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Abstract

In this paper, we define the binomial transform of the generalized Narayana
sequence and as special cases, the binomial transform of the Narayana,
Narayana-Lucas, Narayana-Perrin sequences will be introduced. We

investigate their properties in details.

1 Introduction and Preliminaries

Recently, there have been so many studies of the sequences of numbers in the
literature and the sequences of numbers were widely used in many research areas,
such as architecture, nature, art, physics and engineering. The sequence of

Fibonacci numbers {F},} is defined by
F,=F,1+F,2 n>2 F=0 F=1
and the sequence of Lucas numbers {L,} is defined by
Ly,=Ly 1+ Lpo n>2 Ly=2 L =1

The Fibonacci numbers, Lucas numbers and their generalizations have many

interesting properties and applications to almost every field. Horadam defined
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a generalization of Fibonacci sequence, that is, he defined a second-order linear
recurrence sequence { W, (Wy, Wi;r,s)}, or simply {W,}, as follows:
Wy =rWy_1+sWy_9; Wo=a, Wi =b, (n>2)

where Wy, W7 are arbitrary complex numbers and r, s are real numbers, see also

Horadam [9)11}j12].

In this paper, we introduce the binomial transform of the generalized Narayana
sequence and we investigate, in detail, three special cases which we call them the
binomial transform of the Narayana, Narayana-Lucas, Narayana-Perrin sequences.
We investigate their properties in the next sections. In this section, we present
some properties of the generalized Tribonacci sequence which is a generalization

of Fibonacci numbers. The generalized Tribonacci sequence
{Wn(Wo, Wi, Wa;r, s, t) bn>o
(or shortly {Wy,}n>0) is defined as follows:
Wy =1Wy_1 4+ sWy_o +tW, 3, Wo=a, Wy =bWy=¢, n>3 (1.1)

where Wy, W1, Wy are arbitrary complex (or real) numbers and r,s,t are real

numbers. This sequence has been studied by many authors, see for example

The sequence {W,,},>0 can be extended to negative subscripts by defining
S r 1

W_n = —¥W7(n71) - ;Wf(n72) + %Wf(n73)

for n =1,2,3,... when ¢ # 0. Therefore, recurrence (|1.1)) holds for all integer n.
As {W,} is a third order recurrence sequence (difference equation), it’s

characteristic equation is

2 —ra® —sx—t=0 (1.2)
whose roots are
a = a(r,s,t)z%—i—A—i—M,
B = 6(r,s,t)=§+wA+w2M,
v = v(r,s,t)ngerAerM
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where
r3 rs t 1/3 r3 rs t 1/3
A = — 4+ —+ =+ VA M=—+—+-—-—VA
(27+6+2+ ) ’ <27+6+2 > ’
3t r?s?  rst s3 t2 —1+iV3
st =9 " Ts T 6 o ¥ 2 exp(2mi/3)

Note that we have the following identities

a+B+y =
af+ay+py = -—s,
afy = t.

If A(r,s,t) > 0, then the Equ. ([1.2)) has one real (o) and two non-real solutions
with the latter being conjugate complex. So, in this case, it is well known that the
generalized Tribonacci numbers can be expressed, for all integers n, using Binet’s

formula

n

pra” p2 8" P37y

W= ey B G- B

(1.3)

where
p1=Wo = (B+7)Wi + ByWo, p2=Wa — (a+v)Wi + ayW,

p3 = Wy — (a+ B)W1 + aWy.
(1.3) can be written in the following form:

W, = Mlozn + Mgﬁn + Mg’}/n

where
M, — We — (B+9)W1 +5’YW0’ M, — Wo — (o + )W +a’yWO,
(a@—=pB)(a=7) (B—a)(B=)
Ms = W2 — (a+ B)W: + aBWo.
(y—a)(y—5)

Note that the Binet form of a sequence satisfying (1.2)) for non-negative
integers is valid for all integers n, for a proof of this result see [L3]. This result

Earthline J. Math. Sci. Vol. 7 No. 1 (2021), 77-111



80 Yiiksel Soykan

of Howard and Saidak is even true in the case of higher-order recurrence

relations.
o
Next, we give the ordinary generating function )  W,z™ of the sequence W,,.
n=0

o0
Lemma 1.1. Suppose that fw, (x) = > Wya™ is the ordinary generating
n=0

[e.e]
function of the generalized Tribonacci sequence {Wy}tn>0. Then, > Wya™ is
n=0

given by

(1.4)

i i gn — Wot (Wa = rWo)z + (Wa — rWi — sWo)a®
o S 1 —rz— sz? —ta? '

We next find Binet’s formula of the generalized Tribonacci sequence {W,,} by

the use of generating function for W,.

Theorem 1.2. (Binet’s formula of the generalized Tribonacci numbers) For all

integers n, we have

an n n
W, — Q1 i qf3 n q37 (1.5)

(@=B)la=7) B-a)B-7) (G- -7H)

where
qQq = I/V()Ot2 + (Wl — TW())O& + (WQ —rWy — SW()),
@ = WoB®+ (W1 —rWo)B + (Wa — rWy — sWp),
q3 = I/Vo"}/2 + (W1 — TW())"}/ + (WQ —rWi — SWO).
Note that from (1.3]) and (1.5) we have
Wy — (ﬁ + ’7)W1 + ﬂWWo = WoOéQ + (Wl — ’I“Wo)Oé + (WQ —rW — SWQ),
Wy — (a -+ ’7)W1 +ayWy = I/Voﬂ2 + (W1 — ’I“W())ﬁ + (WQ —rWy — SW()),
Wy — (a+B)Wi +afWy = Woy? + (W1 — rWo)y + (Wa — Wy — sWo).

In this paper, we consider the case r = 1, s = 0,¢ = 1 and in this case we write
Vo = W,. So, the generalized Narayana sequence {V, }n>0 = {Vo(Vo, V1, V2) }n>0

is defined by the third-order recurrence relations

Voi=Vo_1+V,_3 (1.6)

http://www. earthlinepublishers.com
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with the initial values Vy = cg, V1 = c1, Vo = ¢2 not all being zero.

