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Abstract

By fractional generalised Boussinesq equations we mean equations of the

form

∆ ≡ D2α
t − [N (u)]xx − uxxxx = 0, 0 < α ≤ 1,

where N (u) is a differentiable function and Nuu 6= 0 (to ensure nonlinearity).

In this paper we lay emphasis on the cubic Boussinesq and Boussinesq-like

equations of fractional order and we apply the Laplace homotopy analysis

method (LHAM) for their rational and solitary wave solutions respectively.

It is true that nonlinear fractional differential equations are often difficult

to solve for their exact solutions and this single reason has prompted

researchers over the years to come up with different methods and approach

for their analytic approximate solutions. Most of these methods require huge

computations which are sometimes complicated and a very good knowledge

of computer aided softwares (CAS) are usually needed. To bridge this gap,

we propose a method that requires no linearization, perturbation or any

particularly restrictive assumption that can be easily used to solve strongly

nonlinear fractional differential equations by hand and simple computer

computations with a very quick run time. For the closed form solution,

we set α = 1 for each of the solutions and our results coincides with those of

others in the literature.
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1 Introduction

Late 1695, based on Leibniz’s notation, L’Hôpital asked Leibniz what d1/2y
dx1/2

would

be. This question led to what is known today as fractional calculus which have

witnessed a lot of contributions even though in its early days it developed mainly

as a pure mathematical field that only pure mathematicians find useful. Recent

decades have seen a rise in texts [4, 19, 32, 33, 34] dedicated to this field of

mathematics in the applied mathematical sense and in its use to model real life

phenomena in biology and bioengineering [10, 59], plasma physics, chemistry,

viscoelasticity [11, 66], viscoplasticity [41], fluid mechanics, continuum mechanics

[2], engineering, finance, rheology, electromagnetic theory and electric networks

[18, 57], probability [25] and so on. Generally, no known method exists for the

exact solutions of fractional differential equations and that is why recent decades

have seen “births” and use of different methods and approach for the approximate

[and sometimes analytic approximate] solutions of fractional differential equations.

Some numerical methods include:

1. finite difference methods [7, 38];

2. series approximation methods such differential transform method, Adomian

decomposition method [31, 51, 64, 65, 68] developed in [13, 14], variational

iteration method [73] developed by J.H. He in [27, 28], homotopy

perturbation method (HPM) [61] developed in [26], homotopy analysis

method (HAM) developed by Shijun Liao in [62] – interested reader can

find the comparison between HPM and HAM in [43, 47].

3. finite element method [29, 69]; and

4. several other methods like the spectral method [70], meshless methods [3,

34, 40, 49, 50], operational matrix method [19], and so on.

The 2010s saw the use of some methods like Laplace homotopy analysis method

[44], the Lie group method [58], the first integral method [42], inverse differential

operational method [35], F-expansion method [71], M-Wright transforms [37],

exponential differential operators [1], and so on. Truly, finding exact solutions

http://www.earthlinepublishers.com



On the Convergence of LHAM and its Application ... 27

to fractional differential equations is hard work and will still remain an active

area of research. Of all these methods, we have chosen to apply LHAM to

generalized Boussinesq equations [67] of fractional order. The LHAM, recently

used in [63], is a tweaked or modified HAM which means that it falls in the

category of series approximation methods. LHAM gives a high deformation

equation in simple form and it helps to overcome the deficiencies that is caused

by unsatisfied conditions in other techniques. Unlike other series approximation

methods, the LHAM is not cumbersome, can be used in a direct way without the

use of linearization, perturbation, or any restrictive assumption. Compared to

the HAM, HPM and other series approximation methods, its computation size is

small and it convergences rapidly.

