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Abstract 

A necessary and sufficient condition in terms of lower cut sets are given for the insertion 

of a contra-continuous function between two comparable real-valued functions on such 

topological spaces that kernel of sets are open. 

1. Introduction  

The concept of a C-open set in a topological space was introduced by Hatir et al. 

[12]. The authors define a set S to be a C-open set if ,AUS ∩=  where U is open and A 

is semi-preclosed. A set S is a C-closed set if its complement (denoted by )
c

S  is a 

C-open set or equivalently if ,AUS ∪=  where U is closed and A is semi-preopen. The 

authors show that a subset of a topological space is open if and only if it is an α-open set 

and a C-open set or equivalently a subset of a topological space is closed if and only if it 
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is an α-closed set and a C-closed set. This enables them to provide the following 

decomposition of continuity: a function is continuous if and only if it is α-continuous 

and C-continuous or equivalently a function is contra-continuous if and only if it is 

contra-α-continuous and contra-C-continuous. 

Recall that a subset A of a topological space ( )τ,X  is called α-open if A is the 

difference of an open and a nowhere dense subset of X. A set A is called α-closed if its 

complement is α-open or equivalently if A is the union of a closed and a nowhere dense 

set. Sets which are dense in some regular closed subspace are called semi-preopen or 

β-open. A set is semi-preclosed or β-closed if its complement is semi-preopen or β-open. 

In [7] it was shown that a set A is β-open if and only if ( )( )( ).AClIntClA ⊆  A 

generalized class of closed sets was considered by Maki [19]. He investigated the sets 

that can be represented as union of closed sets and called them V-sets. Complements of 

V-sets, i.e., sets that are intersection of open sets are called Λ-sets [19]. 

Recall that a real-valued function f defined on a topological space X is called 

A-continuous [24] if the preimage of every open subset of R  belongs to A, where A is a 

collection of subsets of X. Most of the definitions of function used throughout this paper 

are consequences of the definition of A-continuity. However, for unknown concepts the 

reader may refer to [4, 11]. In the recent literature many topologists had focused their 

research in the direction of investigating different types of generalized continuity. 

Dontchev [5] introduced a new class of mappings called contra-continuity. Jafari and 

Noiri [13, 14] exhibited and studied among others a new weaker form of this class of 

mappings called contra-α-continuous. A good number of researchers have also initiated 

different types of contra-continuous like mappings in the papers [1, 3, 8, 9, 10, 23]. 

Hence, a real-valued function f defined on a topological space X is called contra-

continuous (resp. contra-C-continuous, contra-α-continuous) if the preimage of every 

open subset of R  is closed (resp. C-closed , α-closed) in X [5]. 

Results of Katĕtov [15, 16] concerning binary relations and the concept of an 

indefinite lower cut set for a real-valued function, which is due to Brooks [2], are used in 

order to give a necessary and sufficient conditions for the insertion of a contra-

continuous function between two comparable real-valued functions on such topological 

spaces that Λ-sets or kernel of sets are open [19]. 
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If g and f are real-valued functions defined on a space X, we write fg ≤  

( )fg <.resp  in case ( ) ( )xfxg ≤  ( ) ( )( )xfxg <.resp  for all x in X. 

The following definitions are modifications of conditions considered in [17]. 

A property P defined relative to a real-valued function on a topological space is a 

cc-property provided that any constant function has property P and provided that the sum 

of a function with property P and any contra-continuous function also has property P. If 

1P  and 2P  are cc-properties, the following terminology is used: (i) A space X has the 

weak cc-insertion property for ( )21, PP  if and only if for any functions g and f on X such 

that ,fg ≤  g has property 1P  and f has property ,2P  then there exists a contra-

continuous function h such that .fhg ≤≤  (ii) A space X has the cc-insertion property 

for ( )21, PP  if and only if for any functions g and f on X such that ,fg <  g has property 

1P  and f has property ,2P  then there exists a contra-continuous function h such that 

.fhg <<  (iii) A space X has the strong cc-insertion property for ( )21, PP   if and only 

if for any functions g and f on X such that ,fg ≤  g has property 1P  and f has property 