The sequence {V}, },>0 can be extended to negative subscripts by defining
Vo = _V—(n—2) + V—(n—S)

for n =1,2,3,.... Therefore, recurrence ([1.6)) holds for all integer n.
(1.3) can be used to obtain Binet’s formula of generalized Narayana numbers.

Binet’s formula of generalized Narayana numbers can be given as

pra” p2B" p3Y"

P P R ey B Sy v T vy

where

o= Va—B+YVi+BVo =V + (Vi —Vo)a+ (Va— Vi) = qi,
pr = Va—(a+ ) Vi+ayVo=VoB2+ (Vi —Vo)B+ (Va — V1) = qo,
p3 = Voa—(a+B)Vi+aBVo=Vor* + (Vi = Vo)v + (Vo — V1) = g3.

Here, a, B and v are the roots of the cubic equation 2% — 22 — 1 = 0.

Moreover

1/3 1/3
_ o Lo(2 /3ty (29 /31
Y WV 108 54 108
1/3 1/3
ﬁ — 1+w @4_ i _|_w2 @_ ﬂ
-3 54 108 54\ 108

1/3 1/3
L, o (2, /3 e 31
= —J4w — — — =\ =
i 3 54 108 54 108

where ‘
w= _l—gl\/g = exp(2mi/3).
Note that
at+pB+y = 1,
af+ay+py = 0,
afy = 1
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Now, we present three special cases of the generalized Narayana sequence
{Vn}. Narayana sequence {N,}n>0, Narayana-Lucas sequence {Up}n>0,
Narayana-Perrin sequence {H,, },>0 are defined, respectively, by the third-order

recurrence relations

Npts = Npio+ Ny, No=0,Ny =1,Ny =1, (17)
Uiz = Unpo+Up, Up=3,U=1,U;=1, (1.8)
Hn+3 = Hn+2 + an HO = 37 Hl = 07 H2 =2 (19)

The sequences {Np}n>0, {Un}n>0 and {H,},>0 can be extended to negative
subscripts by defining

Nopn = —N_(ng)+N_(n-3)
U = —U_(n2) +U_(n-3
Hon = —H_(n-2)+ H_n3)

for n = 1,2,3, ... respectively. Therefore, recurrences — hold for all
integer n.

For more details on the generalized Narayana numbers, see Soykan . Note
that N, is the sequence A000930 in associated with the Narayana’s cows
sequence and the sequence A078012 in [20] associated with the expansion of (1 —
z)/(1 —x — 23) and U, is the sequence A001609 in [20].

For all integers m, Narayana, Narayana-Lucas, Narayana-Perrin numbers
(using initial conditions in —) can be expressed using Binet’s formulas

as

an+1 ﬁTH-l ,Yn—l—l
N, )
@-Bla-7) B-a)B-7  (-a-5)
U, = o"+ /Bn + ’an
H - (3 + 2a)an! (3+2B)8" 1 (34 2y)y" !

(@a=PB)a=7) B-a)B-7) (O-a)y-5)
respectively, see, Soykan for more details.

o0
Next, we give the ordinary generating function »_ V,,z" of the generalized

n=0
Narayana sequence V;, (see, Soykan for more details.).
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o
Lemma 1.3. Suppose that fy, (x) = > V,a™ is the ordinary generating function
n=0

oo
of the generalized Narayana sequence {Vy,}n>0. Then, > V,a™ is given by
n=0

(1.10)

0 _ _ 2
Sy = Yok (Vi = Vo) o+ (1 = Vi)a?
n=0

1—z—23

Proof. Take r =1, s =0,t =1 in Lemma (1.1

The previous lemma gives the following results as particular examples.

Corollary 1.4. Generating functions of Narayana, Narayana-Lucas,

Narayana-Perrin numbers are

S Nar -

o l—z—2x

o0

oward " 1—x—23

iH7l 3 — 3z + 222
" = —

— " 1l—x—a3"’

respectively.

2 Binomial Transform of the Generalized Narayana

Sequence V,

In |15} p. 137], Knuth introduced the idea of the binomial transform. Given a

sequence of numbers (ay,), its binomial transform (a,) may be defined by the rule

n

n
an = Z (?) a;, with inversion a,, = Z <7Z> (—1)"71'&1-,

i=0 i=0
or, in the symmetric version

" n
Qn = Z <7Z> (—1)i+1ai, with inversion a,, = Z (7;) (_1)i+1&i.

=0 1=0

Earthline J. Math. Sci. Vol. 7 No. 1 (2021), 77-111
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For more information on binomial transform, see, for example, and
references therein.

In this section, we define the binomial transform of the generalized Narayana
sequence V,, and as special cases the binomial transform of the Narayana,

Narayana-Lucas, Narayana-Perrin sequences will be introduced.

Definition 2.1. The binomial transform of the generalized Narayana sequence

Vi is defined by
~ n n
V=5 (")
()

bn

The few terms of b,, are

0 /0
by = Z(.)v;:%,
=0 ¢
L /1
by = Z(J%Z%-ﬁ-‘&
=0
2 /92
by = <Z.)Vi:V0+2V1+V2.
=0

Translated to matrix language, b, has the nice (lower-triangular matrix) form

bo 10 000 Vo
b1 1 1.0 00 1
by 121 00 Vs
b3 | 113310 Vs
by 1 4 6 41 Vi
As special cases of b, = 17,1, the binomial transforms of the Narayana,

Narayana-Lucas, Narayana-Perrin sequences are defined as follows: The binomial

transform of the Narayana sequence N, is

n
~ n
Ry (1),
=0

http://www. earthlinepublishers.com
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the binomial transform of the Narayana-Lucas sequence U, is
" /n
0. -3 (7)o
=0
the binomial transform of the Narayana-Perrin sequence H,, is
" /n
=0
Lemma 2.2. For n > 0, the binomial transform of the generalized Narayana

sequence Vy, satisfies the following relation:

n

buir =3 (7;) (Vi + V).

