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Abstract

In this paper, we introduce and clarify a new presentation between the

divisible module and the injective module. Also, we obtain some new results

about them.

1 Introduction

In mathematics, a module is one of the fundamental algebraic structures used

in abstract algebra. A module taking its scalars from a ring R is called an

R-module. Thus, a module, like a vector space, is an additive abelian group, a

product is defined between elements of the rings and elements of the module that

is distributive over the addition operation of each parameter and is compatible

with the ring multiplication. In mathematics, especially in the area of abstract of

algebra known as module theory, an injective module is a module Q that shares

certain desirable properties with the Z-module Q of all rational numbers. Injective

modules have been heavily studied, and a variety of additional notions are defined

in terms of them. Injective co generators are injective modules that faithfully

represent the entire category of modules. Injective resolutions measure how far
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from injective a module is terms of the injective dimension and represent modules

in the derived category. Injective hulls are maximal essential extensions, and turn

out to be minimal injective extensions. Over a Noetherian ring, every injective

modules is uniquely a direct sum of incomparable modules, and their structure

is well understood. An injective module over one ring, may not be injective

over another, but there well-understood methods of changing rings which handle

special cases. Rings which are themselves injective modules have a number of

interesting properties and include rings such as group rings of finite groups over

fields. Injective modules include divisible groups and are generalized by the notion

of injective objects in category theory. In mathematics, one can often define a

direct Product of objects already known, giving a new one. This generalizes

the Cartesian product of the underlying sets, together with a suitably defined

structure on the product set. More abstractly, one talks a bout the product in

category theory, which formalizes these notions. Examples are the product of

sets, groups (describe below), rings and other algebraic structures. The product

of topological spaces is another instance. There is also the direct sum in some

areas this is used interchangeably, while in others it is a different concept.

In this paper, we show to prove the important theorems and examples of

injective modules. Next, we show a strong relationship between the injective

module and the divisible module, such that every injective module gives divisible

but the converse needs another condition P.I.D. Finally, we recall the definition

of n-cokernel, n-kernel, and n-exact sequence and we give an open problem about

n-injective modules.

2 Preliminaries

In this section, we recall some of the fundamental concepts and definitions, which

are necessary for this paper. For details we refer readers to [1, 6–8]

Definition 2.1. Let R be a ring. A (left) R-module is an additive abelian group

A together with a function R×A −→ A (the image of (r, a) being denoted by ra)

such that for all r, s ∈ R and a, b ∈ A:
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(i) r(a+ b) = ra+ rb.

(ii) (r + s)a = ra+ sa.

(iii) r(sa) = (rs)a.

If R has an identity element 1R and

(iv) 1Ra = a for all a ∈ A,

then A is said to be a unitary R-module. If R is a division ring, then a unitary

R-module is called a (left) vector space.

Definition 2.2. Suppose R is a ring, and {Mi}i∈I . The final family are

R-modules. We define the direct product of modules Mi, denoted by∏
i∈I

Mi = {(xi) : xi ∈Mi,∀i ∈ I}.

Scalar addition and multiplication is defined by

(xi) + (yi) = (xi + yi),

r(xi) = (rxi).

Definition 2.3. Suppose R is a ring, and A and B are R-modules. We define

the direct sum of modules A and B as

A
⊕

B = {a
⊕

b | a ∈ A, b ∈ B},

where all algebraic operations are defined componentwise. In particular, suppose

that A and B are left R-modules, then

(a1

⊕
b1) + (a2

⊕
b2) = (a1 + b1)

⊕
(b1 + b2)

and

r(a
⊕

b) = (ra
⊕

rb).
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Definition 2.4. Let M and N be R-modules. Define HomR(M,N) to be the

Abelian group of R-homomorphisms f : M −→ N , given by (f + g)(m) = f(m) +

g(m) for every m ∈M and f, g ∈ HomR(M,N).

Definition 2.5. Let Mi∈Z be a family of R-modules, and let fii∈Z be a family of

R-homomorphisms such that Mi−1
fi−→Mi for every i ∈ Z. Then the sequence

...
f−1−→M−1

f0−→M0
f1−→M1

f2−→M2
f3−→ ... (2.1)

is said to be exact provided that Im(fi−1) = Ker(fi) for every i ∈ Z. Note that

0 −→ A
f−→ B

g−→ C −→ 0 is exact if and only if f is an R-monomorphism, g

is an R-epimorphism, and Im(f) = Ker(g). This type of sequence is called short

exact.