,2P  then there exists a contra-continuous function h such that fhg ≤≤  and if 

( ) ( )xfxg <  for any x in X, then ( ) ( ) ( ).xfxhxg <<  (iv) A space X has the weakly 

cc-insertion property for ( )21, PP  if and only if for any functions g and f on X such that 

,fg <  g has property 1P , f has property 2P  and gf −  has property ,2P  then there 

exists a contra-continuous function h such that .fhg <<  

In this paper, for a topological space whose Λ-sets or kernel of sets are open, is given 

a sufficient condition for the weak cc-insertion property. Also for a space with the weak 

cc-insertion property, we give a necessary and sufficient condition for the space to have 

the cc-insertion property. Several insertion theorems are obtained as corollaries of these 

results. In addition, the insertion and strong insertion of a contra-α-continuous function 

between two comparable real-valued functions has also recently considered by the 

authors in [20, 21]. 

2. The Main Result 

Before giving a sufficient condition for insertability of a contra-continuous function, 

the necessary definitions and terminology are stated. 
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Definition 2.1. Let A be a subset of a topological space ( )., τX  We define the 

subsets Λ
A  and V

A  as follows: 

( ){ }τ∈⊇=Λ ,,: XOAOOA ∩  and { ( )}.,,: τ∈⊆= XFAFFA
cV

∪  

In [6, 18, 22], Λ
A  is called the kernel of A. 

The family of all α-open, α-closed, C-open and C-closed will be denoted by 

( ) ( ) ( )ττατα ,,,,, XCOXCXO  and ( ),, τXCC  respectively. 

We define the subsets ( ) ( ) ( )ΛΛ αα ACAA
V

,,  and ( )V
AC  as follows: 

( ) ( ){ },,,: τα∈⊇=α Λ
XOOAOOA ∩  

( ) { ( )},,,: τα∈⊆=α XCFAFFA
V

∪  

( ) ( ){ }τ∈⊇=Λ
,,: XCOOAOOAC ∩  and 

( ) { ( )}.,,: τ∈⊆= XCCFAFFAC
V

∪  

( )Λα A ( ( ))Λ
AC.resp  is called the α-kernel (resp. C-kernel) of A. 

The following first two definitions are modifications of conditions considered in [15, 

16]. 

Definition 2.2. If ρ is a binary relation in a set S, then ρ  is defined as follows: 

yx ρ  if and only if vy ρ  implies vx ρ  and xu ρ  implies yu ρ  for any u and v in S. 

Definition 2.3. A binary relation ρ in the power set ( )XP  of a topological space X is 

called a strong binary relation in ( )XP  in case ρ satisfies each of the following 

conditions: 

(1) If ji BA ρ  for any { }mi ...,,1∈  and for any { },...,,1 nj ∈  then there exists a 

set C in ( )XP  such that CAi ρ  and jBC ρ  for any { }mi ...,,1∈  and any 

{ }....,,1 nj ∈  

(2) If ,BA ⊆  then .BA ρ  

(3) If ,BA ρ  then BA ⊆Λ  and .V
BA ⊆  
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The concept of a lower indefinite cut set for a real-valued function was defined by 

Brooks [2] as follows: 

Definition 2.4. If f is a real-valued function defined on a space X and if 

( ){ } ( ) ( ){ }ℓℓℓ ≤∈⊆⊆<∈ xfXxfAxfXx :,:  for a real number ,ℓ  then ( )ℓ,fA  

is called a lower indefinite cut set in the domain of f at the level .ℓ  

We now give the following main result: 

Theorem 2.1. Let g and f be real-valued functions on the topological space X, in 

which kernel sets are open, with .fg ≤  If there exists a strong binary relation ρ on the 

power set of X and if there exist lower indefinite cut sets ( )tfA ,  and ( )tgA ,  in the 

domain of f and g at the level t for each rational number t such that if ,21 tt <  then 