=0

Proof. We use the following well-known identity:

=)+ (0)

Note also that

Then
n+1
1
buyt = Vot ("f )v
i=1 L
n+1 n n+1 n
S )
=1 \" =1 N\ 1
" /n " /n
. V4 ;
0+Z <Z>Vz+z <i>Vz+1
i=1 =0
= Z <n>‘/; + <n Vit
- 1 : 1
=0 1=0
" /n
= > (Z)(Viwm)
i=0
This completes the proof. O

Earthline J. Math. Sci. Vol. 7 No. 1 (2021), 77-111
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Remark 2.3. From the last Lemma, we see that

n n
b1 =bn+ Y (Z.)vm.
=0

The following theorem gives recurrent relations of the binomial transform of

the generalized Narayana sequence.

Theorem 2.4. For n > 0, the binomial transform of the generalized Narayana

sequence V,, satisfies the following recurrence relation:
bpt3 = 4bpto — dbpi1 + 3by,. (2.1)
Proof. To show , by writing
bnis =11 X bpya + 81 X b1 + 11 X by,

and taking the values n = 0, 1,2 and then solving the system of equations

b3 71 X by + 81 X b1 +1t1 X by
bs 71 X by + 81 X by +1t1 X by
bs 71 X bg + 81 X bg +1t1 X by
we find that ry = 4,51 = —5,t1 = 3. O

The sequence {by, }»>0 can be extended to negative subscripts by defining

5 4 1
by = gb—n—&—l - gb—n+2 + gb—n—i—?)

for n = 1,2,3,.... Therefore, recurrence ([2.1)) holds for all integer n.
Note that the recurence relation (2.1 is independent from initial values. So,

]/\}n—i-?) = 4j\7n+2 - 5jvn—‘,—l + 3Nna
ﬁn+3 = 4ﬁn+2 - 5ﬁn+1 + 3ﬁna

~

Hn+3 = 4ﬁn+2 - 5ﬁn+1 + 3ﬁn

http://www. earthlinepublishers.com
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and

5~ 4 ~
§N—n+1 3N—n+2 + 3N—n+37
5~ 4 ~
§U7n+1 3U—n+2 + 3Ufn+3>
9~ 4 ~
ngnJrl - gH—n+2 + 3an+3

The first few terms of the binomial transform of the generalized Narayana

sequence with positive subscript and negative subscript are given in the following

Table 1.

Table 1: A few binomial transform (terms) of the generalized Narayana sequence.

n b, b_n

0 Vo

1 Vo+W 12Vo —2Vi + V)

2 Vo+2Vi + Vs S (Vo — Vi +5W%)

3 2Vp + 3V + 4V; —5- (10Vp + 11V; — 13V3)

4 6Vo + 5V1 + 11V, — g (44Vp — 11V; — 14V3)

5 17Vo 4+ 11V4 + 27V; ﬁ (91Vp — 124V + 41V3)

6 44V + 28V + 65V4 7— (17Vo — 389V4 + 256V4)

7 109V, + 72V4 + 158V4 iz (611Vp + 556V — 662V5)

8 267V, + 181V} + 388V4 Wlm (2440V — T72V; — 607V3)

9 655V + 448V; + 957V; Toes 683 (4715Vy — 7031V; + 2605V5)

10 1612V, + 1103V; + 2362V4 59049 (206Vp + 20887V — 14 351V3)
11 3974Vp + 2715V; 4 5827V, 1771 - (35650Vp + 27011V — 35032V53)
12 9801V + 6689V, + 14369V 531441 (133 343V, — 52310V; — 26 393V5)
13 24170Vp + 16490V; + 35427Va  — 151555 (240 769V, — 397 699V; + 159 26013)

The first few terms of the binomial transform numbers of the Narayana ,

Narayana-Lucas, Narayana-Perrin sequences with positive subscript and negative

subscript are given in the following Table 2.

Earthline J. Math. Sci. Vol. 7 No. 1 (2021), 77-111
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Table 2: A few binomial transform (terms).

n 0 1 2 3 4 5 6 7 8 9 10 11 12
N, 0 3 7 16 38 93 230 569 1405 3465 8542 21058
N 12 2 25 83 133 106 1379 _ 4426 _ 6536 8021 78703
'-n 3 95 27 81 243 729 2187 6561 19683 59049 177147 531441
U, 3 4 6 13 34 89 225 557 1370 3370 8301 20464 50461
78 5 1 28 107 190 82 1727 5941 9719 _ 7154 _ 98929  _ 321326
—n 3 9 27 81 243 729 2187 6561 19683 59049 177 147 531441
H, 3 3 5 14 40 105 262 643 1577 3879 9560 23576 58141
i 8 13 4 104 355 563 509 6106 19355 28084  _ 36886 _ 347243
-n 3 9 27 31 243 729 2187 6561 19683 59049 177147 531441

(1.3) can be used to obtain Binet’s formula of the binomial transform of
generalized Narayana numbers. Binet’s formula of the binomial transform of

generalized Narayana numbers can be given as

619? + 0293 + C36§}
(01— 02)(61 — 63) (02— 01)(02 —03) (63— 61)(03 — 02)

by, = (2.2)

where

g = by — (92 + 93)1)1 + 0503by = (Vo +2V1 + VQ) — ((92 + 93)(‘/0 + Vl) + 0563V,
ca = by — (01 +603)by + 0103bg = (Vo + 2V1 + Va) — (01 + 03) (Vo + V1) + 0103 V%,
c3 = by — (014 02)by + 016269 = (Vo + 2V1 + Vo) — (61 + 02) (Vo + V1) + 0162V4.

Here, 61, 03 and 3 are the roots of the cubic equation z3 — 422 + 52 — 3 = 0.

Moreover,
4 1 3 1 3
b1 = 5+ /4029 +3v03) + < /429 - 3V03)
4 W 3 w2 3
by = 5+ \/4(20+3v03) + - /4(20 - 3V03)
4 w2 3 W 3
by = 5+ V/4(20+3V03) + = /4(20 - 3V03)
where
144
W= L\/g = exp(27i/3).

