
Earthline Journal of Mathematical Sciences
ISSN (Online): 2581-8147
Volume 7, Number 1, 2021, Pages 137-144
https://doi.org/10.34198/ejms.7121.137144

Certain Subclass of Analytic Functions Defined by

Wanas Operator

Timilehin Gideon Shaba1,*, Abbas Kareem Wanas2 and

Ismaila Omeiza Ibrahim3

1 Department of Mathematics, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria

e-mail: shabatimilehin@gmail.com

2 Department of Mathematics, College of Science, University of Al-Qadisiyah, Al Diwaniyah,

Al-Qadisiyah, Iraq

e-mail: abbas.kareem.w@qu.edu.iq

3 Department of Mathematical science, University of Maiduguri, Nigeria

e-mail: ibrahimismailaomeiza@gmail.com

Abstract

In present article, we introduce and study a certain family of analytic

functions defined by Wanas operator in the open unit disk. We establish

some important geometric properties for this family. Further we point out

certain special cases for our results.

1 Introduction and Definitions

Let A denote the class of function f(z) which are normalized analytic in the open

unit disk U = {z ∈ C : |z| < 1}. Let L(U) be the space of analytic functions in the

unit disc U. Let

Ae =
{
f ∈ L(U) : f(z) = z + σe+1z

e+1 + σe+2z
e+2 + · · ·

}
(1.1)

with A1 = A, z ∈ U and

L[σ, e] :=
{
ϕ ∈ W(U) : ϕ(z) = σ + σez

e + σe+1z
e+1 + · · ·

}
(1.2)

Received: May 11, 2021; Accepted: June 12, 2021

2010 Mathematics Subject Classification: Primary 30C45; Secondary 30C50.

Keywords and phrases: analytic function, starlike function, convex function, Wanas operator,
subordination.
*Corresponding author Copyright c© 2021 Authors



138 Timilehin G. Shaba, Abbas K. Wanas and Ismaila O. Ibrahim

for σ ∈ C and e ∈ N .

We denote by S subclass of functions which are analytic, univalent in U and

has the normalization

f(z) = z +

∞∑
t=2

σt+1z
t+1, (1.3)

which implies that

f(0) = 0, f′(0) = 1.

A function f(z) ∈ S is said to be a starlike, convex and turning bounded functions

of order δ which are denoted by S∗(δ),K(δ),R(δ) ⊂ S, if the following conditions

are satisfied: <
(
zf′(z)
f(z)

)
> δ, <

(
zf′′(z)
f′(z) + 1

)
> δ and <(f′(z)) > δ, where 0 5 δ < 1.

Next we recall the definition of subordination. For two functions h1, h2 ∈ U,

we say that h1 is subordinated to h2 and symbolically written as h1 ≺ h2 if

there exists an analytic function w with the property |w (z)| 5 |z| such that

h1 (z) = h2 (w (z)) for z ∈ D. Further, if h2 ∈ S, then the condition becomes

h1 ≺ h2 ⇔ h1 (0) = h2 (0) and h1 (U) ⊂ h2 (U) .

Wanas [16] in 2019 introduced the following operator, which can also be called

(Wanas operator) Wα,σ
β,n : U −→ U defined by

Wµ,γ
β,mf(z) = z +

∞∑
t=2

[qt(γ, µ, β)]mσtz
t, (1.4)

where

qt (γ, µ, β) =

γ∑
a=1

(
γ

a

)
(−1)a+1

(
µa + tβa

µa + βa

)
, (1.5)

a,m ∈ N0, β = 0, µ ∈ R and µ+ β > 0.

Special cases of this operator can be found in [1, 2, 3, 6, 9, 10, 13, 14, 15]. For

more details see [17].

It is readily confirmed from (1.4) that

z(Wµ,γ
β,mf(z))

′ =

[
γ∑
a=1

(
γ

a

)
(−1)a+1

((
µ

β

)a
+ 1

)]
Wµ,γ

β,m+1f(z)

−

[
γ∑
a=1

(
γ

a

)
(−1)a+1

(
µ

β

)a]
Wµ,γ

β,mf(z). (1.6)
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Lemma 1.1. [8] Let φ be holomorphic in U with φ(0) = 1. If

<
(

1 +
zφ′(z)

φ(z)

)
>

3δ − 1

2δ
,

then <(φ(z)) > δ in U, z ∈ U and 1
2 5 δ < 1.

2 Main Result

Definition 2.1. We say that a function f(z) ∈ A is in the class Gmλ,δ(γ, µ, β) if∣∣∣∣∣∣W
µ,γ
β,m+1f(z)

z

(
z

Wµ,γ
β,mf(z)

)λ
− 1

∣∣∣∣∣∣ < 1− δ (z ∈ U),

where β = 0, µ ∈ R , µ+β > 0, λ ≥ 0, a,m ∈ N0 = {0, 1, 2, 3 · · · } and 0 5 δ < 1.

Remark 2.2. The family Gmλ,δ(γ, µ, β) is a new comprehensive class of holomorphic

functions which includes numerous new classes of holomorphic univalent functions

as well as some very well-known ones. In place of “equivalence” we are going to

take “contained in” as it was discussed in [4], also see [11, 12] for more details.

For example,

1. For m = µ = 0 and γ = β = λ = 1, we have the class G01,δ(1, 0, 1) contained

in S∗(δ).

2. For µ = 0 and m = γ = β = λ = 1, we have the class G11,δ(1, 0, 1) contained

in K(δ).

3. For m = µ = λ = 0 and γ = β = 1, we have the class G00,δ(1, 0, 1) contained

in R(δ).