( ) ( ),,, 21 tgAtfA ρ  then there exists a contra-continuous function h defined on X such 

that .fhg ≤≤  

Proof. Let g and f be real-valued functions defined on the X such that .fg ≤  By 

hypothesis there exists a strong binary relation ρ on the power set of X and there exist 

lower indefinite cut sets ( )tfA ,  and ( )tgA ,  in the domain of f and g at the level t for 

each rational number t such that if ,21 tt <  then ( ) ( ).,, 21 tgAtfA ρ  

Define functions F and G mapping the rational numbers Q  into the power set of X 

by ( ) ( )tfAtF ,=  and ( ) ( )., tgAtG =  If 1t  and 2t  are any elements of Q  with ,21 tt <  

then ( ) ( ) ( ) ( ),, 2121 tGtGtFtF ρρ  and ( ) ( ).21 tGtF ρ  By Lemmas 1 and 2 in [16] it 

follows that there exists a function H mapping Q  into the power set of X such that if 1t  

and 2t  are any rational numbers with ,21 tt <  then ( ) ( ) ( ) ( )2121 , tHtHtHtF ρρ  and 

( ) ( ).21 tGtH ρ  

For any x in X, let ( ) ( ){ }.:inf tHxtxh ∈∈= Q  

We first verify that :fhg ≤≤  If x is in ( ),tH  then x is in ( )tG ′  for any ;tt >′  

since x is in ( ) ( )tgAtG ′=′ ,  implies that ( ) ,txg ′≤  it follows that ( ) .txg ≤  Hence 

.hg ≤  If x is not in ( ),tH  then x is not in ( )tF ′  for any ;tt <′  since x is not in 

( ) ( )tfAtF ′=′ ,  implies that ( ) ,txf ′>  it follows that ( ) .txf ≥  Hence .fh ≤  

Also, for any rational numbers 1t  and 2t  with ,21 tt <  we have ( ) =−
21

1
, tth  
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( ) ( ) .\ 12
Λ

tHtH
V

 Hence ( )21
1

, tth
−  is closed in X, i.e., h is a contra-continuous function 

on X. 

The above proof used the technique of Theorem 1 in [15]. 

Theorem 2.2. Let 1P  and 2P  be cc-property and X be a space that satisfies the weak 

cc-insertion property for ( )., 21 PP  Also assume that g and f are functions on X such that 

,fg <  g has property 1P  and f has property .2P  The space X has the cc-insertion 

property for ( )21, PP  if and only if there exist lower cut sets ( )1
3,

+−− n
gfA  and there 

exists a decreasing sequence { }nD  of subsets of X with empty intersection and such that 

for each n, nDX \  and ( )1
3,

+−− n
gfA  are completely separated by contra-continuous 

functions. 

Proof. Assume that X has the weak cc-insertion property for ( )., 21 PP  Let g and f be 

functions such that ,fg <  g has property 1P  and f has property .2P  By hypothesis there 

exist lower cut sets ( )1
3,

+−− n
gfA  and there exists a sequence ( )nD  such that 

∩
∞

= ∅=
1n nD  and such that for each n, nDX \  and ( )1

3,
+−− n

gfA  are completely 

separated by contra-continuous functions. Let nk  be a contra-continuous function such 

that 0=nk  on ( )1
3,

+−− n
gfA  and 1=nk  on .\ nDX  Let a function k on X be defined 

by 

( ) ( )∑
∞

=

−=
1

.321

n

n
n

xkxk  

By the Cauchy condition and the properties contra-continuous functions, the function k is 

a contra-continuous function. Since ∅=∞
=∩ 1n nD  and since 1=nk  on ,\ nDX  it 

follows that .0 k<  Also :2 gfk −<  In order to see this, observe first that if x is in 

( ),3,
1+−− n

gfA  then ( ) ( ).341
n

xk
−≤  If x is any point in X, then ( )1,gfx −∉  or 

for some n,  

( ) ( );3,3,
1 nn

gfAgfAx
−+− −−−∈  

in the former case ( ) ,12 <xk  and in the latter ( ) ( ) ( ) ( ).3212 xgxfxk
n −<≤ −  Thus if 
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kff −=1  and if ,1 kgg +=  then .11 ffgg <<<  Since 1P  and 2P  are 

E-properties, then 1g  has property 1P  and 1f  has property .2P  Since X has the weak 

cc-insertion property for ( ),, 21 PP  then there exists a contra-continuous function h such 

that .11 fhg ≤≤  Thus ,fhg <<  it follows that X satisfies the cc-insertion property 

for ( )., 21 PP  (The technique of this proof is by Katĕtov [15]). 