2

http://www. earthlinepublishers.com
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Note that

0r+05+03 = 4,
0105 + 0103 + 026035 = 5,
010,05 = 3.

For all integers n, (Binet’s formulas of) binomial transforms of Narayana |,
Narayana-Lucas, Narayana-Perrin numbers (using initial conditions in (2.2))) can

be expressed using Binet’s formulas as

)

(—1+061)07 N (—1+62)03 N (—1+03)0%
(01— 02)(01 —03) ~ (62— 01)(02—03) (05— 61)(05 — 62)’
— o7+ 05+ 03,
(307 — 701 +9)071 (302 — 702+ 9)057 (303 — 703 +9)05 !
(61— 62)(61 — 63) (02 — 61)(02 — 63) (03 —01)(03 — 02)

3

)

3
|

:m
|

respectively.

3 Generating Functions and Obtaining Binet Formula

of Binomial Transform From Generating Function

The generating function of the binomial transform of the generalized Narayana
sequence V,, is a power series centered at the origin whose coefficients are the

binomial transform of the generalized Narayana sequence.

(o)
Next, we give the ordinary generating function f; (z) = > byz™ of the
n=0

sequence b,.

o0

Lemma 3.1. Suppose that fy (x) = > bya™ is the ordinary generating function
n=0

of the binomial transform of the generalized Narayana sequence {Vy}n>0. Then,

fb, (x) is given by

Vo4 (Vi = 3Vy)z + (2Vy — 2V + Va)a?

3.1
1 —4x + 522 — 323 (3.1)

o, ()

Earthline J. Math. Sci. Vol. 7 No. 1 (2021), 77-111
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Proof. Using Lemma [1.1] we obtain

bo + (b1 — r1bo)x + (be — 1161 — Slbo)x2

fou(®) = 1—riz—s122 —t123
Vo + (Vo + Vi) — AVp)a + (Vo + 2Vi + V) — A(Vp + Vi) — (=5)Vp)a?
1 -4z — (=5)z? — 323
Vo + (Vi = 3Vo)z + (2Vp — 2Vi + Va)a?
N 1 — 4z + 522 — 3a3
where

bO - %7
by = Vo+ Vi,
by = Vp+2Vi+ Vs

O]

Note that P. Barry shows in |1 that if A(z) is the generating function of the

sequence {a,}, then

)

1—=x

n
is the generating function of the sequence {b,} with b, = > (7)a;. In our case,

=0
since
\% Vi—WV Vo — V1)a?
Ar) = DS IERZ I e @),
we obtain
2
s L VoG-V (15) + (% - ) (%)
T =

1—x T T 3
- (%) - (%)
Vo + (Vi = 3Vo)z + (2Vp — 2V + Vp)a?
1 —4x + 522 — 323 '

The previous lemma gives the following results as particular examples.

http://www. earthlinepublishers.com
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Corollary 3.2. Generating functions of the binomial transform of the Narayana,

Narayana-Lucas, Narayana-Perrin numbers are

oo 2
I
~ " 1 — 4z + 5x2 — 323’
iA N 3 — 8z + 52

xr - )
vt " 1 —4x + 522 — 323
iﬁ:’f" 3 —9z+82?
—~ " 1 —dx+ 522 — 323’

respectively.

We next find Binet’s formula of the Binomial transform of the generalized

Narayana numbers {V,,} by the use of generating function for by,.

Theorem 3.3. (Binet’s formula of the Binomial transform of the generalized

Narayana numbers)

dle? d262n d3(9g
b, = + + 3.2
(01— 02)(01 — 03) ~ (02— 01)(02 —03) (05— 01)(03 — 62) (3:2)
where
di = VOH% + (V1 — 3Vp)b1 + (2Vh — 2V1 + V),
dy = Vo3 + (Vi —3Vo)ba + (2Vh — 2V1 + Va),
dy = Vob3 + (Vi —3Vp)f3 + (2Vp — 2Vi + Va).
Proof. By using Lemma the proof follows from Theorem O

Note that from (2.2)) and (3.2)), we have

by — (02 + 03)b1 + O203b9 = Vb3 + (Vi — 3V0)61 + (2Vp — 2V; + Va),
by — (01 + 03)by + 0103by = Vb3 + (Vi — 3Vp)b + (2Vp — 2V4 + Vi),
by — (61 + 02)by + 010209 = Vb3 + (Vi — 3Vp)05 + (2Vp — 2V4 + Vi),

Earthline J. Math. Sci. Vol. 7 No. 1 (2021), 77-111
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or

(Vo +2V1 4+ Vo) — (62 + 03) (Vo + V1) + 0203V = VOQ% + (V4 —3Vp)b1
+(2Vy — 2V + Vi),

(Vo +2Vi + Vo) — (01 + 03) (Vo + Vi) + 0163V = Vo3 + (Vi — 3V0)fs
+(2Vp — 2Vi + Vi),

(Vo +2V1i+ Vo) — (61 + 02) (Vo + V1) + 6102V = V09§ + (Vi — 3Vp)05
+(2Vh — 2V1 + V).

Note that we can also write

(bo + 201 + ba) — (B2 + 03) (b + b1) + 0203bg = bofF + (by — 3bg)0y
+(2bg — 2by + by),
(bo + 2b1 4 ba) — (61 + 603)(bo + b1) + 0103bg = bob3 + (by — 3bg)b2
+(2bg — 2by + by),
(bo + 2b1 + ba) — (01 + 02)(bo + b1) + 6160269 = bob3 + (b1 — 3bo)0s3
+(2bg — 201 + b2).

Next, using Theorem we present the Binet’s formulas of binomial

transform of Narayana, Narayana-Lucas, Narayana-Perrin sequences.