Researchers in recent decades have extensively worked on nonlinear evoluton

equations (NLEEs) with new direction related processes that has been actively

developing in various areas of science and engineering because of its importance in

fluid mechanics, mathematical-, physical- and chemical science. In mathematical

physics, the analytical solutions of NLEEs are of fundamental importance as they

are usually in the form of a mathematical function and from these functions the

numerical value(s) of the dependent variable can be computed for any value of the

independent variable. More reasons for prefering analytical solutions are: (say)

our NLEE contains a parameter, an analytic solution of the equation will also

contain a parameter of which the behaviour of the solution of the equation as the

value of the parameter changes can be easily understood. Also, when we obtain

analytical solution of a NLEE without its attached boundary conditions, the

arbitrary constants in the solution are parameters in the solution. In engineering,

for example, NLEEs have been used to interprete recession hydrographs from

sloping aquifers [9] and some analytical and numerical solutions can be seen

in [22, 23, 24]. Of the infinite possible solutions to NLEEs, some special form

solutions may depend only on a single combination of variables such as solitons

[56]. Solitons, also known as solitary waves, are self-reinforcing wave packets

that maintain their shape while they travel at constant speed [54, 55]. Solitons

are caused by a cancelation of nonlinear and dispersive effects – the property of

Earthline J. Math. Sci. Vol. 7 No. 1 (2021), 25-47



28 S. O. Ajibola, E. O. Oghre, A. G. Ariwayo and P. O. Olatunji

certain systems where the speed of the waves varies according to frequency – in a

medium and they arise as the solutions of a widespread class of weakly nonlinear

dispersive partial differential equations that describe physical systems [46, 17].

John Scott Russell (1808-1882) is the first person to scientifically describe the

soliton phenomenon when he observed a solitary wave in the Union Canal in

Scotland and then reproduced the phenomenon in a wave tank and called it

“wave of translation” (commonly called solitary wave or soliton today) [30, 17].

Decades later Joseph Valentin Boussinesq (1842-1929) in [20, 21] responded to

the observation by John Scott Russell of the wave of translation birthing the

Boussinesq approximation, a very important equation in fluid mechanics.

In fluid mechanics, the Boussinesq approximation for water waves is an

approximation valid for weakly nonlinear and fairly long waves. The equations

now known as the Boussinesq equations are the equations (25) and (26) in

Boussinesq’s paper of 1872 where eq. (25) from [21] is the set of PDEs given as

∂η

∂t
+

∂

∂x
[(h+ η)ub] =

1

6
h3∂

3ub
∂x3

,

∂ub
∂t

+ ub
∂ub
∂x

+ g
∂η

∂x
=

1

2
h2 ∂

3ub
∂t∂x2

and eq. (26) [from [21]] under some additional approximations, but at the same

accuracy, reduces the above equation to a single partial differential equation for

the free surface elevation η given as:

∂2η

∂t2
− gh∂

2η

∂x2
− gh ∂

2

∂x2

(
3

2

η2

h
+

1

3
h2 ∂

2η

∂x2

)
= 0. (1.1)

Over the years a lot of research work has been done to improve, modify, extend

and apply the Boussinesq equations [15, 16, 45, 52] which has resulted in an

overwhelming number of mathematical models which are now referred to as

Boussinesq equations. This, easily, can lead to confusion since what is referred

to as the Boussinesq equation is just a variant thereof. Strictly speaking, the

Boussinesq equation is the equation (1.1) and the set of equations that led to it

hence for any variant it is appropriate to call them Boussinesq-type equations.
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All these variants and the original equation can be generalised by the form given

by [8, 67] as

uxxxx + [N (u)]xx = utt. (1.2)

The soliton equation (1.2), when N (u) = 1
2u

2, had earlier been considered by

Boussinesq to describe the propagation of long water waves [20, 21] in shallow

water and since then it has been used to model many other physical phenomena

in science and engineering (see [9] and references therein and other references cited

herein).

2 Preliminary Definitions and Theorems

Some important definitions and theorems are stated in this section as preliminaries

to main work [63]. Let X be a measure space. Define M(R+) as the space of all

measurable functions from X to R+.

