
Earthline Journal of Mathematical Sciences 
ISSN (Online): 2581-8147   

Volume 6, Number 2, 2021, Pages 325-358 

https://doi.org/10.34198/ejms.6221.325358  
 

Received: February 26, 2021; Accepted: April 4, 2021 

2010 Mathematics Subject Classification: 60E05. 

Keywords and phrases: transmutation, quartiles, moments, entropy, order statistics, maximum likelihood. 

*Corresponding author  Copyright © 2021 the Authors 

The Transmuted Kumaraswamy Pareto Distribution  

K. U. Urama1, S. I. Onyeagu2 and F. C. Eze2,* 

1 Department of Statistics, Michael Okpara University of Agriculture, Umudike, Abia State, Nigeria 

2 Department of Statistics, Nnamdi-Azikiwe University, Awka, Anambra State, Nigeria 

Abstract 

The generalization of probability distributions in view of improving their flexibility in 

capturing the shape and tail behavior of disparate data sets has become one of the most 

active aspects of statistical research. We developed a new Pareto distribution by using 

Kumaraswamy method which gave rise to a new distribution called Kumaraswamy 

Pareto distribution. This method is called transmutation. The mathematical properties of 

the new generalized distribution was presented using quartiles, moments, entropy, order 

statistics mean deviation and maximum likelihood method of parameter estimation. The 

new generalized distribution was applied to a real life data on the exceedances of flood 

peaks (in m� s⁄ ) where it was observed to be superior to its sub models in terms of some 

goodness-of-fit test such as log likelihood criterion, Akaike Information Criterion (AIC) 

and Kolmogorov-Smirnov (K-S) measures.  

1. Introduction 

In model development, probability distributions have been used in real life 

applications such as in finance, medicine, engineering agriculture, environmental 

sciences to mention but a few. These distributions include Gamma, Pareto, Weibull, 

Exponential, Lindley, Kumaraswamy and their generalization.   

In some cases, classical probability distributions do not provide adequate fit to some 

real life data in terms of goodness of fit measure, for instance the normal distribution 

cannot provide an adequate description of the patterns of asymmetric or skewed data 

(Urama et al. [25]). 
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Kumaraswamy [19] studied the Kumaraswamy distribution for double bounded 

random process and applied in hydrology. 

Azzalini [7] studied some class of new distributions and also some normal ones. This 

work gave rise to new methods for generalizing univariate continuous probability 

distributions. 

Oguntunde et al. [22] remarked that attention has been shifted to comparing the 

performance of compound distributions to that of standard theoretical distributions. 

1.1. The quadratic rank transmutation map (QRTM) 

Let  �� and  �� be the cumulative distribution functions of two distributions that have 

a common sample space and �� 
�  and ��
� are their inverse functions also called the 

quantile functions respectively. The general rank transmutation are given by Shaw and 

Buckley [24] can be defined as ����
�) = ��
��
�) and  ����
�) =  ��
��
�). The First 

expression is called Sample transmutation map while the latter is known as the Quadratic 

transmutation map. The functions ��� and ��� both map the unit interval �0,1� into it 

selves. 

 ����
�) = � +  ��
1 − �), λ ≤ 1, from which follows that the cumulative 

function (cdf) satisfies the relationship ��
�) =  
1 + �)��
�) − ����
�)��
. Then, by 

differentiation, it yields  ��
�) = ��
�)�1 + � − 2���
�)�, where �� and �� are the 

corresponding probability density functions associated with the cumulative distribution 

functions �� and �� respectively. Therefore, a random variable X is said to have a 

transmuted distribution if its cumulative distribution function (cdf) and probability 

density function (pdf) satisfies the following relationships 

�
�) = 
1 + �)�
�) − ���
�)��, � > 0,  − 1 < � < 1                   
1.1) 

and $
�) = �
�)%�1 + � − 2��
�)�&,                                                   
1.2) �
�) and �
�) are the corresponding probability density functions associated with the 

cumulative distribution functions �
�) and �
�) respectively. 

 Generally, quadratic rank transmutation map have been used as a convenient way of 

constructing new distributions, in particular, survival time models. According to Shaw 

and Buckley [24], transmutation maps comprise the functional composition of the 
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cumulative function of one distribution with the inverse cumulative distribution (quartile) 

function of another. 

Differentiating equation (1.1) we will obtain the corresponding probability density 

function of the transmuted probability distribution $
�) = �
�) 
1 +  � − 2��
�)), 

where, λ is the transmuted parameter and �
�) is the baseline function. Equations (1.1) 

and (1.2) will reduce to the distribution function and probability density function of the 

baseline distribution when the transmuted parameter takes the value zero.  

1.2. The transmuted Kumaraswamy Pareto distribution 

In this study we proposed a four-parameter probability distribution called the 

transmuted Kumaraswamy Pareto distribution. Although Kumaraswamy pareto 

distribution is an extension of the Pareto distribution taking Kumaraswamy distribution 

function as the generator. Kumaraswamy Pareto is not common in the literature and has 

not been fully exploited. Although, its performance in modeling datasets exhibiting 

extreme value properties was remarked by Bourguignon et al. [9]. Although, they 

observed that Kumaraswamy Pareto provided a good fit in modeling exceedances of flood 

peaks data; much is still needed to be done to improve on its goodness of fit by adding 

extra parameter to the existing parameters of the model. According to Bourguignon et al. 

[8], a random variable, X, is distributed as Kumaraswamy Pareto if its probability density 

function is defined as follows,
 

�
�) = '()�*�+,� -1 − 
�*� )+./
� 01 − 11 − 2�*� 3+4/56 ,                              
1.3) 

with the corresponding distribution function is given as  

�
�) = 1 − 01 − 11 − 2�*� 3+4/56 .                                          
1.4) 

The quadratic rank transmutation map (QRTM) proposed by Shaw and Buckley [24] was 

defined as  �
�) = 
1 + �)�
�) − ���
�)��.                                       
1.5) 

The derivative of equation (1.5) yields the density function of a transmuted 

distribution given as, 

 $
�) = �
�)�
1 + �) − 2��
�)�,                                        
1.6) 
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where �
�), is the cdf of the baseline distribution, $
�) and �
�) are the corresponding 

probability density functions (pdf’s) associated with �
�) and �
�) respectively. It is 

important to note that if � = 0, equation (1.5) becomes �
�),  the distribution function of 

the baseline random variable; otherwise we shall have the distribution function of the 

transmuted   random variable. Similarly, the probability density function of the baseline 

distribution will be equal to the probability density function of the transmuted distribution 

associated with it when � = 0. Substituting equation (1.3) and (1.4) into equation (1.6) we 

will obtain the probability density function of the Transmuted Kumaraswamy Pareto 

distribution given by 

$
�)  = '()�*+�+,� 11 − 2�*� 3+4/
� 01 − 11 − 2�*� 3+4/5?
�
 

× A�1 + λ � − 2 λ B1 − 01 − 11 − 2�*� 3+4/56CD,             
1.7) 

for � > �* otherwise,  $
�) = 0.                                                       

Note: If � = 0, equation (1.7) reduces to the probability density function of the 

Kumaraswamy Pareto distribution. 