Definition 2.6. An R-module M is injective provided that for every

R-monomorphism g : A −→ B between R-modules, any R-homomorphism

f : A −→ M can be extended to an R-homomorphism h : B −→ M such that

hg = f ; i.e., the following diagram commutes

0 A B

M

g

f
h

Definition 2.7. Let M be an R-module. An element m ∈M is divisible provided

that for any r ∈ R that is not a right zero-divisor, there exists an x ∈M such that

m = rx. We also say that M is a divisible module provided that every element

of M is divisible. Note that a divisible group is a divisible Z-module.

Definition 2.8. Let C be an additive category and f : A −→ B a morphism in

C. A weak cokernel of f is a morphism g : B −→ C such that for all C ′ ∈ C the

sequence of abelian groups

C(C,C ′) g∗−→ C(B,C ′) f∗−→ C(A,C ′)
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is exact. Equivalently, g is a weak cokernel of f if fg = 0 and for each morphism

h : B −→ C ′ such that fh = 0 there exists a (not necessarily unique) morphism

p : C −→ C ′ such that h = gp. These properties are subsumed in the following

commutative diagram:

A B C

C ′

f

0

g

∀h
∃p

Clearly, a weak cokernel g of f is a cokernel of f if and only if g is an

epimorphism.The concept of weak kernel is defined dually.

Proposition 2.9. Let R be a ring and let J be an R-module. The following

conditions are equivalent.

1) For any homomorphism f : N −→ J and an monomorphism g : M −→ N

there is a homomorphism h : M −→ J such that the following diagram commutes:

J

M Ng

f
h

2) Every short exact sequence 0−→J f−→M
g−→ N−→0 splits.

Lemma 2.10. Let {Mλ}λ∈Λ be a family of R-modules. Then for every λ ∈ Λ,

πλiλ : Mλ −→Mλ is the identity function on Mλ.

Theorem 2.11. Let f : M −→ N be an R-homomorphism, let A be a submodule

of M , let B be a submodule of N , and let f(A) ⊆ B. Define the function ρ :

M/A −→ N/B by ρ(m+A) = f(m) +B. We say that ρ is the R-homomorphism

induced by f . Then ρ is an R-epimorphism if f is an R-epimorphism, and ρ is a

R-monomorphism if A = f−1(B).

Corollary 2.12. Let f : M −→ N be an R-epimorphism. Then M/Ker(f) ≈ N .

Proposition 2.13. Let 0 −→ A1
f−→ B

g−→ A2 −→ 0 be a short exact sequence

of R-homomorphisms. Then the following statements are equivalent:
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i. The sequence is split;

ii. There is an R-homomorphism h : A2 −→ B with gh = 1A2 ;

iii. There is an R-homomorphism k : B −→ A1 with kf = 1A2 ;

3 Main Results

Definition 3.1. An R-module J is an injective module if J satisfies one of the

equivalent conditions of Proposition (2.9)

Proposition 3.2. A direct product of R-modules
∏
i∈I Ji is injective iff Ji is

injective for every i ∈ I .

Proof. Suppose that Ji is injective ∀i ∈ I . Now in this diagram

0 A B

∏
i∈I Ji

Ji

g

f
h

hiπiii

we have to find h. Since Ji is injective ∃hi : B −→ Ji such that hig = πif . Define

h : B −→
∏
i∈I Ji to be h(b) := (hi(b))i∈I = (h1(b);h2(b); ...). Now it is very easy

to check that, hg = f .

Conversely, suppose that
∏
i∈I Ji is injective. To show that, Ji is injective for

each i ∈ I. Now in this diagram

0 A B

Ji

∏
i∈I Ji

g

f
hi

h
iiπi

we have hg = iif .

We have to find hi. Define hi : B −→ Ji to be hi = πih. Now it is very easy

to check that, hig = f ∀i ∈ I. Here, hig = πihg = πiiif = IJif = f ∀i ∈ I.
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Lemma 3.3. Let R be a ring with identity. A unitary R-module J is injective

if and only if for every left ideal L of R, any R-module homomorphism L −→ J

may be extended to an R-module homomorphism R −→ J .

Proof. To say that f : L −→ J may be extended to R means there is a

homomorphism h : R −→ J such that the diagram

0 L R

J

⊂

f
h

is commutative. Clearly, such an h always exists if J is injective. Conversely,

suppose J has the stated extension property and suppose we are given a diagram

of module homomorphisms

0 A B

J

g

f

with top row exact. To show that J is injective we must find a homomorphism

h : B −→ J with hg = f . Let S be the set of all R-module homomorphisms

h : C −→ J , where

Im g ⊂ C ⊂ B ⊂ S

is nonempty since fg−1 : Im g −→ J is an element of S (g is a monomorphism).