Conversely, let g and f be functions on X such that g has property ,1P  f has property 

2P  and .fg <  By hypothesis, there exists a contra-continuous function h such that 

.fhg <<  We follow an idea contained in Lane [17]. Since the constant function 0 has 

property ,1P  since hf −  has property ,2P  and since X has the cc-insertion property for 

( ),, 21 PP  then there exists a contra-continuous function k such that .0 hfk −<<  Let 

( )1
3,

+−− n
gfA  be any lower cut set for gf −  and let { ( ) }.3:

2+−<∈= n
n xkXxD  

Since 0>k  it follows that ∩
∞

= ∅=
1

.
n nD  Since 

( ) { ( ) ( ) } { ( ) }111
3:3:3,

+−+−+− ≤∈⊆≤−∈⊆− nnn
xkXxxgfXxgfA  

and since { ( ) }1
3:

+−≤∈ n
xkXx  and { ( ) } n

n
DXxkXx \3:

2 =≥∈ +−  are completely 

separated by contra-continuous functions { { }},3,inf,3sup
21 +−+− nn

k  it follows that for 

each n, ( )1
3,

+−− n
gfA  and nDX \  are completely separated by contra-continuous 

functions. 

3. Applications 

The abbreviations cαc and cCc are used for contra-α-continuous and contra-C-

continuous, respectively. 

Before stating the consequences of Theorems 2.1, 2.2, we suppose that X is a 

topological space whose kernel sets are open. 

Corollary 3.1. If for each pair of disjoint α-open (resp. C-open) sets 21, GG  of X, 

there exist closed sets 1F  and 2F  of X such that 2211 , FGFG ⊆⊆  and ,21 ∅=FF ∩  

then X has the weak cc-insertion property for ( )cccc αα ,  ( )( )., cCccCcresp.  

Proof. Let g and f be real-valued functions defined on X, such that f and g are ccα  



Majid Mirmiran and Binesh Naderi 

http://www.earthlinepublishers.com 

28 

( ),.resp cCc  and .fg ≤  If a binary relation ρ is defined by BA ρ  in case 

( ) ( )V
BA α⊆α Λ  ( ( ) ( )),.resp

V
BCAC ⊆Λ  then by hypothesis ρ is a strong binary 

relation in the power set of X. If 1t  and 2t  are any elements of Q  with ,21 tt <  then 

( ) ( ){ } ( ){ } ( );,::, 2211 tgAtxgXxtxfXxtfA ⊆<∈⊆≤∈⊆  

since ( ){ }1: txfXx ≤∈  is an α-open (resp. C-open) set and since ( ){ }2: txgXx <∈  

is an α-closed (resp. C-closed) set, it follows that ( ( ) ) ( ( ) )V
tgAtfA 21 ,, α⊆α Λ  

( ( ( ) ) ( ( ) )).,,.resp 21
V

tgACtfAC ⊆Λ  Hence 21 tt <  implies that ( ) ( ).,, 21 tgAtfA ρ  

The proof follows from Theorem 2.1. □ 

Corollary 3.2. If for each pair of disjoint α-open (resp. C-open) sets 21, GG  there 

exist closed sets 1F  and 2F  such that 2211 , FGFG ⊆⊆  and ,21 ∅=FF ∩  then every 

contra-α-continuous (resp. contra-C-continuous) function is contra-continuous. 

Proof. Let f be a real-valued contra-α-continuous (resp. contra-C-continuous) 

function defined on X. Set ,fg =  then by Corollary 3.1, there exists a contra-

continuous function h such that .fhg ==  □ 

Corollary 3.3. If for each pair of disjoint α-open (resp. C-open) sets 21, GG  of X, 

there exist closed sets 1F  and 2F  of X such that 2211 , FGFG ⊆⊆  and ,21 ∅=FF ∩  

then X has the strong cc-insertion property for (cαc, cαc) (resp. (cCc, cCc)). 