Akinsete et al. [1] studied the beta-Pareto distribution and came up with the 

cumulative distribution function of the beta-Pareto random variable as 

�
�) = Γ
' + ()Γ
')Γ
() G H/
�
1 − H)+
�I�J
K)
*                              
1.8) 

0 < ', ( < ∞, 
where  ' and  ( are the shape parameters.  

Akinsete et al. [1] found that the beta-Pareto distribution is unimodal, exhibits either 

decreasing or a unimodal hazard rate. The authors derived the expressions for mean, 

mean deviation and variance, skewness, kurtosis and entropies. The method of maximum 

likelihood estimate was proposed to estimate the parameters of the model while the 

application of the model to flood dataset was carried out to show that it can model heavy-

tailed distributions. 

Aryal and Tsokos [2] studied the Transmuted Generalized Extreme value by using 

the transmutation map technique on the cumulative generalized extreme value 
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distribution. The Transmuted Generalized Extreme value distribution function given by 

the cdf of the form: 

�
�) = 
1 + �)N�O B− -1 + P 2� − QR 3.
�SC − �N�O B−2 -1 + P 2� − QR 3.
�SC,        
1.9) 

1 + P
� − Q)R > 0, −∞ < Q < ∞, R > 0, |V�|V ≤ 1. 
Aryal and Tsokos [2] observed that a random variable, X is said to have generalized 

extreme value (GEV) distribution if its cdf is given by: 

�
W) = N�O B− -1 + P 2� − QR 3.
�SC,                                           
1.10) 

for  1 + S
K
X)Y > 0 where −∞ < � < ∞ is the location parameter, R is the scale 

parameter and −∞ < P < ∞ is the shape parameter. The corresponding density function 

is given by 

�
�) =  1R -1 + 2� − QR 3.
 �S
� N�O B− -1 + P 2� − QR 3.
�SC                    
1.11) 

where  P determines the tail behaviour of the distribution. 

A particular case of the Generalized Extreme Value (GEV) distribution for P = 0 and −∞ < � < ∞ is the Gumbel distribution. The cases for P > 0 and P < 0 the GEV 

distribution tends to be Frechet and the negative Weibull distributins respectively. 

The authors studied the transmuted Gumbel distribution with cdf 

 �
�) = 
1 + �)N�O -−N�O Z− � − QR [. − �N�O -−2N�O Z− � − QR [.,             
1.12) 

Equation (1.10) yields, equation (1.11) on differentiation, the probability density function 

(pdf) of a transmuted Gumbel random variable  

$
�) = 1R N�O -− � − QR − N�O Z� −  QR [. 
× -1 + � − 2� exp
−exp { − � −  QR }) ..                
1.13)   

Aryal and Tsokos [2] further used the transmuted Gumbel distribution to model snow 

fall data and it was observed to be a very good model for the data. 
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Aryal and Tsokos [2] developed the analytical framework of the transmuted extreme 

value probability distribution and derived the expression for basic statistical measures 

and also provided the maximum likelihood equations of the parameter inherent in the 

subject distribution. They also illustrated the usefulness and effectiveness of the said 

transmuted Gumbel probability distribution and applied it in the snow fall data. The 

goodness of it tests they carried out reviews that the data is well described by this 

distribution.   

Aryal and Tsokos [3] defined and studied the transmuted Weibull distribution with 

the cumulative distribution function of the form  

              �
�) = `1 − exp a− 2�R3bcd `1 + �exp a− 2�R3bcd,                    
1.14) 

� > 0, e, R > 0, |�| ≤ 1 , �, is the transmuted Weibull random variable, ση,  
and λ  are 

parameters of the model. They provided the comprehensive description of the 

mathematical properties of the proposed distribution with its reliability behavior. The 

author’s also used two real world datasets to illustrate the usefulness of this distribution 

for modeling reliability data and compared the result with Exponentiated Weilbull 

through maximum likelihood estimate and log likelihood procedures. It was also 

observed that the transmuted Weibull can be a good competitor of other generalized 

Weilbull distributions.   

Merovci [20] proposed a generalization of the Lindley distribution using the 

quadratic rank transmutation map by Shaw and Buckley [24] to construct the transmuted 

Lindley distribution given by the cumulative distribution function (cdf) of the form: 

               �
�) = a1 − 1 + ) + )�1 + ) e
6Kc a1 + � 1 + ) + )�1 + ) e
6Kc,             
1.15) 

� > 0, ) > 0, |�| ≤ 1. Where � is the transmuted Lindley-distributed random variable 

associated with the Transmuted Lindley distribution.The author studied several 

Mathematical properties of the new distribution alongside with the reliability behaviour. 

The researcher also observed that the transmuted Lindley distribution is an extended 

probability model that can analyze more complex data and generalize some of the widely 

used distributions. An uncensored set involving the remission times (in months) of a 

random sample of 128 bladder cancer patients was modeled using the transmuted Lindley 

distribution, Exponential distribution and Lindley distribution. According to the result of 

the performance measure reported by the author, the transmuted Lindley is a better model 

than the Lindley distribution. 
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Elbatal and Elgarhy [15] introduced the Transmuted Quasi-Lindley distribution 

which is a generalized form of quasi-Lindley distribution. They used the quasi-Lindley 

distribution as the baseline distribution and define the cumulative distribution function of 

the Transmuted Quasi-Lindley probability model of the form: 

�
�) = `1 − e
6K a1 + )�1 + 'cd 

              × `1 + �e
6K a1 + )�1 + 'cd ,                             
1.16)  
� > 0, ' > −1, ) > 0, |�| ≤ 1. 