Definition 2.1. A real function f(t), t > 0, is said to be in the space Cβ, β ∈ R if

there exists a real number p(> β), such that f(t) = tpf1(t), where f1(t) ∈ C[0,∞),

and is said to be in the space Cmβ if and only if f (m) ∈ Cβ, m ∈ N .

Definition 2.2. A sequence {fn} of real-valued functions is said to converge

uniformly on X to a function f if for each ε > 0 there exists some n0 (depending

on ε) such that |fn(x)− f(x)| < ε for all n ≥ n0 and all x ∈ X.

Theorem 2.3. If {fn}∞0 ⊂ M(R+) and
∑∞

n=0 fn converge uniformly to f , then

f =
∑∞

n=0 fn.

Definition 2.4. Laplace transform of a function f (t) is defined as the improper

integral

F (s) = L{f(t); s} =

∫ ∞
0

e−stf(t)dt (2.1)

such that the integral converges and exist.

Theorem 2.5. For any functions f(t) and g(t) and constants α, β where F (s)

and G (s) exist,

L{αf(t) + βg(t)} = αF (s) + βG (s) .
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Definition 2.6. The inverse Laplace transform is defined as

f(t) = L−1{F (s); t} =
1

2πi

∫ c+i∞

c−i∞
estF (s)ds, c = Re(s) > c0, (2.2)

and consequently L−1 (L (f)) = f and L
(
L−1 (F )

)
= F.

2.1 Definitions for fractional calculus

Since that question by L’Hôpital, different persons have tried to mathematically

define fractional calculus. As far back as we can go, the first to somehow give a

definition was Lacroix in his text [60]. Starting with y = xm, where m > 0, he

showed that
d1/2

dx1/2
f(x) =

2
√
x√
π

for m = 1 and n = 1
2 by generalising the nth-derivative using Γ for generalised

factorial to arrive at

dn

dxn
f(x) =

Γ(m+ 1)

Γ(m− n+ 1)
xm−n.

It is generally believed that Abel was the first to apply fractional calculus by

obtaining the solution of an integral equations – which was later renamed after

him in his honour – that arises in the formulation of a Tautocrone problem [48].

Williams [53] observed the relationship between Abel’s equation and the fractional

calculus using repeated integration to arrive at:∫ x

a

(x− τ)n−1

(n− 1)!
f(τ)dτ =

∫ x

a
dt1

∫ t1

a
dt2· · ·

∫ tn−1

a
f(tn)dtn := Ina f(x), (2.3)

where Ina is the n-fold integration. Eq. (2.3) is Cauchy’s integral formula which

is well-defined for non-integer n. A resulting expression of (2.3) is

Iαα+f(t) :=
1

Γ(α)

∫ t

a
(t− τ)α−1f(τ)dτ, t, α > 0 (2.4)

which is the Riemann-Liouville fractional integral – one of the most common

definitions of fractional integrals in the literature! Setting a = 0 in (2.4) we have
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the Riemann-Liouville derivatives given by the equation

0I
α
t f(t) =

1

Γ(n− α)

dn

dtn

∫ t

0
(t− τ)n−α−1f(τ)dτ, n ≥ α > n− 1 (2.5)

where Γ is the Gamma function defined as

Γ(z) =

∫ ∞
0

e−ttz−1dt, Re(z) > 0, z ∈ Z (2.6)

with

Γ(z + 1) =

∫ ∞
0

e−ttzdt = −e−ttz|t=∞t=0 + z

∫ ∞
0

e−ttz−1dt = zΓ(z), (2.7)

and

Γ(n+ 1) = n!