Partially order S by extension : h1 6 h2 iff Dom h1 ⊂ Dom h2 and h2| Dom
h1 = h1. We can verify that the hypotheses of Zorn’s Lemma are satisfied and

conclude that S contains a maximal element h : H −→ J with hg = f . We shall

complete the proof by showing H = B.

If H 6= B and b ∈ B − H, then L = {r ∈ |rb ∈ H} is left ideal of R. The

map L −→ J given by r 7−→ h(rb) is a well-defined R-module homomorphism.

By the hypothesis there is a R-module homomorphism k : R −→ J such that

k(r) = h(rb) for all r ∈ L. Let c ∈ k(1R) and define a map h̄ : H + Rb −→ J

by a + rb 7−→ h(a) + rc. We claim that h̄ is well-defined. For if a1 + r1b =
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a2 + r2b ∈ H + Rb , then a1 − a2 = (r2 − r1)b ∈ H ∩ Rb. Hence r2 − r1 ∈ L and

h(a1)−h(a2) = h(a1−a2) = h((r2−r1)b) = k(r2−r1) = (r2−r1)k(1R) = (r2−r1)c.

Therefore, h̄ : H+Rb −→ J is an R-module homomorphism that is an element of

the set S. This contradicts the maximality of h since b /∈ H and henceH & H+Rb.

Therefore, H = B and J is injective.

Example 3.4.

1. Q is an injective Z-module by Lemma (3.3) since for every

Z-homomorphism f : nZ −→ Q, where nZ is an ideal of Z for 0 6= n ∈ Z,

there exists a Z-homomorphism g : Z −→ Q defined by g(z) = zf(n)
n , so

g(nz) = (nz)f(n)
n = zf(n) = f(nz) for every nz ∈ Z.

2. Note that Z is not an injective Z-module since using the Z-homomorphism

f : 2Z −→ Z given by f(2z) = z, there is no Z-homomorphism g : Z −→ Z

such that g(2z) = f(2z) for every 2z ∈ 2Z. Otherwise, 1 = f(2) = g(2) =

2g(1), implying that g(1) = 1
2 . However, since g(1) ∈ Z, this is impossible.

Theorem 3.5. Let M be an R-module. Then M is injective if and only if for

every short exact sequence 0 −→ A
θ−→ B

ψ−→ C −→ 0 of R-modules,

0 −→ HomR(C,M)
Ψ−→ HomR(B,M)

Θ−→ HomR(A,M) −→ 0

is also a short exact sequence, where Ψ(f) = fψ and Θ(f) = fθ.

Proof. Suppose that M is injective.

We will first show that Ψ is an R-monomorphism. Suppose that Ψ(f) = Ψ(g)

for some f, g ∈ HomR(C,M). Then for every b ∈ B, f(ψ(b)) = g(ψ(b)). We want

to see thatf = g. Note that for every c ∈ C, there exists b ∈ B such that ψ(b) = c

since ψ is an R-epimorphism. Then for every c ∈ C, f(c) = f(ψ(b)) = g(ψ(b)) =

g(c). Thus, f = g and Ψ is an R-monomorphism.

Secondly, we will see that Θ is an R-epimorphism. Let g ∈ HomR(A,M).

Since M is injective, there exists an f ∈ HomR(B,M) such that g = fθ = Θ(f).

Thus, Θ is an R-epimorphism.

http://www.earthlinepublishers.com



The New Results in Injective Modules 153

Finally, we will show that Ker(Θ) = Im(Ψ) Let f ∈ Im(Ψ), so there

exists g ∈ HomR(C,M) such that Θ(g) = gθ = f . Let a ∈ A. So,

θ(a) ∈ Im(θ) =Ker(ψ). Then ψ(θ(a)) = 0, so gψ(θ(a)) = g(0) = 0. Thus, for

every a ∈ A, f(θ(a)) = 0. Therefore, f ∈Ker(θ) so that Im(Ψ) ⊆Ker(Θ). Let

f ∈Ker(Θ) be arbitrary. Then Θ(f) = fθ = 0 so that 0 = f(Imθ) = f(Kerψ).