They derived the moments and moment generating function of the distribution and also 

the least squares, weighted least square and maximum likelihood estimate of the 

parameters of the distribution.  

Ashour and Eltehiwy [5] proposed and studied a generalization of the Exponentiated 

Lomax distribution known as the transmuted Exponentiated Lomax distribution using the 

transmutation techniques and defined the Cumulative distribution function (cdf) of the 

form: 

                   �
�) = %1 − 
1 + P�)
6&/Z
1 + �) − �%1 − 
1 + P�)
6&/[,           
1.17) 

� > 0, ' > 0, ) > 0, P > 0, |�| ≤ 1. 
They derived various structural properties of the distribution such as the moments, 

quantiles, mean deviations, and also obtained the model parameters by maximum 

likelihood method. They suggested that this distribution can be used to model reliability 

data.  

Elbatal [11] defined the transmuted modified inverse Weibull distribution by the cdf 

of the form: 

                          �
�) = e
 /K
b
S2 �K
b3f g1 + � − 2�e
 /K
b
S2 �K
b3fh,               
1.18) 

e < � < ∞, ' > 0, ( > 0, P > 0, |�| ≤ 1. 
Structural properties of the distribution were examined by the author in view of real-life 

applications of the distribution. 

 In a similar fashion, Elbatal [12] also defined the Transmuted Generalized Inverted 
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Exponential distribution by the cumulative distribution function (cdf) given by: 

�
�) = i1 − a1 − e
6Kc/j i1 + � a1 − e
6Kc/j,                    
1.19) 

� > 0, ' > 0, ) > 0, |�| ≤ 1. 
They discussed some properties of the distribution of derived moment and other statistics. 

They obtained the parameters of the model through the maximum likelihood estimate 

Method and also derived the information matrix. 

Ashour and Eltehiwy [6] studied the Transmuted Exponentiated Modified Weibull 

distribution taking the Exponentiated Modified Weibull as the baseline distribution and 

obtained the cumulative distribution function (cdf) as: 

�
�) = a1 + � − � 21 − e
�6K,SKf�3c,                                 
1.20) 

� > 0, ' > 0, ) > 0, ( > 0, |�| ≤ 1. 
Where � the Transmuted Exponential Modified Weibull random variable while ,α  β  and 

λ  are the model parameters. They derived various structural properties including explicit 

expression for the moments, quantiles and moment generating function of the distribution 

and obtained the estimate of the model parameter by the least square method. They 

concluded that the distribution can be used to model reliability data. The method of least 

squares was proposed for estimating the parameters of the distribution by the authors. 

Elbatal et al. [14] investigated a four- parameter generalized distribution called the 

Transmuted Generalized Linear Exponential distribution with cumulative distribution 

function (cdf):  

�
�) = g1 − e
a/K,+�Kkclh g1 + �e
a/K,+�Kkclh,                         
1.21) 

� > 0, ' > 0, ) > 0, ( > 0, |�| ≤ 1. 
They derived the following mathematical properties of the distribution: a closed form of 

expression for the density, relative distribution, quantiles, median, moments and moment 

generating function and also obtained the estimate of the unknown parameters through 

the maximum likelihood estimation method. They tested the goodness-of-fit of some 

selected distributions with the Transmuted Generalized Linear Exponential with the 

Kolgomorov-Smirnov (K-S) distance test statistics and their corresponding P-value on 
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two real datasets where they found that the Transmuted Generalized Linear Exponential 

compete favourably with some well-known distribution in modeling lifetime data.  

Elbatal and Aryal [13] proposed and studied the Transmuted Additive Weibull 

distribution that extends the Additive Weilbull distribution and other distributions. They 

defined the cumulative distribution function (cdf) as:  

�
�) = 21 − e
/Kl
SKf3 21 + �e
/Kl
SKf3,                             
1.22) 

� > 0, ' > 0, ) > 0, ( > 0, P > 0, |�| ≤ 1. 
They derived the explicit expression for moments, random number generation and order 

statistics of the subject distribution. They applied the maximum likelihood estimation 

procedure to obtain the unknown parameters of the model. They also used the analytical 

results to model real-life data. They compared the model with the Weibull and Additive 

Weilbull distributions to analyze the data and the results indicated that the Transmuted 

Additive Weilbull distribution has the lowest Alkaike Information Criteria (AIC). So, it 

fits the real-life data better than the other models. 

Khan and King [17] defined the Transmuted Modified Weibull distribution with cdf: 

                            �
�) = 21 − e
/K
SKf3 21 + �e
/K
SKf3,                           
1.23) 

� > 0, ' > 0, ( > 0, P > 0, |�| ≤ 1. 
Several properties of the distribution were studied by the authors and both the method of 

least squares and maximum likelihood were proposed for the estimation of the parameters 

of the distribution. The Transmuted Modified Weibull distribution was applied to a real 

dataset and compared with the Transmuted Exponential, Transmuted Weibull, Modified 

Weibull and Weibull distributions and the Transmuted Modified Weibull distribution did 

better than the rest. 

2. Methodology 

Urama et al. [25] have developed a new family of probability distribution called the 

transmuted Kumaraswamy Pareto distribution (TKPD) whose cdf is of the form: 

( ) ( )

2

1 1 1 1 1 1 1

b b
a a

k k

G x
x x

β βλ λ
                   = + − − − − − − −             

                      

,        (2.1) 
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  which can be factorized to get, 

( ) ( )
2

1 1 1 1

b
a

k

G x
x

βλ
       = + − − − −     

        

            (2.2) 

; , , , 0 1,x a b kβ β λ≥ > ≤
 

and the corresponding pdf is  

( ) ( )
1

1
1 2 1 1 1 1

b
a a

k kk

k

abk
g x

x x x

−

+

             = + − − − − −          
                

β β βλ λ  

1

1 1

b
a

k

x

−
    − −   

     

β
                                                    (2.3) 

; , , , 0 1,x a b kβ β λ≥ > ≤  

 where m, n, � and o controls  the shape of the density and ( the location parameter. 

The survival p
�) and hazard ℎ
�) functions of the TKPD are expressed as follows. 

The survival function is expressed as p
�) = 1 − �
�).                                        (2.4) 

Thus 

p
�) = 1 − 
1 + �) r1 − B1 − 11 − a(�cs4tCuv − � r1 − B1 − 11 − a(�cs4tCuv�, 
� ≥ (, m, n, (, o > 0, |�| ≤ 1.   