Corollary 3.4. Binet’s formulas of binomial transform of Narayana,

Narayana-Lucas, Narayana-Perrin sequences are

o (—1 4 6,)07 (—1+62)03 (—1+05)0%
" (01— 02)(01 — 63) (62— 01)(02 —63) (03— 01)(03 — 62)’
U, = 6%+ 65+ 6%,

(302 — 76, +9)07 ! N (303 — 762 +9)05! N (302 — 703 +9)05 !
(61 — 02)(61 — 03) (02 — 01)(02 — 03) (03 —01)(03 — 02)

:m
|

respectively.
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4 Simson Formulas

There is a well-known Simson Identity (formula) for Fibonacci sequence {F,},

namely,

Fn+1Fn71 - F»r% = (_1)71

which was derived first by R. Simson in 1753 and it is now called as Cassini

Identity (formula) as well. This can be written in the form

Fn+1 Fn

— (-1
Fn Fn—l

The following theorem gives generalization of this result to the generalized

Narayana sequence {WV,, }.

Theorem 4.1 (Simson Formula of Generalized Tribonacci Numbers). For all

integers n, we have

Wn+2 Wn+1 Wn W2 Wl WO
Wi Wh Wpot | = t" Wiy Wy W_oy|. (41)
Wy Wi Wihoo Wo W1 Wy
Proof. (4.1) is given in Soykan [22]. O

Taking {W,} = {b,} in the above theorem and considering b, 3 = 4b, 4o —
S5bp+1 + 3bp, 1 =4,s = —5,t = 3, we have the following proposition.

Proposition 4.2. For all integers n, Simson formula of binomial transforms of

generalized Narayana numbers is given as

bn+2 bn+1 bn bQ bl bO
bng1 bn b1 | =3"| b1 by by
bp  bu_1 buo bp b1 b_o

The previous proposition gives the following results as particular examples.
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Corollary 4.3. For all integers n, Simson formula of binomial transforms of the

Narayana, Narayana-Luca

s, Narayana-Perrin numbers are given as

Nn+2 n+1 Nn

~ ~ —~ 9
Nn+1 Nn n—1 _3n )

Nn Nn—l Nn—2

Un+2 n+1 Un

Un+1 Un Un—1 = —31x 371—27

Un Unfl Un72

Hn+2 Hn+1 Hn
Hyo1 H, H,1| = —53x3"2
Hn n—1 n—2

respectively.

5 Some Identities

In this section, we obtain some identities of binomial transforms of Narayana,

Narayana-Lucas, Narayana-Perrin numbers. First, we can give a few basic
relations between {N,} and {U,}.

Lemma 5.1. The following equalities are true:

279N,
93N,
31N,
31N,
31N,

= 130044 + 820,43 — 104040

= 100,13 — 13Un42 — 13Un41

= QUpyo — 21Up41 + 100,

= 15011 — 35U, + 270,41

= 250, — 48U,,_1 + 45U, _» (5.1)
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and
90U, = —16N,ia +49N, 43 — 20N,
30, = _5Nn+3 + 20N, 19 — 16N,43
U, = 3Nui1—5N,
An = 7]/\\771 — 15]/\\771_1 + 9]/\771—2-

Proof. Note that all the identities hold for all integers n. We prove (5.1)). To show
(p-1), writing
ﬁn:a X ﬁn+4+bx ﬁn+3+cx ﬁn—i—Q

and solving the system of equations

Ny = aXﬁ4—|—bXﬁ3—|—0Xﬁ2
N = axﬁ5+b><(74+c><(?3
Ny = axﬁ6+bxﬁ5+cxﬁ4

we find that a = 21739,17 = 28729,0 = é% The other equalities can be proved

similarly. 0

Note that all the identities in the above Lemma can be proved by induction
as well.

Next, we present a few basic relations between {N,,} and {H,}.

Lemma 5.2. The following equalities are true:

4T7N,, = —471§n+4 +185H,,43 — 142H,, 19,
159N,, = —Hp 3+ 31Hy, o —A4THp 1,

53N, = 9Hn49 — 14H,4 1 — H,,
53N, = 22H,.1 —46H, +27H,_1,
53N, = 42H, —83H,_1 + 66H,_o,
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and
9H, = —19Nnis+ 7T0N,s3 —53N,so
3H, = —2N,i3+ 14N,49 — 19N, 11
H, = 2Nni2—3N,41 — 2N,
H, = B5Npi1— 12N, +6N,_4
H, = 8N,—19N,_1 + 15N, _o

Now, we give a few basic relations between {U,} and {H,,}.
Lemma 5.3. The following equalities are true:

4770, = 226H, 44 — 646H, 3+ 287H, o,

1590, = 86H, 35— 281H, s+ 226H, 1,
53U, = 21H, o — 68H, 1 + 86H,,
53U, = 16H,11 — 19H, + 63H,_1,
53U, = 45H, —17TH,_1 + 48H, o,

and

279H, = 98U, 4 — 425U, 13 + 505U, 42,

93H, = —11Unys+ 5Unsa + 98Un41,
31H, = —13Un40+ 510,41 — 110,
31?111 = —An+1 + 54671 - 390}1,1,

31H, = 50U, — 34U, 1 — 30U, .

6 Sum Formulas

6.1 Sums of Terms with Positive Subscripts

The following proposition presents some formulas of binomial transform of

generalized Narayana numbers with positive subscripts.
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Proposition 6.1. For n > 0, we have the following formulas:

(a) ZZ:O bk’ = bn+3 - 3bn+2 + 2bn+1 — b2 + 3b1 — 2b0.
(b) S i bok = 15 (6bnt2 — 1Tbapi1 + 21bay, — 6bg + 17by — 8by).
(€) S _obokt1 = 15(Thanta — Woni1 + 18bay, — Thy + 22b; — 18by).

Proof. Take r = 4,s = —5,t = 3 in Theorem 2.1 in [24] (or take z = 1,r = 4,5 =
—5,t = 3 in Theorem 2.1 in [25]).
From the last proposition, we have the following corollary which gives sum

formulas of binomial transform of Narayana numbers (take b, = ]Vn with NO =
0,N; =1, Ny = 3).

Corollary 6.2. For n > 0 we have the following formulas:
(a) o Nk = Nots — 3Nni2 + 2N, 1.

