE100/SP500 0.20129115 

FTSE100/DAX 0.61733266 

FTSE100/CAC40 0.06094731 

SP500/DAX 0.92853707 

SP500/CAC40 0.02947194 

DAX/CAC40 0.46954281 
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4. Conclusion 

The Gumbel copula was shown to give the best fit in terms of log-likelihood values 

and values of the Akaike information criterion, value of the Bayesian information 

criterion, value of the consistent Akaike information criterion, value of the corrected 

Akaike information criterion, and value of the Hannan-Quinn criterion and p-values of 

the information matrix equality of White [47]. Estimates of value at risk with probability 

p for daily log returns are computed using the best fitting copula model. Based on these 

values at risk, it was clear that SA/FTSE have the least risks. In general, this finding has a 

number of implications for risk managers and potential investors. For instance, this shows 

that copula models should be used by policy-makers and financial practitioners to set 

margins, which is known to be sensitive to price movement in derivatives and stock 

markets. 
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