ℎ
�) = $
�)p
�) ,                                                                                                                   
2.5) 

   = xyzfz{z|} A�,~
�~r�
0�
1�
2f{3z4x5yvD1�
2f{3z4x�}0�
1�
2f{3z4x5y�}

�

�,~)r�
0�
1�
2f{3z4x5yv
~r�
0�
1�
2f{3z4x5yvk ,                 
2.6) 
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� ≥ (, m, n, (, o > 0, |�| ≤ 1. 
The graphs of the hazard function are given by Figures 1 and 2. The graphs of the 

survival function are also given by Figures 3 and 4. An examination of the hazard in 

Figure 1 and 2 clearly shows that the function possesses an upside-down bathtub shape. 

This is very rare in many survival and reliability models. The situation reveals that the 

TKPD can be effectively used to model processes with an initial increasing failure rate 

before a decrease occurs as with many engineering devices subjected to work-hardening 

or some biological system which obtains immunity overtime. 

 

 

 

Figure 1. Hazard plot of the TKPD. 
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Figure 2. Hazard plot of the TKPD. 

 

Figure 3. Survival plot of the TKPD. 
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Figure 4. Survival plot of the TKPD. 

2.1. Deductions from the TKPD Distribution 

We shall deduce the following cases from the above distribution; 

1. The TKPD becomes the Kumaraswamy Pareto distribution when the 

transmutation parameter � = 0. 
Indeed, consider the cdf of the TKPD in (2.1), expressed as   

�
�) = 
1 + �) r1 − B1 − 11 − a(�cs4tCuv − � r1 − B1 − 11 − a(�cs4tCuv�. 
Taking 0,=λ  then we have 

�
�) = 1 − B1 − 11 − a(�cs4tCu, 
which is the same as the cdf of the Kumaraswamy Pareto distribution. 

2. If  � → ∞, then TKPD becomes zero. i.e;  limK→� $
�) = 0. 

Indeed, consider the pdf of the TKPD expressed as 
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$
�) = mno(s�s,� A1 + � − 2� r1 − B1 − 11 − a(�cs4tCuvD 

× 11 − a(�cs4t
� B1 − 11 − a(�cs4tCu
�. 
Now 

limK→� $
�) = limK→� mno(s�s,� A1 + � − 2� r1 − B1 − 11 − a(�cs4tCuvD 

× 11 − a(�cs4t
� B1 − 11 − a(�cs4tCu
�. 
Hence, limK→� $
�) = 0.                                      (2.7)                                                       

3. As � → ( and m > 1, then   limK→+ $
�) = 0. 
Consider the pdf of the TKPD distribution expressed as 

$
�) = mno(s�s,� A1 + � − 2� r1 − B1 − 11 − a(�cs4tCuvD 11 − a(�cs4t
� B1 − 11 − a(�cs4tCu
�
 

Substituting  ( for � in the pdf gives 

$
�) = mno(s(s,� A1 + � − 2� r1 − B1 − 11 − a((cs4tCuvD 11 − a((cs4t
� B1 − 11 − a((cs4tCu
�
 

Evaluating the expression gives limK→+ $
�) = 0 

 hence our claim has been established. 
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4. As � → ( and m = 1, then   

limK→+ $
�) = 
1 + �)no( . 
Consider the pdf of the TKPD distribution expressed as 

$
�) = mno(s�s,� A1 + � − 2� r1 − B1 − 11 − a(�cs4tCuvD 11 − a(�cs4t
� B1 − 11 − a(�cs4tCu
�
 

m = 1 in the pdf gives 

$
�) = no(s�s,� ⎩⎪⎨
⎪⎧1 + � − 2� A1 − r1 − 11 − a(�cs4 vuD

⎭⎪⎬
⎪⎫ r1 − 11 − a(�cs4 vu
�. 

As � → ( 

limK→+ $
�) = limK→+ no(s(s,� ⎩⎪⎨
⎪⎧1 + � − 2� A1 − r1 − 11 − a((cs4 vuD

⎭⎪⎬
⎪⎫ r1 − 11 − a((cs4 vu
�

 

which further reduce to 

$
�) = 
1 + �)no( , 
And hence the proof is complete.    

2.2. Statistical properties of the proposed distribution 

2.2.1. Quantile function of the TKPD 

�
O) = �
� B
1 + �) ± �
1 + �)� − 4�O2� C , 0 < O < 1,           
2.8) 

where �
�{. } is the inverse cdf or quantile function of the distribution �
�). 
Proof. The quantile function of the transmuted family of distribution can be obtained 

by solving the equation  ���
O)� = O 
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for �
O). This is done as follows: ���
O)� = O 

By Shaw and Buckley [24] we have 

    
1 + �)���
O)� − � 2���
O)�3� = O 

� 2���
O)�3� − 
1 + �)���
O)� + O = 0. 
Solving the quadratic equation, we have  

���
O)� = 
1 + �) ± �
1 + �)� − 4�O2� , 
and taking the inverse of both sides gives 

�
O) = �
� B
1 + �) ± �
1 + �)� − 4�O2� C, 
hence the proof is established. 

From property 1, we have the following 

Random variate vector W can be simulated from the transmuted family of distribution 

using the expression 

W = �
� B
1 + �) ± �
1 + �)� − 4��2� C,                                  
2.9) 

where � is a uniform random variable defined on the interval (0,1). 

From the quantile property of the transmuted family of distribution of Shaw and 

Buckley, then we deduce the following; 

The quantile function of the TKPD distribution is given as 

�
O) = ( A1 − �1 − g1 − 
1 + �) ± �
1 + �)� − 4�O2� h� u⁄ �� t⁄ D

� s⁄

      
2.10) 

0 < O < 1. 
Proof. To prove this, we shall first find expression for �
�{. } and evaluate (2.5) 
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accordingly. Given  

�
�) = 1 − B1 − 11 − a(�cs4tCu
 

�
�) = O 

implies 

1 − B1 − 11 − a(�cs4tCu = O 

 

B1 − 11 − a(�cs4tCu = 1 − O 

1 − 11 − a(�cs4t = 
1 − O)� u⁄  

11 − a(�cs4t = 1 − 
1 − O)� u⁄  

1 − a(�cs = %1 − 
1 − O)� u⁄ &� t⁄
 

a(�cs = 1 − %1 − 
1 − O)� u⁄ &� t⁄
 

(� = Z1 − %1 − 
1 − O)� u⁄ &� t⁄ [� s⁄
 

�( = Z1 − %1 − 
1 − O)� u⁄ &� t⁄ [
� s⁄
 

� = ( Z1 − %1 − 
1 − O)� u⁄ &� t⁄ [
� s⁄ . 
Thus  

�
�{O} = ( Z1 − %1 − 
1 − O)� u⁄ &� t⁄ [
� s⁄ . 
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Using (2.5) gives the quantile function of the TKPD as  

�
O) = ( A1 − �1 − g1 − 
1 + �) ± �
1 + �)� − 4�O2� h� u⁄ �� t⁄ D

� s⁄

 
2.11) 

And hence the proof is established. 