Definition 2.7. [19] Suppose that α > 0, t > 0, α, t ∈ R, the Caputo fractional

derivative of order α is defined as

Dα
t f (x, t) = In−αDnf (x, t) =


1

Γ(α−n)

∫ t
0

f (n)(τ)

(t−τ)α+1−ndτ n− 1 < α < n ∈ N
dn

dtn f (t) α = n ∈ N.
(2.8)

Though they have different forms, the Caputo fractional derivative and

Riemann-Liouville integral operator are related by the relations [12]

Dα(Iαf(x, t)) = f(x, t) and

Iα(Dαf(x, t)) = Iα(In−αf (n)(x, t)) = Inf (n)(x, t) = f(x, t)−
n−1∑
k=0

f (k)(x, 0)
tk

k!
.

The Caputo definition is a very important definition in the field of fractional

calculus especially when we aim to apply it to real-life problems. Some advantages

it posseses over the Riemann-Liouville definition are: under natural condition on

the function f(t), for α → n the Caputo derivative becomes a conventional nth

derivative of the function f(t). Also, its fractional derivative of a constant is

zero; when the Laplace transform of the Caputo fractional derivative is taken,

its initial values are in terms of integer order derivatives (compare Lemma 2.8).

Other reasons why we stick to the Caputo derivatives in this article are:
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1. Caputo’s fractional differentiation, like integer-order differentiation, is a

linear operation. That is,

Dα(βf(t) + γg(t)) = βDαf(t) + γDαg(t) (2.9)

where β and γ are constants;

2. Caputo’s fractional differentiation satisfies Leibniz’s rule

Dα(βf(t)γg(t)) =
∞∑
i=0

(
α

i

)
g(i)(t)Dα−if(t), (2.10)

if f(τ) is continuous in [0, t] and g(τ) has (n+ 1) continuous derivatives in

[0, t].

Lemma 2.8. [44] Suppose p > 0 and F (s) is the Laplace transform of f(t). The

Laplace transform of the Caputo fractional derivative of order α is given by

L{Dα
t f(t); s} = sαF (s)−

n−1∑
k=0

sα−k−1f (k)(0), n− 1 < α < n. (2.11)

3 Laplace Homotopy Analysis Method

The LHAM, as far as we checked, was proposed by [44] and it has since been used

by other researchers for different problems – see [63] for a brief list of authors.

Consider the fractional differential equation

D2α
t u(t) = g(u(t), ux(t), uxx(t)), t ≥ 0, 0 < α ≤ 1 (3.1)

with the initial conditions:

u(0) = a, ut(0) = b (3.2)

where D2α
t is Caputo’s derivative. Apply the Laplace transform, denoted L, to

both sides of Eq.(3.1) and by the linearity of Laplace transforms we get

L
(
D2α
t u (t)

)
= L (g (u (t) , ux (t) , uxx (t))) .
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Using the initial condition (3.2), then we get

s2αũ (s)− s2α−1a− s2α−2b = L (g (u (t) , ux (t) , uxx (t))) ,

and consequently,

ũ(s) =
a

s
+

b

s2
+

1

s2α
L (g (u (t) , ux (t) , uxx (t))) , (3.3)

where L (u (t)) = ũ (s). The zero-order deformation equation of the Laplace

equation (3.3) has the form

(1− q)[φ̃(s; q)− ũ0(s)] = q~
[
φ̃(s; q)− a

s
− b

s2
− 1

s2α
L (g (u (t) , ux (t) , uxx (t)))

]
(3.4)

where q ∈ [0, 1] is an embedding parameter. When q = 0 and q = 1, we have

φ̃(s; 0) = ũ0(s) and φ̃(s; 1) = ũ(s)

respectively. Thus, as q increases from 0 to 1, φ̃(s; q) varies from ũ0(s) to ũ(s)

and the Taylor’s expansion of φ̃(s; q)

φ̃(s; q) = ũ0(s) +
∞∑
m=1

ũm(s)qm, (3.5)

where

ũm(s) =
1

m!

∂mφ̃(s; q)

∂qm

∣∣∣∣∣
q=0

.

If the auxiliary parameter ~ and the initial guesses ũ0(s) are properly chosen, then

(3.5) converges at q = 1 and we have

ũ(s) = ũ0(s) +

∞∑
m=1

ũm(s).