Since Ker(ψ) ⊆ B and f(Kerψ) ⊆ 0, there is an induced R-homomorphism

ρ : B/Ker(ψ) −→ M given by ρ(m + Kerψ) = f(m) by Theorem (2.11).

Also, since Ker(ψ) ⊆ B and ψ(Kerψ) ⊆ 0, there is an induced R-isomorphism

ς : B/Kerψ −→ C given by ς(b + Kerψ) = ψ(b) by Corollary (2.12). Consider

ρς−1 : C −→ M . Notice that ρς−1 is an R-homomorphism since ρ and ς−1

are. Since φ(b + Kerψ) = ψ(b) implies that b + Kerψ = ς−1ψ(b), for every

b ∈ B , ρς−1ψ(b) = ρ(b + Kerψ) = f(b), so f = ρς−1ψ = Ψ(ρς−1). Thus,

f ∈ Im(Ψ) and Ker(Θ) ⊆ Im(Ψ). Therefore, Ker(Θ) = Im(Ψ), and hence,

0 −→ HomR(C,M)
Ψ−→ HomR(B,M)

Θ−→ HomR(A,M) −→ 0 is a short exact

sequence.

Conversely, suppose that whenever 0 −→ A −→ B −→ C −→ 0 is an

exact sequence between R-modules, 0 −→ HomR(C,M) −→ HomR(B,M) −→
HomR(A,M) −→ 0 is also exact. Let I be a left ideal of a ring R, so I is

a submodule of an R-module R, where 0 −→ I
i−→ R is a sequence with the

inclusion map i and f : I −→M is an R-homomorphism. Consider the following

diagram

0 I R R/I 0

M

i

f
g

π

where π : R −→ R/I is the projection R-homomorphism. Since the inclusion

map i is an R-monomorphism, the projection map π is an R-epimorphism,

and Ker(π) = Im(i), the top row is exact. Then 0 −→ HomR(R/I,M)
Π−→

HomR(R,M)
I−→ HomR(I,M) −→ 0 is also exact. Since f ∈ HomR(I,M) and

I is an R-epimorphism, there exists g ∈ HomR(R,M) such that I(g) = gi = g|I =

f . Thus, M is injective
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Corollary 3.6. Let R be an integral domain and let K be the field of fractions of

R. Then K is an injective R-module.

Proof. Let I be an ideal of R and let f : I −→ K be a homomorphism of

R-modules. For 0 6= r, s ∈ I we have rf(s) = f(rs) = sf(r). As consequence in

K we have f(r)/r = f(s)/s for any 0 6= r, s ∈ I. Denote this element by a. Define

f̄ : R −→ K, f̄(r) := ra

Check: f̄ is a homomorphism of R-modules and f̄ |I = f . By Lemma (3.3) it

follows that K is an injective R-module.

Proposition 3.7. Let M 6= 0 and N be R-modules, and let θ : M ↪→ N be a

monomorphism. Then the following are equivalent:

1. Every nonzero submodule of N has a nonzero intersection with θ(M).

2. Every nonzero element of N has a nonzero multiple in θ(M).

3. If φoθ is injective for a homomorphism φ : N −→ Q, then φ is injective.

Proof. (1) =⇒ (2) If n is a nonzero element of N , then the cyclic module Rn has

a nonzero intersection with θ(M).

(2) =⇒ (3) If not, then kerφ has a nonzero intersection with θ(M).

contradicting the assumption that φoθ is injective.

(3) =⇒ (1) Let N ′ be a nonzero submodule of N , and consider the canonical

surjection φ : N −→ N/N ′. Then φ is not injective, hence the composition

φoθ : M −→ N/N ′ is not injective, i.e., N ′ contains a nonzero element of θ(M).

Definition 3.8. An abelian group D is said to be divisible if given any y ∈ D
and 0 6= n ∈ Z, there exists x ∈ D such that nx = y.

Example 3.9.

1. If R is a division ring, then every R-module is injective by Lemma (3.3)

since the only ideals of R are 0 and R.
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2. Note that Q is a divisible Z-module since for every q ∈ Q, where q = a
b for

integers a, b ∈ Z with b 6= 0, and for every 0 6= z ∈ Z, there exists x ∈ Q
such that x = a

zb so that q = zx.

3. Note that Z is not a divisible Z-module since there is no x ∈ Z with 3 = 2x.

Theorem 3.10. Every injective R-module is divisible.