The first three quartiles of the TKPD distribution are given by 

� a14c = ( A1 − �1 − g1 − 
1 + �) ± �
1 + �)� − �2� h� u⁄ �� t⁄ D

� s⁄

 

� a12c = ( A1 − �1 − g1 − 
1 + �) ± �
1 + �)� − 2�2� h� u⁄ �� t⁄ D

� s⁄

 

� a34c = ( A1 − �1 − g1 − 
1 + �) ± �
1 + �)� − 3�2� h� u⁄ �� t⁄ D

� s⁄

. 
The second quartile �
1/2) corresponds to the median of the distribution. Thus 

� a12c = ( A1 − �1 − g1 − 
1 + �) ± �
1 + �)� − 2�2� h� u⁄ �� t⁄ D

� s⁄

.      
2.12) 

Hence, The Random variate vector W can be simulated from the TKPD using the 

expression 

W = ( A1 − �1 − g1 − 
1 + �) ± �
1 + �)� − 4��2� h� u⁄ �� t⁄ D

� s⁄

, 
2.13) 

where � is a uniform random variable defined on the interval (0,1). 

2.2.2. Moments of the TKPD distribution 

The ��� non-central moments of the TKPD random variable W is given by 
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Q�� = �
W�) = G ��$
�)I�   for � ∈ �(, ∞),                                         
2.14)�
+  

The ��� non-central moments can be expressed as 

Q�� = 
1 − �) � �
−1) ,¡�
¡¢*

�
 ¢* an£ c am£¤ c G ��o¤ (s¡�s¡
� I��

+ .                            
2.15) 

Observe that the integral represents the ��� non-central moments of the Pareto 

distribution with location parameter ( and shape parameter o¤. Thus the ��� non-central 

moments of the TKPD distribution is an infinite linear combination of the ��� non-central 

moments of the Pareto distribution. This is another useful and major result of this study.  

Now if ¥ is a Pareto random variable, the ��� non-central moments of ¥ was given 

by Bourguignon et al. [8] as 

Q¦�� = G ��o (s�s,� I� =
⎩⎪⎨
⎪⎧ o(�o − � ;        £� o > �∞;              £� o = �− o(�o − � ;   £� o < �

V�
+                                      
2.16) 

                           

It follows that the ��� non-central moments of the TKPD is given by 

Q�� = 
1 − �) � �
−1) ,¡�
¡¢*

�
 ¢* an£ c am£¤ c o¤(�o¤ − � ,         o¤ > � .                             
2.17) 

The first four moment of the TKPD are given respectively by 

Q = Q�� = 
1 − �) � �
−1) ,¡�
¡¢*

�
 ¢* an£ c am£¤ c o¤(o¤ − 1 ,         o¤ > 1,                       
2.18) 

Q�� = 
1 − �) � �
−1) ,¡�
¡¢*

�
 ¢* an£ c am£¤ c o¤(�o¤ − 2 ,         o¤ > 2,                                
2.19) 

Q�� = 
1 − �) � �
−1) ,¡�
¡¢*

�
 ¢* an£ c am£¤ c o¤(�o¤ − 3 ,         o¤ > 3,                            
2.20) 



K. U. Urama, S. I. Onyeagu and F. C. Eze 

http://www.earthlinepublishers.com 

344

Q�̈ = 
1 − �) � �
−1) ,¡�
¡¢*

�
 ¢* an£ c am£¤ c o¤(¨o¤ − 4 ,         o¤ > 4.                            
2.21) 

The ���  central moments 
Q�) and cummulants 
©�)  of the TKPD can be obtained from 

(2.15) and expressed respectively as  

            Q� = �
−1)ª 2�«3 Q��ª�
ª¢*  Q�
ª�  ,                                              
2.22) 

      ©� =  Q�� − � a� − 1« − 1c ©ª
�
�
ª¢�  Q�
ª� ,                                         
2.23) 

where ©� = Q�� . 

The mean 
Q), variance 
R�), skewness 
p) and kurtosis 
¬) of the TKPD is 

obtained from (2.21) and (2.22) and expressed respectively as Q = Q�� ,                                                                                                
2.24) R� = Q� + Q�� − 2Q�,                                                                         
2.25) 

p = Q�, − 3QQ�, + 2Q�
�Q�, − Q���� ,                                                                   
2.26) 

¬� = Q ,̈ − 4QQ�, + 6Q�Q�, − 3Q¨�Q�, − Q��� .                                                
2.27) 

The quantile function can also be used in evaluating skewness and kurtosis of a 

distribution particularly when the quantile function of the distribution exists in closed 

form. Galton [16] proposed a quantile measure based approach for evaluating skewness. 

while Moor [21] did the same for Kurtosis. Galton’s skewness and Moor’s kurtosis are 

evaluated using the relations 

p = �
6/8) − 2�
4/8) + �
2/8)�
6/8) − �
2/8) ,                                                
2.28) 

   ¬ = �
7/8) − �
5/8) + �
3/8) − �
1/8)�
6/8) − �
2/8)  .                               
2.29) 

Since the Quantile function of the TKPD exists in closed form as given in (2.11), the 

above expressions can also be used in evaluating the skewness and kurtosis.  
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2.2.3. Moment generating function of the TKPD distribution 

The moment generating function (mgf) of the TKPD from definition can be 

expressed as  

 ­®
H) = �
e�®) = G e�K$
�)I�.�
+                                         
2.30) 

It follows that 

­®
H) = �
e�®) = 
1 − �) � �
−1) ,¡�
¡¢*

�
 ¢* an£ c am£¤ c G e�®o¤ (s¡�s¡,� I��

+ .         
2.31) 

Again the mgf of the TKPD is an infinite linear combination of the mgf of the Pareto 

distribution. 

