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Abstract 

Necessary and sufficient conditions in terms of lower cut sets are given for the strong 

insertion of a contra-continuous function between two comparable real-valued functions 

on such topological spaces that kernel of sets are open. 

1. Introduction  

The concept of a preopen set in a topological space was introduced by Corson and 

Michael in 1964 [4]. A subset A of a topological space ( )τ,X  is called preopen or 

locally dense or nearly open if ( )( ).AClIntA ⊆  A set A is called preclosed if its 

complement is preopen or equivalently if ( )( ) .AAIntCl ⊆  The term, preopen, was used 

for the first time by Mashhour et al. [21], while the concept of a, locally dense, set was 

introduced by Corson and Michael [4].  
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The concept of a semi-open set in a topological space was introduced by Levine in 

1963 [18]. A subset A of a topological space ( )τ,X  is called semi-open [10] if 

( )( ).AIntClA ⊆  A set A is called semi-closed if its complement is semi-open or 

equivalently if ( )( ) .AAClInt ⊆   

A generalized class of closed sets was considered by Maki in [20]. He investigated 

the sets that can be represented as union of closed sets and called them V-sets. 

Complements of V-sets, i.e., sets that are intersection of open sets are called Λ-sets [20].  

Recall that a real-valued function f defined on a topological space X is called A-

continuous [28] if the preimage of every open subset of R  belongs to A, where A is a 

collection of subsets of X. Most of the definitions of function used throughout this paper 

are consequences of the definition of A-continuity. However, for unknown concepts the 

reader may refer to [5, 11]. In the recent literature many topologists had focused their 

research in the direction of investigating different types of generalized continuity.  

Dontchev in [6] introduced a new class of mappings called contra-continuity. A good 

number of researchers have also initiated different types of contra-continuous like 

mappings in the papers [1, 3, 8, 9, 10, 12, 13, 26].  

Hence, a real-valued function f defined on a topological space X is called contra-

continuous (resp. contra-semi-continuous, contra-precontinuous) if the preimage of 

every open subset of R  is closed (resp. semi-closed, pre-closed) in X [6].  

Results of Katětov [14, 15] concerning binary relations and the concept of an 

indefinite lower cut set for a real-valued function, which is due to Brooks [2], are used in 

order to give a necessary and sufficient conditions for the insertion of a contra-

continuous function between two comparable real-valued functions on such topological 

spaces that Λ-sets or kernel of sets are open [20].  

If g and f are real-valued functions defined on a space X, we write fg ≤  in case 

( ) ( )xfxg ≤  for all x in X.  

The following definitions are modifications of conditions considered in [16].  

A property P defined relative to a real-valued function on a topological space is a cc-

property provided that any constant function has property P and provided that the sum of 

a function with property P and any contra-continuous function also has property P. If 1P  
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and 2P  are cc-properties, the following terminology is used: (i) A space X has the weak 

cc-insertion property for ( )21, PP  if and only if for any functions g and f on X such that 

,fg ≤  g has property 1P  and f has property ,2P  then there exists a contra-continuous 

function h such that .fhg ≤≤  (ii) A space X has the strong cc-insertion property for 

( )21, PP  if and only if for any functions g and f on X such that ,fg ≤  g has property 1P  

and f has property ,2P  then there exists a contra-continuous function h such that 

fhg ≤≤  and if ( ) ( )xfxg <  for any x in X, then ( ) ( ) ( ).xfxhxg <<    

In this paper, for a topological space whose Λ-sets or kernel of sets are open, is given 

a sufficient condition for the weak cc-insertion property. Also for a space with the weak 

cc-insertion property, we give necessary and sufficient conditions for the space to have 

the strong cc-insertion property. Several insertion theorems are obtained as corollaries of 

these results. In addition, the insertion and strong insertion of a contra-α-continuous 

function and insertion of a contra-continuous function between two comparable real-

valued functions has also recently considered by the authors in [22, 23, 24].  

2. The Main Result  

Before giving a sufficient condition for insertability of a contra-continuous function, 

the necessary definitions and terminology are stated.  

The abbreviations cc, cpc and csc are used for contra-continuous, contra-

precontinuous and contra-semi-continuous, respectively.  

Definition 2.1. Let A be a subset of a topological space ( )., τX  We define the 

subsets Λ
A  and V

A  as follows:  

( ){ }τ∈⊇=Λ
,,: XOAOOA ∩  and { ( )}.,,: τ∈⊆= XFAFFA

cV
∪  

In [7, 19, 25], Λ
A  is called the kernel of A.  

The family of all preopen, preclosed, semi-open and semi-closed will be denoted by 

( ),, τXpO  ( ),, τXpC  ( ),, τXsO  and ( ),, τXsC  respectively.  