4. For µ = 1− β and γ = 1, we have the class

Gmλ,δ(1, 1− β, β) = Gmλ,δ(β).

introduced by Cătaş and Lupas [5].
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5. For m = 0, the class

B(λ, δ) =

{
f(z) ∈ A :

∣∣∣∣∣f′(z)
(

z

f(z)

)λ
− 1

∣∣∣∣∣ < 1− δ;λ ≥ 0, 0 5 δ < 1, z ∈ U

}

intoduced by Frasin and Jahangiri [8].

6. For m = 0 and λ = 2, the class

B(δ) =

{
f(z) ∈ A :

∣∣∣∣zzf′(z)f2(z)
− 1

∣∣∣∣ < 1− δ; 0 5 δ < 1, z ∈ U

}
intoduced by Frasin and Darus [7].

Theorem 2.3. If for all function f(z) ∈ A, β = 0, µ ∈ R, µ + β > 0, λ ≥ 0,

a,m ∈ N0 = {0, 1, 2, 3 · · · } and 0 5 δ < 1, we have[∑γ
a=1

(
γ

a

)
(−1)a+1

((
µ
β

)a
+ 1
)]

Wµ,γ
β,m+2f(z)

Wµ,γ
β,m+1f(z)

−
λ

[∑γ
a=1

(
γ

a

)
(−1)a+1

((
µ
β

)a
+ 1
)]

Wµ,γ
β,m+1f(z)

Wµ,γ
β,mf(z)

−

(
1− λ

)(
γ∑
a=1

(
γ

a

)
(−1)a+1

(
µ

β

)a
+ 1

)
+ 1 ≺ ϕz + 1, z ∈ U, (2.1)

where ϕ = −1+3δ
2δ , then f ∈ Gmλ,δ(γ, µ, β).

Proof. Now taking

φ(z) =
Wµ,γ

β,m+1f(z)

z

(
z

Wµ,γ
β,mf(z)

)λ
,

then φ(z) is holomorphic in U with φ(0) = 1. With the knowledge of differentiation

we have

log(φ(z)) = log(Wµ,γ
β,m+1f(z))− log(z) + λ log(z)− λ log(Wµ,γ

β,mf(z))
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φ′(z)

φ(z)
=

(Wµ,γ
β,m+1f(z))

′

Wµ,γ
β,m+1f(z)

−
φ(Wµ,γ

β,mf(z))
′

Wµ,γ
β,mf(z)

−
(

1− φ
z

)

φ′(z)

φ(z)
=

[∑γ
a=1

(
γ

a

)
(−1)a+1

((
µ
β

)a
+ 1
)]

Wµ,γ
β,m+2f(z)

Wµ,γ
β,m+1f(z)

−

∑γ
a=1

(
γ

a

)
(−1)a+1

(
µ
β

)a
z

+

λ
∑γ

a=1

(
γ

a

)
(−1)a+1

(
µ
β

)a
z

−
λ

[∑γ
a=1

(
γ

a

)
(−1)a+1

((
µ
β

)a
+ 1
)]

Wµ,γ
β,m+1f(z)

zWµ,γ
β,mf(z)

−
(

1− φ
z

)
multiplying throughout by z, yields

zφ′(z)

φ(z)
=

[∑γ
a=1

(
γ

a

)
(−1)a+1

((
µ
β

)a
+ 1
)]

Wµ,γ
β,m+2f(z)

Wµ,γ
β,m+1f(z)

−
λ

[∑γ
a=1

(
γ

a

)
(−1)a+1

((
µ
β

)a
+ 1
)]

Wµ,γ
β,m+1f(z)

Wµ,γ
β,mf(z)

−

(
1− λ

)(
γ∑
a=1

(
γ

a

)
(−1)a+1

(
µ

β

)a
+ 1

)
.

Applying (2.1), we have

<
(

1 +
zφ′(z)

φ(z)

)
>
−1 + 3δ

2δ
.

Thus, by the application of Lemma 1.1, we have

<

Wµ,γ
β,m+1f(z)

z

(
z

Wµ,γ
β,mf(z)

)λ > δ.

Hence, f ∈ Gmλ,δ(γ, µ, β), by the reason of Definition 2.1.
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Varying the parameters of the above theorem gives the following corollaries.

Corollary 2.4. Suppose f(z) ∈ A and

<
(
zf′′(z)

f′(z)
+ 1

)
>

1

2
, z ∈ U,

then

<(f′(z)) >
1

2
, z ∈ U.

We can as well say that, if the function f(z) is convex of order 1/2, then f(z) ∈
G00,δ(1, 0, 1) contained in R(1/2).

Corollary 2.5. Suppose f(z) ∈ A and

<
(
−zf

′′(z)

f′(z)
+
z(zf′′′(z) + f′′(z))

zf′′(z) + f′(z)

)
> −1

2
z ∈ U,

then f(z) ∈ G11,1/2(1, 0, 1), therefore

<
(
zf′′(z)

f′(z)
+ 1

)
>

1

2
, z ∈ U.

Which implies that f(z) is convex of order 1/2.

Corollary 2.6. Suppose f(z) ∈ A and

<
(
−zf

′(z)

f′(z)
+

f(z) + 3zf′(z) + z2f′′(z)

zf′(z) + f′(z)

)
>

1

2
, z ∈ U,

then

<
(
zf′(z)

f(z)

)
> 0, z ∈ U.

Which implies that f(z) is a starlike function.

Corollary 2.7. [5] Suppose f(z) ∈ A and

<
(

5zf′(z)− f(z) + z2f′′(z)

zf(z) + f(z)

)
> −1

2
, z ∈ U,

then

<
(
−2 +

f(z)

z
+ f′(z)

)
> 2, z ∈ U.
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