Define the vector

~̃um(s) = {ũ0(s), ũ1(s), . . . , ũm(s)}.

Earthline J. Math. Sci. Vol. 7 No. 1 (2021), 25-47



34 S. O. Ajibola, E. O. Oghre, A. G. Ariwayo and P. O. Olatunji

Differentiating (3.4) m times with respect to q [by using the Leibniz rule defined

in (2.10)], setting q = 0, ~ = −1 and finally dividing through by m!, we have the

mth-order deformation equation

ũm(s) = χmũm−1(s)−Rm
(
~̃um−1(s)

)
, (3.6)

where

Rm

(
~̃um−1 (s)

)
= ũm−1 (s)−

(
a

s
+

b

s2

)
(1− χm)

− 1

s2α

(
1

(m− 1)!

∂m−1

∂qm−1

[
L(g(t, φ(t; q),

d

dt
φ(t, q)))

]
q=0

)
(3.7)

and

χm =

0, if m ≤ 1

1, if m > 1.

Taking the inverse Laplace transform, that is L−1, of (3.6) gives a power series

solution

u(t) =
∞∑
i=0

ui(t). (3.8)

3.1 Convergence of LHAM

Theorem 3.1. Suppose φ̃(s; q) = ũ0(s) +
∑∞

m=1 ũm(s)qm [from Eq. (3.5)]. Then

the solution of (3.4) resulting from (3.1) exists as power series in q, the embedding

parameter, if limm→∞ φ̃m(s) = φ̃(s).

Proof. See [36].

Theorem 3.2 (Convergence theorem). As long as the series (3.8) is convergent,

where ui(t) is produced by the mth-order deformation equation (3.6). It must be

the exact solution of (3.1).

Proof. Suppose
∑∞

i=0 uit converges uniformly to u(t), then

lim
i→∞

ui(t) = 0 for all t ∈ R+. (3.9)
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Since L−1, like its corresponding Laplace transform, is a linear operator, we

have:

i∑
m=1

L−1[ũm(s)− χmũm−1(s)] =
i∑

m=1

[L−1ũm(s)− χmL−1ũm−1(s)]

= L−1ũ1(s) + · · ·+ [L−1ũi(s)− L−1ũi−1(s)]

= L−1ũi(s)

= ui(t). (3.10)

From (3.6), (3.9) and (3.10), we have:

∞∑
m=1

L−1[ũm(s)− χmũm−1(s)] =

∞∑
m=1

[um(t)− χmum−1(t)]

= lim
i→∞

ui(t) = 0 (3.11)

hence

~
∞∑
m=1

Rm(ũm−1) =
∞∑
m=1

[ũm(s)− χmũm−1(s)] = 0 (3.12)

since ~ 6= 0, this yields
∞∑
m=1

Rm(ũm−1) = 0.

Now from Theorem 2.3 and (3.7),

0 =

∞∑
m=1

[
ũm−1(s)− 1

s2α
L(g(u(t), ux(t), uxx(t)))−

(
a

s
+

b

s2

)
(1− χm)

]

=

∞∑
m=1

ũm−1(s)−
∞∑
m=1

1

s2α
L(g(u(t), ux(t), uxx(t)))−

∞∑
m=1

(
a

s
+

b

s2

)
(1− χm)

= ũ(s)−
(
a

s
+

b

s2

)
− 1

s2α
L(g(u(t), ux(t), uxx(t))) (3.13)

hence,

ũ(s) =
a

s
+

b

s2
+

1

s2α
L(g(u(t), ux(t), uxx(t))) (3.14)

and

ũ(s)− a

s
− b

s2
=

1

s2α
L(g(u(t), ux(t), uxx(t))) (3.15)
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which implies that

s2αũ(s)− s2α−1a− s2α−2b = L(g(u(t), ux(t), uxx(t))). (3.16)