(b) 0o Nogp = £5(6Nayio — 17Noy i1 + 21Ns, — 1).

(€) > k-0 Nogy1 = %3(7N2n+2 — 9Naps1 + 18Ngy, +1).

Taking b, = (7” with (70 = 3,(71 = 4,[72 = 6 in the last proposition, we
have the following corollary which presents sum formulas of binomial transform

of Narayana-Lucas numbers.

Corollary 6.3. For n > 0 we have the following formulas:
(@) S0y Uk = Unys — 3012 + 2041,

(b) S U = (60240 — 1702041 + 21Usy, + 8).

(€) Sp_oUok1 = 15(TUns2 — Wopi1 + 18U, — 8).

From the last proposition, we have the following corollary which gives sum
formulas of binomial transform of Narayana-Perrin numbers (take b, = ﬁn with
Hy = 3,H; =3, H, =5).

Earthline J. Math. Sci. Vol. 7 No. 1 (2021), 77-111



98 Yiiksel Soykan

Corollary 6.4. For n > 0 we have the following formulas:
(a) ZLO ﬁk: = ﬁn+3 - 3ﬁn+2 + Qﬁnﬂ -2
(b) > k-0 Hy, = %(6ﬁ2n+2 — 17Hap 11 + 21 Hyy, — 3).

(€) 0o Hokr1 = 15(THapso — 9Hon 1 + 18Ha, — 23).

6.2 Sums of Terms with Negative Subscripts

The following proposition presents some formulas of binomial transform of

generalized Narayana numbers with negative subscripts.

Proposition 6.5. Forn > 1 we have the following formulas:

(@) D g bk =—2b_p_1+2b_p_9 —3b_p_3+ by — 3b1 + 2by.

(b) S b_ok = = (—Tb_oni1 +22b_9, — 18b_3,_1 + 6by — 17b; + 8by).
(€) Dor_ib_oki1 = 15(—6b_ons1 + 17b_on — 21b_9p—1 + Thy — 22b1 + 18by).

Proof. Take r = 4,s = —5,t = 3 in Theorem 3.1 in or (or take x = 1,r =
4,5 = —5,t = 3 in Theorem 3.1 in [25)).

From the last proposition, we have the following corollary which gives sum
formulas of binomial transform of Narayana numbers (take b, = Nn with ]vo =
0,Ny =1,N, = 3).

Corollary 6.6. For n > 1, binomial transform of Narayana numbers have the

following properties.

(@) P N y=—2N_, 14+2N_, 2 —3N_, 3.

(b) Y0 Noop = 5(=TN_gps1 + 22N _3, — 18N_9,_1 +1).
(€) Sty Noopy1 = 15(—6N_sps1 + 17TN_g, — 21N _9,_1 — 1).

Taking b, = ﬁn with ﬁo = 3,61 = 4, ﬁg = 6 in the last proposition, we
have the following corollary which presents sum formulas of binomial transform

of Narayana-Lucas numbers.
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Corollary 6.7. Forn > 1, binomial transform of Narayana-Lucas numbers have

the following properties.

(a) Zz:l U—k = _2[7—71,—1 + 2[7—71—2 - 3(7_”_3.
(b) S0 U o = 5(=TU oni1 + 220 9, — 180 9,1 — 8).
() >h1 U_spr1 = (- 60 o1+ 17U 9y — 210 9,1 + 8).

From the last proposition, we have the following corollary which gives sum
formulas of binomial transform of Narayana-Perrin numbers (take b, = H, with
Hy=3,H, =3,H, =5).

Corollary 6.8. Forn > 1, binomial transform of Narayana-Perrin numbers have

the following properties.
(a) ZZ:l ﬁ*k = _Qﬁ—n—l + 2ﬁ—n—2 - 3ﬁ—n—3 + 2.
(b) >i— 1H—2k = *( TH_ o2n+1 +22H 9, — 18H 5,1 + 3).

(c) >iy H g1 = rlg,(—ﬁﬁ—QnH +17TH 9, — 21H g, 1 + 23).

6.3 Sums of Squares of Terms with Positive Subscripts

The following proposition presents some formulas of binomial transform of

generalized Narayana numbers with positive subscripts.

Proposition 6.9. For n > 0, we have the following formulas:

(a) > r=o bi = (1552+3 + 167b2+2 + 122bn+1 — 98by,4-3by42 + 66by,3by11 —
252bn+gbn+1 — 15b3 — 167b% — 12262 + 98baby — 66babg + 252b1by).

(b) S i o brs1be = 15(1102 5+ 11962 5 + 9962 | — T1bny3bpr2 — 190bp42bn 1 +
51bn43bp+1 — 1163 — 11963 — 99b2 + T1boby — 51babg + 190b1bo).

(€) Y hobrsobe = F5(202,5 — 2025 + 1862, — Thyysbpro + 14byysbyit —
18Dy +2bn 11 — 203 + 2b3 — 18b% + Thaby — 14baby + 18b1by).
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Proof. Take x = 1,r =4,s = —5,t = 3 in Theorem 4.1 in , see also .

From the last proposition, we have the following Corollary which gives sum
formulas of binomial transform of Narayana numbers (take b, = ]\Afn with ]/\\fo =
0,N; =1,N, = 3).

Corollary 6.10. For n > 0, binomial transform of Narayana numbers have the

following properties:

(a) S ON,f = L(15N2, 3 +167TN2, , +122N2, | — 98N, 3N 2 +66 N, 3Ny 1 —
252N, 2 Npi1 — 8).

(b) S0 OﬁkHNk = (11N2 5 + L19N2., + 99N2. | — 71N, 3N, 40 —
190N,042 N1 + 51Nn+3Nn+1 —5).

(C) ZZ:O ]/\}k+2j\7k = %(QN 2N +2+18N 7]/\7n+3]/\7n+2+ 14Nn+3ﬁn+l —
18N, 12Nps1 + 5).