We define the subsets ( ),Λ
Ap ( ),V

Ap ( )Λ
As  and ( )V

As  as follows:  

( ) ( ){ },,,: τ∈⊇=Λ
XpOOAOOAp ∩  
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( ) { ( )},,,: τ∈⊆= XpCFAFFAp
V

∪  

( ) ( ){ }τ∈⊇=Λ
,,: XsOOAOOAs ∩  

and  

( ) { ( )}.,,: τ∈⊆= XsCFAFFAs
V

∪  

( )Λ
Ap  (resp. ( )Λ

As ) is called the prekernel (resp. semi-kernel) of A.  

The following first two definitions are modifications of conditions considered in [14, 

15].  

Definition 2.2. If ρ is a binary relation in a set S, then ρ  is defined as follows: 

yx ρ  if and only if vy ρ  implies vx ρ  and xu ρ  implies yu ρ  for u and v in S.  

Definition 2.3. A binary relation ρ in the power set ( )XP  of a topological space X is 

called a strong binary relation in ( )XP  in case ρ satisfies each of the following 

conditions:  

(1) If ji BA ρ  for any { }mi ...,,1∈  and for any { },...,,1 nj ∈  then there exists a 

set C in ( )XP  such that CAi ρ  and jBC ρ  for any { }mi ...,,1∈  and any 

{ }....,,1 nj ∈   

(2) If ,BA ⊆  then .BA ρ  

(3) If ,BA ρ  then BA ⊆Λ  and .V
BA ⊆  

The concept of a lower indefinite cut set for a real-valued function was defined by 

Brooks [2] as follows:  

Definition 2.4. If f is a real-valued function defined on a space X and if 

( ){ } ( ) ( ){ }ℓℓℓ ≤∈⊆⊆<∈ xfXxfAxfXx :,:  for a real number ,ℓ  then ( )ℓ,fA  

is called a lower indefinite cut set in the domain of f at the level .ℓ   

We now give the following main result:  

Theorem 2.1. Let g and f be real-valued functions on the topological space X, in 

which kernel sets are open, with .fg ≤  If there exists a strong binary relation ρ on the 
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power set of X and if there exist lower indefinite cut sets ( )tfA ,  and ( )tgA ,  in the 

domain of f and g at the level t for each rational number t such that if ,21 tt <  then 

( ) ( ),,, 21 tgAtfA ρ  then there exists a contra-continuous function h defined on X such 

that .fhg ≤≤   

Proof. Let g and f be real-valued functions defined on the X such that .fg ≤  By 

hypothesis there exists a strong binary relation ρ on the power set of X and there exist 

lower indefinite cut sets ( )tfA ,  and ( )tgA ,  in the domain of f and g at the level t for 

each rational number t such that if ,21 tt <  then ( ) ( ).,, 21 tgAtfA ρ   

Define functions F and G mapping the rational numbers Q  into the power set of X 

by ( ) ( )tfAtF ,=  and ( ) ( )., tgAtG =  If 1t  and 2t  are any elements of Q  with ,21 tt <  

then ( ) ( ),21 tFtF ρ  ( ) ( ),21 tGtG ρ  and ( ) ( ).21 tGtF ρ  By Lemmas 1 and 2 of [15] it 

follows that there exists a function H mapping Q  into the power set of X such that if 1t  

and 2t  are any rational numbers with ,21 tt <  then ( ) ( ),21 tHtF ρ  ( ) ( )21 tHtH ρ  and 

( ) ( ).21 tGtH ρ   

For any x in X, let ( ) ( ){ }.:inf tHxtxh ∈∈= Q   

We first verify that fhg ≤≤ : If x is in ( ),tH  then x is in ( )tG ′  for any ;tt >′  

since x is in ( ) ( )tgAtG ′=′ ,  implies that ( ) ,txg ′≤  it follows that ( ) .txg ≤  Hence 

.hg ≤  If x is not in ( ),tH  then x is not in ( )tF ′  for any ;tt <′  since x is not in 

( ) ( )tfAtF ′=′ ,  implies that ( ) ,txf ′>  it follows that ( ) .txf ≥  Hence .fh ≤   

Also, for any rational numbers 1t  and 2t  with ,21 tt <  we have ( ) =−
21

1
, tth  

( ) ( ) .\ 12
Λ

tHtH
V  Hence ( )21

1
, tth

−  is closed in X, i.e., h is a contra-continuous 

function on X. □ 

The above proof used the technique of Theorem 1 in [14].  