Proof. Suppose that M be an injective R-module. Let m ∈ M and let r ∈ R be

such that r is not a right zero-divisor. Note that Rr is a left ideal in R. Define

the well-defined function f : Rr −→ M by f(tr) = tm since r is not a right

zero-divisor. Note that for every s, t ∈ R

f(tr + sr) = f((t+ s)r) = (t+ s)m = tm+ sm = f(tr) + f(sr) (3.1)

and

f(t(sr)) = f((ts)r) = (ts)m = t(sm) = tf(sm), (3.2)

so f is an R-homomorphism. Since M is injective, there is an R-homomorphism

g : R −→ M such that g|RI = f . Thus, m = 1Rm = f(1Rr) = g(1Rr) = rg(1R),

where g(1R) ∈M . Hence, M is divisible.

Lemma 3.11. An abelian group D is divisible if and only if D is an injective

(unitary) Z-module.

Proof. If D is injective, y ∈ D and 0 6= n ∈ Z, let f : 〈n〉 −→ D be the unique

homomorphism determined by n 7→ y; (〈n〉 is a free Z module). Since D is

injective, there is a homomorphism h : Z −→ D such that the diagram

0 〈n〉 Z

D

⊂

f
h

is commutative. If x = h(1), then nx = nh(1) = h(n) = f(n) = y. Therefore,

D is divisible. To prove the converse note that the only left ideals of Z are the

cyclic groups 〈n〉,n ∈ Z. If D is divisible and f : 〈n〉 −→ D is a homomorphism,
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then there exists x ∈ D with nx = f(n). Define h : Z −→ D by 1 7→ x and verify

that h is a homomorphism that extends f . Therefore, D is injective by Lemma

(3.3).

Remark 3.12. The rationals Q (with addition) form an injective abelian group

(i.e. an injective Z-module). The factor group Q/Z is also injective Z-module.

Lemma 3.13. Every abelian group A may be embedded in a divisible abelian

group.

Proof. There is a free Z-module F and an epimorphism F −→ A with kerK

so that F/K ∼= A. Since F is a direct sum of copies of Z and Z ⊂ Q, F
may be embedded in a direct sum D of copies of the rationals Q. But D is a

divisible group by Proposition (3.2) and Lemma (3.11). If f : F −→ D is the

embedding monomorphism, then f induces an isomorphism F/K ∼= f(F )/f(K).

Thus the composition A ∼= F/K ∼= f(F )/f(K) ⊂ D/f(K) is a monomorphism.

But D/f(K) is divisible since it is the homomorphic image of a divisible group.

Lemma 3.14. If J is a divisible abelian group and R is a ring with identity, then

HomZ(R, J) is an injective left R-module.

Proof. By Lemma (3.3) it suffices to show that for each left ideal L of R,

every R-module homomorphism f : L −→ HomZ(R, J) may be extended to an

R-module homomorphism h : R −→ HomZ(R, J). The map g : L −→ J given by

g(a) = [f(a)](1R) is a group homomorphism. Since J is an injective Z-module by

Lemma (3.11) and we have the diagram

0 L R

J

⊂

g

there is group homomorphism ḡ : R −→ J such that ḡ|L = g. Define

h : R −→ HomZ(R, J) by n 7→ y, where h(r) : R −→ J is the map given by

[h(r)](x) = ḡ(xr)(x ∈ R). h is well-defined function (that is, each h(r) is a group
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homomorphism R −→ J) and h is group homomorphism R −→ HomZ(R, J). If

s, r, x ∈ R, then

h(sr)(x) = ḡ(x(sr)) = ḡ((xs)r) = h(r)(xs). (3.3)

By the definition of the R-module structure of HomZ(R, J), h(r)(xs) = [sh(r)](x),

whence h(sr) = sh(r) and h is an R-module homomorphism. Finally suppose

r ∈ L and x ∈ R. Then xr ∈ L and

h(r)(x) = ḡ(xr) = g(xr) = [f(xr)](1R). (3.4)

Therefore, h(r) = f(r) for r ∈ L and h is an extension of f .

Proposition 3.15. Every unitary module A over a ring R with identity maybe

embedded in an injective R-module

Proof. Since A is an abelian group, there is a divisible group J and a group

monomorphism f : A −→ J by Lemma (3.13). The map f : HomZ(R,A) −→
HomZ(R, J) given on g ∈ HomZ(R,A) by f̄(g) = fg ∈ HomZ(R, J) is easily

seen to be an R-module monomorphism. Since every R-module homomorphism

is a Z-module homomorphism, we have HomR(R,A) ⊂ HomZ(R,A). In fact, it

is easy to see that HomR(R,A) is an R-submodule of HomZ(R,A). Finally, the

map A −→ HomR(R,A) given by a 7→ fa, where fa(r) = ra, is an R-module

monomorphism (in fact it is an isomorphism). Composing these maps yields an

R-module monomorphism

A −→ HomR(R,A)
⊂−→ HomZ(R,A)

f̄−→ HomZ(R, J). (3.5)

Since HomZ(R, J) is an injective R-module by Lemma (3.14), we have embedded

A in an injective.