Proof. Let g and f be real-valued functions defined on the X, such that f and g are 

cαc (resp. cCc), and .fg ≤  Set ( ) ,2gfh +=  thus fhg ≤≤  and if ( ) ( )xfxg <  

for any x in X, then ( ) ( ) ( ).xfxhxg <<  Also, by Corollary 3.2, since g and f are contra-

continuous functions hence h is a contra-continuous function. □ 

Corollary 3.4. If for each pair of disjoint subsets 21, GG  of X, such that 1G  is 

α-open and 2G  is C-open, there exist closed subsets 1F  and 2F  of X such that ,11 FG ⊆  

22 FG ⊆  and ,21 ∅=FF ∩  then X have the weak cc-insertion property for (cαc, cCc) 

and (cCc, cαc). 

Proof. Let g and f be real-valued functions defined on X, such that g is cαc (resp. 
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cCc) and f is cCc (resp. cαc), with .fg ≤  If a binary relation ρ is defined by BA ρ  in 

case ( ) ( )V
BAC α⊆Λ  (resp. ( ) ( )V

BCA ⊆α Λ ), then by hypothesis ρ is a strong binary 

relation in the power set of X. If 1t  and 2t  are any elements of Q  with ,21 tt ≤  then 

( ) ( ){ } ( ){ } ( ) ;,::, 2211 tgAtxgXxtxfXxtfA ⊆<∈⊆≤∈⊆  

since ( ){ }1: txfXx ≤∈  is a C-open (resp. α-open) set and since ( ){ }2: txgXx ≤∈  

is an α-closed (resp. C-closed) set, it follows that ( ( ) ) ( ( ) )V
tgAtfAC 21 ,, α⊆Λ  (resp. 

( ( ) ) ( ( ) ).,, 21
V

tgACtfA ⊆α Λ  Hence 21 tt ≤  implies that ( ) ( ).,, 21 tgAtfA ρ  The 

proof follows from Theorem 2.1.  □ 

Before stating consequences of Theorem 2.2, we state and prove the necessary 

lemmas.  

Lemma 3.1. The following conditions on the space X are equivalent: 

(i) For each pair of disjoint subsets 21, GG  of X, such that 1G  is α-open and 2G  is 

C-open, there exist closed subsets ,1F  2F  of X such that ,11 FG ⊆  22 FG ⊆  and 

.21 ∅=FF ∩  

(ii) If G is a C-open (resp. α-open) subset of X which is contained in an α-closed 

(resp. C-closed) subset F of X, then there exists a closed subset H of X such that 

.FHHG ⊆⊆⊆ Λ  

Proof. (i) ⇒ (ii) Suppose that ,FG ⊆  where G and F are C-open (resp. α-open) and 

α-closed (resp. C-closed) subsets of X, respectively. Hence, cF  is an α-open (resp. 

C-open) and .∅=cFG ∩  

By (i) there exists two disjoint closed subsets 21, FF  such that 1FG ⊆  and 

.2FF
c ⊆  But 

,22 FFFF
cc ⊆⇒⊆  

and 

c
FFFF 2121 ⊆⇒∅=∩  



Majid Mirmiran and Binesh Naderi 

http://www.earthlinepublishers.com 

30 

hence 

FFFG
c ⊆⊆⊆ 21  

and since c
F2  is an open subset containing ,1F  we conclude that ,21

c
FF ⊆Λ  i.e., 

.11 FFFG ⊆⊆⊆ Λ  

By setting ,1FH =  condition (ii) holds. 

(ii) ⇒ (i) Suppose that 21, GG  are two disjoint subsets of X, such that 1G  is α-open 

and 2G  is C-open. 

This implies that c
GG 12 ⊆  and c

G1  is an α-closed subset of X. Hence by (ii) there 

exists a closed set H such that .12
c

GHHG ⊆⊆⊆ Λ   

But 

( ) ∅=⇒⊆ ΛΛ c
HHHH ∩  

and 

( ) .11
cc

HGGH
ΛΛ ⊆⇒⊆  

Furthermore, ( )c
H

Λ  is a closed subset of X. Hence ,2 HG ⊆  ( )c
HG

Λ⊆1  and 

( ) .∅=Λ c
HH ∩  This means that condition (i) holds. □ 

Lemma 3.2. Suppose that X is a topological space. If each pair of disjoint subsets 