Now if ¥ is a Pareto random variable, the mgf of ¥ was given by Bourguignon et al. 

[9] as 

      ­®
H) = G e�Ko (s�s,� I� = o
−(H)sΓ
−o, −()�
+ ,     H ≤ 0                 
2.32) 

where Γ
. , . ) is the incomplete gamma function. 

It follows that the mgf of the TKPD is given by 

  ­®
H) = 
1 − �) � �
−1) ,¡�
¡¢*

�
 ¢* an£ c am£¤ c o¤
−(H)s¡Γ
−o¤, −(), H ≤ 0.    
2.33) 

2.2.4. Mode of the TKPD        

The mode of the TKPD is obtained as the solution of                                           $�
�) = 0                                                          
2.34)   

From (2.2), we realize that $�
�) = 
1 + �)��
�) − 2�{�
�)� + ��
�)�
�)}.                           (2.35) 

Thus $�
�) = 0 

implies that 
1 + �)��
�) = 2�{�
�)� + ��
�)�
�)} 
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��
�) + ���
�) = 2��
�)� + 2���
�)�
�) ��
�) + ���
�) − 2���
�)�
�) = 2��
�)� �1 + � − 2��
�)���
�) = 2��
�)�                                         
2.36) 

Solving the above expression for � gives the mode of The TKPD and the TKPD as one 

mode hence it is a unimodal distribution. The above expression does not have an analytic 

form for the mode but the mode is determined numerically. 

2.2.5. Mean deviation of the TKPD  

 The dispersion and the spread in a population from the center are often measured by 

the deviation from the mean, and the deviation from the median. The absolute mean 

deviation about the mean, ¯
Q), and the absolute mean deviation about the median, ¯
­), for the TKPD are defined as 

        ¯
Q) = G |� − Q|$
�)I�,�

�                                                  
2.37) 

                                                   

and  ¯
­) = G |� − ­|$
�)I�,�

�                                                
2.38) 

respectively, where Q = �
W) and  ­ = �
1/2). Consequently 

¯
Q) = G |� − Q|$
�)I� = G 
Q − �)$
�)I� + G 
� − Q)$
�)I��
X

X

�

�

�  

= Q G $
�)I� −X

� G �$
�)I�X


� + G �$
�)I� − Q�
X G $
�)I��

X  

= Q�
Q) − G �$
�)I�X

� + G �$
�)I� − Q�

X �1 − �
Q)� 

= Q�
Q) − iG �$
�)I��

� − G �$
�)I��

X j + G �$
�)I� − Q�
X �1 − �
Q)� 

= Q�
Q) − G �$
�)I��

� + G �$
�)I��

X + G �$
�)I��
X − Q�1 − �
Q)� 

= Q�
Q) − Q + 2 G �$
�)I��
X − Q�1 − �
Q)� 
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= Q�
Q) − Q + Q�
Q) − Q + 2 ° �$
�)I�.�X   

Thus, 

                           ¯
Q) = 2Q�
Q) − 2Q + 2 G �$
�)I�.                            
2.39)�
X  

Also,  

¯
­) = G |� − ­|$
�)I� = G 
­ − �)$
�)I� + G 
� − ­)$
�)I��
±

±

�

�

�  

= ­ G $
�)I� −±

� G �$
�)I�±


� + G �$
�)I� − ­�
± G $
�)I��

±  

= ­�
­) − G �$
�)I�±

� + G �$
�)I� − ­�

± �1 − �
­)� 

= ­�
­) − iG �$
�)I��

� − G �$
�)I��

± j + G �$
�)I� − ­�
± �1 − �
­)� 

= ­�
­) − G �$
�)I��

� + G �$
�)I��

± + G �$
�)I��
± − ­�1 − �
­)� 

= ­�
­) − ­ + 2 G �$
�)I��
± − ­�1 − �
­)� 

= ­�
­) − ­ + ­�
­) − ­ + 2 G �$
�)I��
±  

= 2­�
­) − ­ − ­ + 2 G �$
�)I��
±  

= 2­ a12c − ­ − ­ + 2 G �$
�)I��
± . 

Thus 

                                      ¯
­) = −Q + 2 G �$
�)I��
± .                                       
2.40) 

2.2.6. Order Statistics of the TKPD       

 Let W�, W�, … , Wª be a random sample of size « from the TKPD and suppose W�:ª <W�:ª < ⋯ < Wª:ª denote the corresponding order statistic. The pdf of the o�� order 
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statistic can be expressed as 

�s:ª
�) = 1µ
o, « − o + 1) $
�)��
�)�s
��1 − �
�)�ª
s ,               
2.41) 

 where, µ
. , . ) is the beta function. 

 Using the binomial expansion, we have 

�1 − �
�)�ª
s = �
−1)  a« − o£ c �
�)  ,ª
s
 ¢*                                  
2.42) 

Thus 

�s:ª
�) = � 
−1) µ
o, « − o + 1) a« − o£ c $
�)�
�)s, 
�.               
2.43)ª
s
 ¢*  

2.2.7. Shannon entropy of the TKPD       

Shannon [23] defined the entropy of a random variable W as �¶−log�$
W)�¸, where $
W) is the pdf of the random variable. The entropy of the random variable W measures 

variation of uncertainty. Let  e® be the entropy of a random variable W following the 

TKPD, we have  e® = �¶−log�$
W)�¸.                                                         
2.44) 

log�$
W)� = log imno(sWs,� j + log ¹A1 + � − 2� r1 − B1 − 11 − a(Wcs4tCuvDº 

 +
m − 1)log a1 − 2+®3sc + 
n − 1)log i1 − `1 − 2+®3sdtj,           
2.45) 

log�$
W)� = log
mn) + log i o(sWs,�j 

+log ¹A1 + � − 2� r1 − B1 − 11 − a(Wcs4tCuvDº 

+
m − 1)log i1 − a(Wcsj + 
n − 1)log g1 − 11 − a(Wcs4th.             
2.46)  
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It follows that 

−log�$
W)� = −log
mn) − log i o(sWs,�j 

−log ¹A1 + � − 2� r1 − B1 − 11 − a(Wcs4tCuvDº 

−
m − 1)log i1 − a(Wcsj − 
n − 1)log g1 − 11 − a(Wcs4th.           
2.47) 