Since a = u(0) and b = ut(0) from (3.2), (3.16) becomes

s2αũ(s)− s2α−1u(0)− s2α−2ut(0) = L(g(u(t), ux(t), uxx(t))). (3.17)

The left hand side of (3.17) takes the form of (2.11) which tells us that (3.17)

is the Laplace transform of a derivative which in our case is a Caputo fractional

derivative. Thus, we have

L(D2α
t u(t)) = L(g(u(t), ux(t), uxx(t))). (3.18)

Taking the inverse Laplace transform of both sides, we have:

D2α
t u(t) = g(u(t), ux(t), uxx(t)). (3.19)

Therefore, u(t) is the exact solution and the proof is complete.

4 Application

In this section, we apply the LHAM to some equations.

4.1 The fractional cubic Boussinesq equation

The cubic Boussinesq equation of fractional order is the equation given as

D2α
t u(x, t)− uxx(x, t) + 2(u3)xx(x, t)− (u)xxxx(x, t) = 0,

u(x, 0) =
1

x
, ut(x, 0) =

−1

x2
, 0 < α ≤ 1. (4.1)

The mth-order deformation equation is thus given as

um(x, s) = χmum−1 (x, s)− um−1 (x, s) +

(
1

sx
− 1

(sx)2

)
(1− χm)

+ L

 1

s2α
(um−1)xx(x, t)− 2

s2α

m−1∑
j=0

um−1−j

j∑
i=0

uiuj−1


xx

+
1

s2α
(um−1)xxxx

 (4.2)
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and

χm =

0, if m ≤ 1

1, if m > 1
.

Therefore,

u0(x, s) =
1

sx
− 1

(sx)2
,

u1(x, s) =
1

s2α

[(
2!

sx3
− 3!

s2x4

)
+ . . .

]
=

1

s2α+1

2!

x3
− 1

s2α+2

3!

x4
+ . . . .

...

Hence

u(x, s) =
1

sx
− 1

s2x2
+

1

s2α+1

2!

x3
− 1

s2α+2

3!

x4
+− · · ·

Taking the inverse Laplace transform, we have

u(x, t) =
1

x
− t

x2
+

2!

x3

t2α

Γ(2α+ 1)
− 3!

x4

t3α

Γ(2α+ 2)
+− · · · (4.3)

For a test case, let α = 1, then we have

u(x, t) =
1

x
− t

x2
+
t2

x3
− t3

x4
+ · · · = 1

x

∞∑
n=0

(−1)n
(
t

x

)n
=

1

x+ t

which coincides with the exact solution. See [5].

4.2 The fractional Boussinesq-like B(n, n) equation

The Boussinesq-like B(n, n) equation is the equation given as

D2α
t u(x, t)− (un)xx(x, t)− (un)xxxx(x, t) = 0, m, n > 1. (4.4)

For this particular equation, we would like to choose two cases, namely, B(2, 2)

and B(3, 3) with distinct initial conditions to illustrate the efficiency of LHAM.

Case 1. When n = 2, (4.4) with initial condition is given as

D2α
t u(x, t)− (u2)xx(x, t)− (u2)xxxx(x, t) = 0, (4.5)
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u(x, 0) =
4

3
a2 sin2

(x
4

)
, ut(x, 0) =

a3

3
sin
(x

2

)
, (4.6)

where a is an arbitrary constant. Based on the Section 3, the m-th order

deformation equation of (4.5) using (4.6) is given by the equation

um(x, s) =χmum−1 (x, s)− um−1 (x, s)

+

[
1

s

(
4

3
a2 sin2

(x
4

))
+

1

s2

(
a3

3
sin
(x

2

))]
(1− χm)

+ L

 1

s2α

m−1∑
j=0

(ujum−1−j)xx (x, t) +
1

s2α

m−1∑
j=0

(ujum−1−j)xxxx(x, t)


(4.7)

where

χm =

0, if m ≤ 1

1, if m > 1

which, when m ≥ 1, is given by the equation

um(x, s) = L

 1

s2α

m−1∑
j=0

(ujum−1−j)xx (x, t) +
1

s2α

m−1∑
j=0

(ujum−1−j)xxxx(x, t)

 .