21, GG  of X, where 1G  is α-open and 2G  is C-open, can be separated by closed subsets 

of X, then there exists a contra-continuous function [ ]1,0: →Xh  such that 

( ) { }02 =Gh  and ( ) { }.11 =Gh  

Proof. Suppose 1G  and 2G  are two disjoint subsets of X, where 1G  is α-open and 

2G  is C-open. Since ,21 ∅=GG ∩  hence .12
c

GG ⊆  In particular, since c
G1  is an 

α-closed subset of X containing the C-open subset 2G  of X, by Lemma 3.1, there exists a 

closed subset 21H  such that  

.121212
c

GHHG ⊆⊆⊆ Λ  
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Note that 21H  is also an α-closed subset of X and contains ,2G  and c
G1  is an α-closed 

subset of X and contains the C-open subset Λ
21

H  of X. Hence, by Lemma 3.1, there 

exists closed subsets 41H  and 43H  such that  

.14343212141412
c

GHHHHHHG ⊆⊆⊆⊆⊆⊆⊆ ΛΛΛ  

By continuing this method for every ,Dt ∈  where [ ]1,0⊆D  is the set of rational 

numbers that their denominators are exponents of 2, we obtain closed subsets tH  with 

the property that if Dtt ∈21,  and ,21 tt <  then .
21 tt HH ⊆  We define the function h 

on X by ( ) { }tHxtxh ∈= :inf  for 1Gx ∉  and ( ) 1=xh  for .1Gx ∈  

Note that for every ,Xx ∈  ( ) ,10 ≤≤ xh  i.e., h maps X into [ ].1,0  Also, we note 

that for any ,Dt ∈  ;2 tHG ⊆  hence ( ) { }.02 =Gh  Furthermore, by definition, 

( ) { }.11 =Gh  It remains only to prove that h is a contra-continuous function on X. For 

every ,R∈α  we have if ,0≤α  then ( ){ } ∅=α<∈ xhXx :  and if ,0 α<  then 

( ){ } { },:: α<=α<∈ tHxhXx t∪  hence, they are closed subsets of X. Similarly, if 

,0<α  then ( ){ } XxhXx =α>∈ :  and if ,0 α≤  then ( ){ } =α>∈ xhXx :  

{( ) }α>Λ
tH

c
t :∪  hence, every of them is a closed subset. Consequently h is a contra-

continuous function. □ 

Lemma 3.3. Suppose that X is a topological space such that every two disjoint 

C-open and α-open subsets of X can be separated by closed subsets of X. The following 

conditions are equivalent: 

(i) Every countable covering of C-closed (resp. α-closed) subsets of X has a 

refinement consisting of α-closed (resp. C-closed) subsets of X such that for every 

,Xx ∈  there exists a closed subset of X containing x such that it intersects only finitely 

many members of the refinement. 

(ii) Corresponding to every decreasing sequence { }nG  of C-open (resp. α-open) 

subsets of X with empty intersection there exists a decreasing sequence { }nF  of α-closed 

(resp. C-closed) subsets of X such that ∩
∞

= ∅=
1n nF  and for every ,N∈n .nn FG ⊆  
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Proof. (i) ⇒ (ii) Suppose that { }nG  is a decreasing sequence of C-open (resp. 

α-open) subsets of X with empty intersection. Then { }N∈nG
c
n :  is a countable 

covering of C-closed (resp. α-closed) subsets of X. By hypothesis (i) and Lemma 3.1, 

this covering has a refinement { }N∈nVn :  such that every nV  is a closed subset of X 

and .
c
nn GV ⊆Λ  By setting ( ) ,

c
nn VF
Λ=  we obtain a decreasing sequence of closed 

subsets of X with the required properties. 

(ii) ⇒ (i) Now if { }N∈nHn :  is a countable covering of C-closed (resp. α-closed) 

subsets of X, we set for ,N∈n .
1

c
n

i in HG 






= =∪  Then { }nG  is a decreasing sequence 

of C-open (resp. α-open) subsets of X with empty intersection. By (ii) there exists a 

decreasing sequence { }nF  consisting of α-closed (resp. C-closed) subsets of X such that 

∩
∞

= ∅=
1n nF  and for every ., nn FGn ⊆∈ N  Now we define the subsets nW  of X in 

the following manner: 

1W  is a closed subset of X such that 11 WF
c ⊆  and .11 ∅=Λ

GW ∩   

2W  is a closed subset of X such that 221 WFW
c ⊆Λ

∪  and ,22 ∅=Λ
GW ∩  and so 

on. (By Lemma 3.1, nW  exists). 