Hence  e® = �¶−log�$
W)�¸ 

= � 0−log i o(sWs,�j5 − log
mn) 

+� A−log ¹A1 + � − 2� r1 − B1 − 11 − a(Wcs4tCuvDºD 

−
m − 1)� 0log i1 − a(Wcsj5 − 
n − 1)� Blog g1 − 11 − a(Wcs4thC.              
2.48) 

Observe that 

� 0−log i o(sWs,�j5. 
This is the Shannon entropy of the Pareto distribution and was given by Bourguignon et 

al. [9] as 

� 0−log i o(sWs,�j5 = log ga(oc e�,�sh.                                   
2.49) 

Thus the Shannon entropy of the of the TKPD is given by 

 e® = log ga(oc e�,�sh − log
mn) − 
m − 1)� 0log i1 − a(Wcsj5 
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+� A−log ¹A1 + � − 2� r1 − B1 − 11 − a(Wcs4tCuvDºD 

−
n − 1)� Blog g1 − 11 − a(Wcs4thC,                                           
2.50) 

where the expectations are evaluated using standard procedure. 

2.2.8. Maximum likelihood estimation 

Suppose δ is a O × 1 vector containing all the parameters of the TKPD, for a random 

sample, ��, ��, … , �ª of size  « from the ¼¬½¯ the total log-likelihood function is given 

by the TKPD, for a complete random sample ��, ��, … , �ª of size  « from the ¼¬½¯ the 

total log-likelihood function is given by  

¾ = � log�$
� )�ª
 ¢�                                                                    
2.51) 

= � log ¹mno(s� s,� A1 + � − 2� r1 − B1 − 11 − a(� cs4tCuvD   11 − a(� cs4t
� B1 − 11 − a(� cs4tCu
�º .ª
 ¢�   

 
2.52) 

Let  ¿  = 1 − 2+KÀ3s .                                                       
2.53)                                                                                     

 It follows that 

¾ = � log imno(s� s,� Z1 + � − 2�{1 − {1 − ¿ t}u}[ ¿ t
�{1 − ¿ t}u
�j.    
2.54)ª
 ¢�  

Thus 

¾ = «log
m) + «log
n) + «log
o) + «olog
() − 
o + 1) � log
� )ª
 ¢�  

+ � log�1 + � − 2�{1 − {1 − ¿ t}u}�ª
 ¢�  

+
m − 1) � log
¿ ) + 
n − 1)ª
 ¢� � log
1 − ¿ t)ª

 ¢� .                                   
2.55) 
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Observe that the estimate of the parameter ( corresponds to the first order statistic of the 

TKPD. That is ( = min 
W). We would only need to find the maximum likelihood 

estimates for the parameters m, n, o and �.  

Let Θ = 
m n o �)Â be the unknown parameter vector of TKPD. Then the associated 

score function is given by 

                                     �
Θ) = aÃ¾Ãm Ã¾Ãn Ã¾Ão Ã¾Ã�cÂ ,                                             
2.56) 

where 
ÄÅÄt ÄÅÄu ÄÅÄs  and ÄÅÄ~ are given by  

Ã¾Ãm = «m − � 2�n{1 − ¿ t}u
�¿ tlog
¿ )1 + � − 2�{1 − {1 − ¿ t}u}ª
 ¢�  

+ � log
¿ ) − 
n − 1) � ¿ tlog
¿ )1 − ¿ t
ª

 ¢� ,                      ª
 ¢�                                        
2.57) 

Ã¾Ãn = «n − � 2�{1 − ¿ t}ulog
1 − ¿ t)1 + � − 2�{1 − {1 − ¿ t}u} + � log
1 − ¿ t)ª
 ¢�

ª
 ¢� ,                                    
2.58) 

Ã¾Ão = «o + «log
() − � log
� )ª
 ¢� + � 2�mn¿ t
�{1 − ¿ t}u
� a(� cs log a(� c1 + � − 2�{1 − {1 − ¿ t}u}ª

 ¢�  

−
m − 1) � a(� cs log a(� c¿ 
ª

 ¢� − 
n − 1) � m¿ t
� a(� cs log a(� c1 − ¿ t
ª

 ¢� ,                
2.59) 

Ã¾Ã� = � 1 − 2{1 − {1 − ¿ t}u}1 + � − 2�{1 − {1 − ¿ t}u}ª
 ¢� .                                                                            
2.60) 

The maximum likelihood estimate of Θ, ΘÆ, can be obtained by solving the non-linear 

systems of equations, Ç
Θ) = 0. Since the resulting systems of equations are not in 

closed form, (An equation is in a closed form if it can be expressed in a simple algebraic 

form) the solutions can be found by numerical method using  iterative scheme such as the 

Newton-Raphson type algorithms. The R Software was used to derive the maximum 

likelihood parameter estimates of the real-life dataset in Table 3.1 and displayed in Table 

3.2. 
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For interval estimation of the parameters of theTKPD, one would require the Fisher 

information matrix (FIM) given by the 4 × 4 symmetric matrix  

( )
λλλλλ

λ

λ

λ

Θ−=Θ

IIII

IIII

IIII

IIII

EI

kba

kkkkbka

bbkbbba

aakabaa

ji
ˆ

,  

where the elements È ,¡
Θ) = ` ÄkℒÄÊÀÄÊËd. Thus, the elements of the FIM can be obtained by 

considering the second order partial derivatives of the log-likelihood function w.r.t. to the 

parameters. These elements can be numerically obtained by using the R software. The 

total FIM, ÌÍ,Î
Θ), can be approximated by  

ÌÍ,Î�ΘÆ� ≈ 1− V Ã�ℒÃΘ ÃΘ¡ÐÊ¢ÊÆ 4Ñ×Ñ. 
For real data, ÌÍ,Î�ΘÆ� can be obtained after the maximum likelihood estimate of Θ is 

gotten, which implies the convergence of the iterative numerical procedure involved in 

finding such estimate. 