Taking b, = ﬁn with (70 = 3,[71 = 4, (72 = 6 in the last Proposition, we
have the following Corollary which presents sum formulas of binomial transform

of Narayana-Lucas numbers.

Corollary 6.11. Forn > 0, binomial transform of Narayana-Lucas numbers have

the following properties:

(a) >k 0 Uk =13 (15U2+3 + 167U2+2 + 122U2+1 — 98Uy 43Un 12 + 660130541 —
9520010011 — 122).

®) S0 UpiUp = (11U2+3 + 11902, + 9902, — T1Uns3Unia —
190U, 42Uns1 + 51Un+3Un+1 —125).

(C) Zk -0 Uk+2Uk =13 (2U2 2[77%4_2 + 18[77%_,'_1 — 7ﬁn+3ﬁn+2 + 14ﬁn+3ﬁn+1 —
18012041 — 70).

From the last proposition, we have the following corollary which gives sum
formulas of binomial transform of Narayana-Perrin numbers (take b, = ﬁn with
Hy = 3,H; =3, H, =5).
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Corollary 6.12. For n > 0, binomial transform of Narayana-Perrin numbers

have the following properties:

(a) Sr_ OHg = L(15H2 4 +16TH2, ,+122H2, | —98H,, 3 Hpy0+66 Hpys Hy1 —
252H, o Hpiq — 228).

(b) S0 HyrHy = (11H2 s+ V19H2 5 + 99H2 | — T1H, 3H, 5 —
190H 1 2Hp 11 + 51Hn+3Hn+1 — 227)

(c) 0o HyoHy = £5(2H2, 3 —2H2 o+ 18H2 | —THy i3 Hyyo+14H, 3 Hyo1 —
18H,,42Hp 41 — 137).

7 Matrices related with Binomial Transform of

Generalized Narayana numbers

Matrix formulation of W,, can be given as

Whto r s t Wo
Wit = 1 00 wy |. (7.1)
W, 010 Wo

For matrix formulation (7.1, see [14]. In fact, Kalman gave the formula in

the following form

W 010 Wo
Wit =] 0 0 1 Wi
Whao r s t Wy

We define the square matrix A of order 3 as:

4 =5 3
A=11 0 0
0 1 0
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such that det A = 3. From (12.1)) we have

bpto 4 -5 3 bn+1
bt | =1 0 o0 b (7.2)
b, 0 1 0 bn_1

and from (7.1)) (or using ([7.2) and induction) we have

n

brto 4 -5 3 ba
bhy1 | =] 1 0 O b1
by, 0 1 0 bo
If we take b, = ]/\771 in (|7.2) we have
Npio 4 -5 3 Nt 1
N1 - 1 0 0 Ny (73)
N, 0 1 0 Ny 1

For n > 0, we define
iy fYk —5 k=0 fifk +33050 fYk 3 k=0 ]Yk
Bn=| YiooNk =530 Ne+335020 Ne 335550 Ny
PO Nk B Nk + 3300 Nk 3500 N

and
bn+1 —5b,, + 3b,—1 3b,,

Cp = bn, —5bp—1 +3b,—2 3b,_1
bn—l _Sbn—2 + Sbn—d 3bn—2

By convention, we assume that
- jR—— 5
0, N = -, N = —.
Z k=3 Z k=9
k=0 k=0

Theorem 7.1. For all integers m,n > 0, we have

™
2
Il

(a) B, = A"

(b) C1A™ = A™CY.
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Proof. (a) Proof can be done by mathematical induction on n.

(b) After matrix multiplication, (b) follows.

(c) We have
4 -5 3 b,  —bbp—1+3bp—2 3bp_1
AC,1 = 1 0 O bp_1 —bbp_o+3b,_3 3b,_2
0O 1 0 bn_o —bbn_3+3b,_4 3b,_3
b1 —5b,, + 3b,_1 3b,
= bn —b5bp_1 +3bp_o 3b,_1 = Cn;

bn—l _5bn—2+3bn—3 3bn—2

i.e., Cp, = AC,_1. From the last equation, using induction, we obtain C,, =
A"‘lCl. Now

Crgmn = A" 10 = A1 A™C) = AV 101 A™ = C By,

and similarly

Cn+m - BmC'n .

Some properties of matrix A™ can be given as
1 ) 3 D ; 4 9 1 3
A" =4A""" —5A"T2 + 3A" :gAnJr _gAn-‘r _|_§An+

and
and
det(A™) = 3"

for all integers m,n > 0.

Earthline J. Math. Sci. Vol. 7 No. 1 (2021), 77-111



104

Yiiksel Soykan

Theorem 7.2. For m,n > 0, we have

bn+m

m-+41 R mo m—1 R mo
= b > Ni+bo <—5Z P 3 Nk> +3bn2 » Ny
k=0
m+1

k=0 k=0

= by > N+ (=5bp-1+3bn—2) Y Ni+3bp1 »_ Ny
k=0

Proof. From the equation Cy 4, = Cp By, = B, C,, we see that an element of

Cham is the product of row C),, and a column B,,. From the last equation, we

say that an element of Cy,, is the product of a row C),, and column B,,. We

just compare the linear combination of the 2nd row and 1st column entries of the

matrices Cp1y and Cp, By,. This completes the proof.
Corollary 7.3. For m,n > 0, we have

~

k=0

m—+1 m

R oF WA (—52 s

R R kmzfl R R mo

Hupm = Ho) Np+Ho (—52 k3
k=0

From Corollary we know that for n > 0,

n
Z Ng = Npy3 —3Npi2 + 2Ny
k=0

m—+1 m
Noym = No > Ne+ Noy (—52 5+ 3 k) + 3N,
k=

So, Theorem [7.2] and Corollary [7.3] can be written in the following forms:

Theorem 7.4. For m,n > 0, we have

bn+m = (]Vm—‘rll - 3Nm+3 + 2Nm+2)bn

+(_5J/\7m+3 + 18Nyp2 — 19N 41 + GNm)bnfl

+3(Nm+3 - 3Nm+2 + 2]/\\7m+1)bn72'

]
—2 Z ]/\}ka
k=0
k=0
k=0
(7.4)
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Remark 7.5. By induction, it can be proved that for all integers m,n < 0, (7.4))
holds. So, for all integers m,n, (7.4)) is true.