Earthline J. Math. Sci. Vol. 7 No. 1 (2021), 145-159



158 Samira Hashemi, Feysal Hassani and Rasul Rasuli

Lemma 3.16. Let R be a P.I.D. If M is a divisible R-module, then M is injective

Proof. Suppose that M is an injective R-module. Then by Theorem (3.10) M is

divisible. Conversely, suppose that M is a divisible R-module. Let f : I −→ M

be an R-homomorphism, where I is a left ideal of R. Since R is a principle ideal

ring, I = Rt for some t ∈ R. Since M is divisible, there exists an m ∈M such that

f(t) = tm. Define g : R −→ M by g(r) = rm. Then g is an R-homomorphism.

Note that for every st ∈ Rt, g(st) = (st)m = s(tm) = sf(t) = f(st). Thus, M is

injective.

Example 3.17. If Z is P.I.D injective Z-module, then Z is divisible module over

Z.

Corollary 3.18. If R is a P.I.D, J is an injective R-module and K is a submodule

of J, then J/K is injective.

Proof. J is divisible so J/K is divisible with R P.I.D imply J/K is injective

4 One Open Problem

Firstly we recall following definitions from [5].

Definition 4.1. Let C be an additive category and d0 : X0 −→ X1 be a morphism

in C. An n-coker of d0 is a sequence

(d1, ..., dn) : X1 d1−→ X2 d2−→ ...
dn−→ Xn+1

such that, for all Y ∈ C the induced sequence of abelian groups

0 −→ C(Xn+1, Y )
dn∗
−→ C(Xn, Y )

dn−1∗

−→ ...
d1

∗

−→ C(X1, Y )
d0

∗

−→ C(X0, Y )

is exact. Equivalently, the sequence (d1, ..., dn) is an n-coker of d0 if, for all

1 ≤ k ≤ n− 1 the morphism dk is a weak cokernel of dk−1, and dn is moreover a

cokernel of dn−1. The concept of n-ker of morphism is defined dually.
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Definition 4.2. Let C be an additive category. An n-exact sequence in C is a

complex

X0 d0−→ X1 d1−→ ...
dn−1

−→ Xn dn−→ Xn+1

in Chn(C) such that (d0, ..., dn−1) is an n-ker of dn, and (d1, ..., dn) is an n-coker

of d0.

Now one can investigate an n-injective module n-divisible modules. Next one

can obtain all of the result of them as we obtained in this paper, and it is an open

problem.

References

[1] M. F. Atiyah and I. G. MacDonald, Introduction to Commutative Algebra, Westview

Press, 1969.

[2] H. Cartan and Samuel Eilenberg, Homological Algebra, Princeton, New Jersey:

Princeton University Press, 1956.

[3] Thomas W. Hungerford, Algebra, Springer, 2008.

[4] James Jans, Projective injective modules, Pacific Journal of Mathematics 9(4)

(1959), 1103-1108. https://doi.org/10.2140/pjm.1959.9.1103

[5] Gustavo Jasso, n-abelian and n-exact categories, Mathematische Zeitschrift 283(3-4)

(2016), 703-759. https://doi.org/10.1007/s00209-016-1619-8

[6] Joseph J. Rotman, An Introduction to Homological Algebra, Springer, 2009.

https://doi.org/10.1007/978-0-387-68324-9_1

[7] Joseph J. Rotman, An Introduction to the Theory of Groups, Springer, 1999.

[8] D. W. Sharpe and P. Vamos, Injective Modules, Cambridge University Press, 2008.

This is an open access article distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted,

use, distribution and reproduction in any medium, or format for any purpose, even commercially

provided the work is properly cited.

Earthline J. Math. Sci. Vol. 7 No. 1 (2021), 145-159

https://doi.org/10.2140/pjm.1959.9.1103
https://doi.org/10.1007/s00209-016-1619-8
https://doi.org/10.1007/978-0-387-68324-9_1

	Introduction
	Preliminaries
	Main Results
	One Open Problem