 Suppose ΘÆ is the maximum likelihood estimate of Θ. Under the usual regularity 

conditions and that the parameters are in the interior of the parameter space, but not on 

the boundary, we have: √«�ΘÆ − Θ� Ó→ Ô¨ 2Õ, Ì
Ö
Θ)3, where Ì
Ö
Θ) is the inverse of the 

expected FIM, which also corresponds to the variance-covariance matrix of the 

parameters. The asymptotic behavior is still valid if  Ì
Ö
Θ) is replaced by the inverse of 

the observed information matrix evaluated at ΘÆ, that is  Ì
Ö�ΘÆ�.  The multivariate normal 

distribution with mean vector Õ = 
0 0 0 0)Â and covariance matrix  Ì
Ö
Θ) can be used 

to construct confidence intervals for the TKPD parameters. The approximate 100
1 −))% two-sided confidence interval for the parameters m, n, o, � and Ø are given by  

mÙ ± Ú6 �⁄ ÛÌtt
��ΘÆ�, 
 nÜ ± Ú6 �⁄ ÛÌuu
��ΘÆ�, 
oÜ ± Ú6 �⁄ ÛÌss
��ΘÆ�,  
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�Ý ± Ú6 �⁄ ÛÌ~~
��ΘÆ�, 
respectively, where Ìtt
��ΘÆ�, Ìuu
��ΘÆ�, Ìss
��ΘÆ� and Ì~~
��ΘÆ� are diagonal elements of  Ì
Ö�ΘÆ� and Ú6 �⁄  is the upper 
) 2⁄ )�� percentile of a standard normal distribution. 

3. Application 

For the application, we shall apply the proposed TKPD to a real life data. The data 

correspond to the exceedances of flood peaks (in m
3
/s) of the Wheaton River near 

Carcross in Yukon Territory, Canada. The data consist of 72 exceedances for the years 

1958-1984, rounded to one decimal place. They were analyzed by Choulakian and 

Stephens [10] and are listed in Table 3.1. To aid the fitting of the data, the data was 

scaled by 100 and since scaling does not change the shape of a distribution, the result is 

as same as using the unscaled data. The purpose of scaling here is to improve the 

convergence rate of the numerical procedure used in obtaining the maximum likelihood 

estimates of the distribution. The density plots and the histogram of the fitted 

distributions in Figure 7 showed that the data is highly skewed to the right. We shall fit 

the TKPD  to the data and compare the results with its sub-models namely: Pareto (P) 

and Kumaraswamy Pareto (KP) distributions. The computation of the estimates for the 

parameters of all the distributions was carried out using the R software. 

Table 3.1. Exceedances of Wheaton River flood data. 

1.7, 2.2, 14.4, 1.1, 0.4, 20.6, 5.3, 0.7, 1.9, 13.0, 12.0, 9.3, 1.4, 18.7, 8.5,  

25.5, 11.6, 14.1, 22.1,1.1, 2.5, 14.4, 1.7, 37.6, 0.6, 2.2, 39.0, 0.3, 15.0,  

11.0, 7.3, 22.9, 1.7, 0.1, 1.1, 0.6, 9.0, 1.7, 7.0, 20.1, 0.4, 2.8, 14.1, 9.9, 10.4,  

10.7, 30.0, 3.6, 5.6,30.8, 13.3, 4.2, 25.5, 3.4, 11.9, 21.5, 27.6, 36.4, 2.7, 64.0, 

1.5, 2.5, 27.4, 1.0, 27.1, 20.2, 16.8, 5.3, 9.7, 27.5, 2.5, 27.0 

A descriptive statistics of the data set are given in Table 3.2. 

Table 3.2. Descriptive statistics of the Exceedances of Wheaton River flood data. 

Min Q1 Q2 Mean Q3 Max Variance 

0.100 2.125 9.500 12.200 20.120 64.000 151.221 

The Maximum likelihood estimates of the parameters of all the fitted distributions 

alongside the loglikelihood value (loglik), Akaike Information Criterion (AIC) and the 

Kolmogorov-Smirnov (K-S) statistics are reported in Table 3.3. 
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Table 3.3. Maximum likelihood estimation of the distributions 

Distribution m n o � ( loglik AIC K-S 

TKPD 25.9190 
10.0747) 

6.0721 
2.7302) 

0.3054 
0.0568) 

−0.5638 
0.0568) 

0.1 − 

−589.4 

 

1186.8 

 

0.1376 

 

KP 29.5487 
10.2657) 

8,6184 
4.6087) 

0.2869 
0.0569) 

0 − 

0.1 − 

−589.2 

 

1184.4 

 

0.1445 

 

P 1 − 

1 − 

0.1149 
0.0135) 

0 − 

0.1 − 

−688.8 

 

1379.7 

 

0.4698 

(Standard error of estimates in parenthesis) 

Observe from Table 3.3 that the maximum likelihood estimate of the parameter ( 

corresponds to the minimum value of the data. This is so since Þ ≥ (. Plots of the 

densities of the fitted distribution distributions alongside the histogram of the data are 

given by Figure 7. The cdf plots of all the fitted distributions are given by Figure 6 while 

the P-P plots of all the fitted distributions are given by Figure 7. 

 

Figure 5. Density plots of the fitted distributions. 
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Figure 6. Cdf plots of all the fitted distributions. 

 

Figure 7. P-P plots of the fitted distributions. 
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Results in Table 7 clearly revealed the superiority of the proposed TKPD over the 

other distributions which are its sub-models. This is evident from the fact that the 

proposed TKPD possessed the smallest K-S statistics value. The graphs of the fitted 

distributions in Figure 5 also showed that the TKPD density fitted the histogram of the 

data better than the rest of them. The cdf plot of Figure 6 and P-P plots of Figure 7 further 

displayed the superiority of the TKPD over its sub-models. This clearly supports the fact 

that the generalization of the Pareto distribution as contained in the newly proposed 

distribution is a very useful one and will always come useful when the Pareto distribution 

fails. 

4. Conclusions 

The major conclusion that can be drawn from the results is that the combination of 

two or more distributions to form a compounded distribution function is an effective tool 

to deal with more real life datasets, especially when the population characteristics are 

many and requires many parameters in order to describe the pattern and behaviour of 

some random phenomenon. In this study, transmutation mapping technique was used to 

generate a univariate continuous probability distribution known as Transmuted 

Kumaraswamy Pareto Distribution. Actually, the baseline distribution of the proposed 

distribution is the combination of two classical distributions, the Kumaraswamy 

distribution and the Pareto distribution. Kumaraswamy Pareto distribution is also seen as 

a generalized family of the Pareto distribution using the Kumaraswamy distribution as the 

generator. 
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