Corollary 7.6. For all integers m,n, we have

Npsm = (Nt — 3Nmss + 2Nmi2) Ny,
+(=5Npmt3 + 18 Npsa — 19N41 + 6N ) No_y
+3(Nimt3 — 3Nt + 2Nimi1) Noea,
Unim = (Nmta —3Nmis + 2Nmi2)Uy,
+(=5Nmas + 18 Npso — 19N i1 + 6Nm)Up_y
+3(Nmts — 3Nma2 + 2Ny 1) Una,
Huyim = (Nmia = 3Nmis + 2N 2) H,
+(— 5Nm+3 + 18Nm+2 — 19Nm+1 + 6N, VH,,—
+3(Nmt3 — 3Nso + 2N 1) Hy
Now, we consider non-positive subscript cases. For n > 0, we define
SONk BYGSN k=3 N -3 Ny
Bon=1 - Nk 5 e oNk—?’ZnJr1 k) —327;:0]?746
SIS T S T S S
and
b_pnt1  —Hb_p +3b_p_1 3b_p,
= b_p  —5b_p_1+3b_p—2 3b_p_1
b_n—1 —5b_p_2+3b_p_3 32b_,_2

By convention, we assume that

-1 -2
> Np=0 Y Nyp=-1
k=0 k=0

Theorem 7.7. For all integers m,n > 0, we have
(a) B, =A"".

(b) C_1A™=A""C_.
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(c) Coppopy=C_,B_,,, = B_,C_,,.
Proof. (a) Proof can be done by mathematical induction on n.

(b) After matrix multiplication, (b) follows.

(c) We have
4 -5 3 b_, —bb_p_1+3b_p_o 3b_,_1
A'c, ., = 1 0 0 bon—1 —Bb_p_2+3b_pn_3 3b_p_2
0 1 0 b,n,Q —5b7n73+3b—n74 3b,n,3

b—n+1 —5b_p, +3b_p—1 3b_,,
= b_n —5b_p1+3b_p2 3b_p1 =C_p,
b—n—l _5b—n—2 + 3b_n—3 3b—n—2

ie. C_, = A"'C_,_;. From the last equation, using induction, we obtain
c_, = A_”_IC’,l. Now,

Copm=A"T""1C =4 14™mC_=AT"C_1A ™ =C_,B_,,

and similarly,
C_p—m =B_,,C_,.

Some properties of matrix A™" can be given as

A" = 4A—n—1 _ 5A—n—2 + 3A—n—3 — ?A—n—i-l _ éA—n—i-Q + EA—n—H&
3 3 3

and
AT AT AT = AT AT

and
det(A™™)=3""

for all integers m,n > 0.
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Theorem 7.8. For m,n > 0, we have

m—2 m—1 m m—1
b—n—m = _b—n Z j\\[fk - b—n—l <_5 Z N—k + 32 Nk) - 3b—n—2 Z ka

k=0 k=0 k=0 k=0
m—2 R m—1 R m

= —bn Y Nojp—(=Bbpn1+3bpn2) Y Njp—=3bn1) Ny
k=0 k=0 k=0

Proof. From the equation C_,,_,, = C_,B_,, = B_,,C_,,, we see that an element
of C_,_,, is the product of row C_,, and a column B_,,. From the last equation,
we say that an element of C_,,_,, is the product of a row C_,, and column B_,,.
We just compare the linear combination of the 2nd row and 1st column entries of

the matrices C_,,_,,, and C_,,B_,,,. This completes the proof. O

Corollary 7.9. For m,n > 0, we have

m—2 m—1 m
Now-m = —=Now) Nojp—Noua (—5 Noi+ 3ZN_k)
k=0 k=0 k=0
A~ mil A~
—3N_n2 ) Ny,
k=0
R R m—2 R R m—1 R mo
Unm = ~U-n ) Nop=U—nma (—5 N+ 3ZN_k)
k=0 k=0 k=0
A~ mil A~
—3U_n-2 ) Ny,
k=0
R R m—2 R R m—1 R mo
H., . = —-H.,Y N_—H_, (-5 N_j + 3ZN_k>
k=0 k=0 k=0

R m—1
—3H 5 Y N
k=0
From Corollary we know that for n > 1,

n
ZN—k = _2]/\\[—71—1 + 2]/\7—n—2 - Bﬁ—n—?}-
k=1
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Since J% = 0, it follows that

ZN,]C = —QN_n_l + 2]/\\[—71—2 — 3N_n_3.
k=0

So, Theorem and Corollary can be written in the following forms.

Theorem 7.10. For m,n > 0, we have

bopn-m = (2]/\\7—m+1 - 2[\?—m + 3N—m—1)b—n
+(=10N_pm + 16N_p—1 — 2IN_po + OIN_p_3)b_p_1
+3(2N_pn — 2N_pp—1 + 3N_p—2)b_n_o. (7.5)

Remark 7.11. By induction, it can be proved that for all integers m,n < 0, ([7.5))
holds. So, for all integers m,n, (7.5)) is true.

Corollary 7.12. For all integers m,n, we have

Newem = (2N_pi1 —2N_p +3N_m_1)N_,,
+(—=10N_pp + 16N _p 1 — 21N 24+ 9N_pp3)N__1
+3(2N_p — 2N_p—1 + 3N_pm_2)N_p_s,

Unem = (2N_pi1 —2N_p +3N_1)U_n
+(=10N_, + 16Ny 1 — 21Ny 94+ 9IN_p 3)U_py
+3(2N_ — 2N 1+ 3N_y 2)U_ o,

Hopom = (2N_mi1—2N_p+3N_pn_1)H_n
+(=10N_pm + 16N_p—1 — 21N _ppo + OIN_p_3)H_p_1
+3(2N_p — 2N _p—1 + 3N_ o) H_p_s.
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