Then since { }N∈nF
c
n :  is a covering for X, hence { }N∈nWn :  is a covering for X 

consisting of closed sets. Moreover, we have 

  (i) ,1+
Λ ⊆ nn WW  

 (ii) ,n
c
n WF ⊆  

(iii) ∪
n

i in HW
1

.=⊆  

Now setting 11 WS =  and for ,2≥n  we set .\ 11
Λ
−+= nnn WWS  

Then since nn WW ⊆Λ
−1  and ,\1 nnn WWS +⊇  it follows that { }N∈nSn :  consists 

of closed sets and covers X. Furthermore, ∅≠ji SS ∩  if and only if .1≤− ji  

Finally, consider the following sets: 
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,11 HS ∩   21 HS ∩  

,12 HS ∩   ,22 HS ∩   32 HS ∩  

,13 HS ∩    ,23 HS ∩   ,33 HS ∩   43 HS ∩  

⋮  

,1HSi ∩    ,2HSi ∩   ,3HSi ∩   ,4HSi ∩   ,⋯   1+ii HS ∩  

These sets are closed sets, cover X and refine { }N∈nHn : . In addition, ji HS ∩  can 

intersect at most the sets in its row, immediately above, or immediately below row. 

Hence if Xx ∈  and ,mn HSx ∩∈  then mn HS ∩  is a closed set containing x that 

intersects at most finitely many of sets .ji HS ∩  Consequently, 

{ }1...,,1,: +=∈ ijiHS ji N∩  refines { }N∈nHn :  such that its elements are closed 

sets, and for every point in X we can find a closed set containing the point that intersects 

only finitely many elements of that refinement. □ 

Corollary 3.5. If every two disjoint C-open and α-open subsets of X can be 

separated by closed subsets of X, and in addition, every countable covering of C-closed 

(resp. α-closed) subsets of X has a refinement that consists of α-closed (resp. C-closed) 

subsets of X such that for every point of X we can find a closed subset containing that 

point such that it intersects only a finite number of refining members then X has the 

weakly cc-insertion property for ( )cCccc ,α ( )( ).,. cccCcresp α  

Proof. Since every two disjoint C-open and α-open sets can be separated by closed 

subsets of X, therefore by Corollary 3.4, X has the weak cc-insertion property for 

( )cCccc ,α  and ( )., cccCc α  Now suppose that f and g are real-valued functions on X 

with ,fg <  such that g is cαc (resp. cCc), f is cCc ( )ccα.resp  and gf −  is cCc 

( )..resp ccα  For every ,N∈n  set  

( ) { ( ) ( ) }11 3:3, +−+− ≤−∈=− nn
xgfXxgfA  

Since gf −  is cCc (resp. cαc), hence ( )1
3,

+−− n
gfA  is a C-open (resp. α-open) 

subset of X. Consequently, { ( )}1
3,

+−− n
gfA  is a decreasing sequence of C-open (resp. 
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α-open) subsets of X and furthermore since ,0 gf −<  it follows that 

( )∩
∞

=
+− ∅=−

1

1 .3,
n

n
gfA  Now by Lemma 3.3, there exists a decreasing sequence 

{ }nD  of α-closed (resp. C-closed) subsets of X such that ( ) n
n

DgfA ⊆− +− 1
3,  and 

∩
∞

= ∅=
1

.
n nD  But by Lemma 3.2, the pair ( )1

3,
+−− n

gfA  and nDX \  of C-open 

(resp. α-open) and α-open (resp. C-open) subsets of X can be completely separated by 

contra-continuous functions. Hence by Theorem 2.2, there exists a contra-continuous 

function h defined on X such that ,fhg <<  i.e., X has the weakly cc-insertion property 

for ( )cCccc ,α ( )( ).,.resp cccCc α   □ 
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