(4.8)

From (4.7),

u0(x, s) =
1

s

4

3
a2 sin2

(x
4

)
+

1

s2

a3

3
sin
(x

2

)
(4.9)

which implies, by inverse Laplace transform, that

u0(x, t) =
4

3
a2 sin2

(x
4

)
+
a3

3
t sin

(x
2

)
(4.10)

Inverting (4.8) using Laplace transform, we have

um(x, t) = L−1

 1

s2α

m−1∑
j=0

(ujum−1−j)xx (x, t) +
1

s2α

m−1∑
j=0

(ujum−1−j)xxxx(x, t)

 .

(4.11)
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By repeating this procedure for u1, u2 . . . and setting α = 1 we have the series

solution

u(x, t) =
4

3
a2 sin2

(x
4

)
+
a3

3
t sin

(x
2

)
+
a4

12
t2 cos

(x
2

)
− a5

72
t3 sin

(x
2

)
+ . . . (4.12)

Using Taylor series we get

u(x, t) =
4

3
a2 sin2

(
x+ at

4

)
, −2π ≤ x+ at ≤ 2π (4.13)

which coincides with the exact solution. See [72].

Case 2. When n = 3, (4.4) with initial condition is given as

D2α
t u(x, t)− (u3)xx(x, t)− (u3)xxxx(x, t) = 0, (4.14)

u(x, 0) =

√
6

2
ab sin

(x
3

)
+

√
6

2
ab cos

(x
3

)
, ut(x, 0) =

√
6

2
ab2 cos

(x
3

)
−
√

6

2
ab2 sin

(x
3

)
,

(4.15)

where a and b are arbitrary constants. The m-th order deformation equation of

(4.14) is the equation

um(x, s) = χmum−1(x, s)− um−1(x, s)

+

[
1

s

(√
6

2
ab sin

(x
3

)
+

√
6

2
ab cos

(x
3

))
+

1

s2

(√
6

2
ab2 cos

(x
3

)
−
√

6

2
ab2 sin

(x
3

))]
(1− χm)

+
1

s2α
L

m−1∑
i=0

um−1−i

i∑
j=0

ujui−j


xx

(x, t) +

m−1∑
i=0

um−1−i

i∑
j=0

ujui−j


xxxx

(x, t)

 ,
(4.16)

where

χm =

0, if m ≤ 1

1, if m > 1
.

From (4.16),

u0(x, s) =
1

s

(√
6

2
ab sin

(x
3

)
+

√
6

2
ab cos

(x
3

))
+

1

s2

(√
6

2
ab2 cos

(x
3

)
−
√

6

2
ab2 sin

(x
3

))
.
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Inverse Laplace transformation of (4.17) gives us

u0(x, t) =

√
6

2
ab sin

(x
3

)
+

√
6

2
ab cos

(x
3

)
+ t

(√
6

2
ab2 cos

(x
3

)
−
√

6

2
ab2 sin

(x
3

))

=

√
6

2
ab
[
(1− bt) sin

(x
3

)
+ (1 + bt) cos

(x
3

)]
. (4.17)

Using the inverse (Laplace transform) of (4.16) with u0(x, t) recursively for values

of u1, u2 . . . we get a series solution of (4.14). Upon setting α = 1 and using

Taylor series we get

u(x, t) =

√
6

2
ab sin

(
x+ bt

3

)
+

√
6

2
ab cos

(
x+ bt

3

)
(4.18)

which coincides with the exact solution. See [39]

5 Discussion of Results

We have solved for the closed form solution of generalised Boussinesq equations

of fractional order using a simple and concise approach allowed by the Laplace

Homotopy Analysis Method. Results obtained are for values of α = 1. Other

values of 0 < α < 1 can also be found by extension.
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