If a space has the strong cc-insertion property for ( ),, 21 PP  then it has the weak 

cc-insertion property for ( )., 21 PP  The following result uses lower cut sets and gives a 

necessary and sufficient condition for a space satisfies that weak cc-insertion property to 

satisfy the strong cc-insertion property.  
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Theorem 2.2. Let 1P  and 2P  be cc-property and X be a space that satisfies the weak 

cc-insertion property for ( )., 21 PP  Also assume that g and f are functions on X such that 

,fg ≤  g has property 1P  and f has property .2P  The space X has the strong cc-

insertion property for ( )21, PP  if and only if there exist lower cut sets ( )n
gfA

−− 2,  

and there exists a sequence { }nF  of subsets of X such that (i) for each n, nF  and 

( )n
gfA

−− 2,  are completely separated by contra-continuous functions, and (ii) 

( ) ( ){ } .0:
1∪

∞
==>−∈

n nFxgfXx   

Proof. Suppose that there is a sequence ( ( ))n
gfA

−− 2,  of lower cut sets for 

gf −  and suppose that there is a sequence ( )nF  of subsets of X such that  

( ) ( ){ } ∪
∞

=

=>−∈
1

0:

n

nFxgfXx  

and such that for each n, there exists a contra-continuous function nk  on X into [ ]n−
2,0  

with n
nk

−= 2  on nF  and 0=nk  on ( ).2,
n

gfA
−−  The function k from X into 

[ ]41,0  which is defined by  

( ) ( )∑
∞

=
=

1

41

n

n xkxk  

is a contra-continuous function by the Cauchy condition and the properties of contra-

continuous functions, (1) ( ) ( ) ( ){ }0:0
1 =−∈=−

xgfXxk  and (2) if ( ) ( ) ,0>− xgf  

then ( ) ( ) ( ) :xgfxk −<  In order to verify (1), observe that if ( ) ( ) ,0=− xgf  then 

( )n
gfAx

−−∈ 2,  for each n and hence ( ) 0=xkn  for each n. Thus ( ) .0=xk  

Conversely, if ( ) ( ) ,0>− xgf  then there exists an n such that nFx ∈  and hence 

( ) .2 n
n xk

−=  Thus ( ) 0≠xk  and this verifies (1). Next, in order to establish (2), note 

that 

( ) ( ){ } ( )∩
∞

=

−−==−∈
1

2,0:

n

n
gfAxgfXx  
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and that ( ( ))n
gfA

−− 2,  is a decreasing sequence. Thus if ( ) ( ) ,0>− xgf  then either 

( )21,gfAx −∉  or there exists a smallest n such that ( )n
gfAx

−−∉ 2,  and 

( )j
gfAx

−−∈ 2,  for .1...,,1 −= nj   

In the former case, 

( ) ( ) ( ) ( ),2124141

11

xgfxkxk

n

n

n

n −≤<≤= ∑∑
∞

=

−
∞

=
 

and in the latter, 

( ) ( ) ( ) ( ).224141 xgfxkxk
n

nj

j

nj

j −≤<≤= −
∞

=

−
∞

=
∑∑  

Thus gfk −≤≤0  and if ( ) ( ) ,0>− xgf  then ( ) ( ) ( ) .0>>− xkxgf  Let 

( ) kgg 411 +=  and ( ) .411 kff −=  Then ffgg ≤≤≤ 11  and if ( ) ( ),xfxg <  then 

( ) ( ) ( ) ( ).11 xfxfxgxg <<<  

Since 1P  and 2P  are cc-properties, then 1g  has property 1P  and 1f  has property .2P  

Since by hypothesis X has the weak cc-insertion property for ( ),, 21 PP  then there exists a 

contra-continuous function h such that .11 fhg ≤≤  Thus fhg ≤≤  and if 

( ) ( ),xfxg <  then ( ) ( ) ( ).xfxhxg <<  Therefore X has the strong cc-insertion property 

for ( )., 21 PP  (The technique of this proof is by Lane [16].)  

Conversely, assume that X satisfies the strong cc-insertion for ( )., 21 PP  Let g and f 

be functions on X satisfying 1P  and 2P  respectively such that .fg ≤  Thus there exists a 

contra-continuous function h such that fhg ≤≤  and such that if ( ) ( )xfxg <  for any 

x in X, then ( ) ( ) ( ).xfxhxg <<  We follow an idea contained in Powderly [27]. Now 

consider the functions 0 and .hf −  0 satisfies property 1P  and hf −  satisfies property 

.2P  Thus there exists a contra-continuous function 1h  such that hfh −≤≤ 10  and if 

( ) ( )xhf −<0  for any x in X, then ( ) ( ) ( ).0 1 xhfxh −<<  We next show that  

( ) ( ){ } ( ){ }.0:0: 1 >∈=>−∈ xhXxxgfXx  
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If x is such that ( ) ( ) ,0>− xgf  then ( ) ( ).xfxg <  Therefore ( ) ( ) ( ).xfxhxg <<  

Thus ( ) ( ) 0>− xhxf  or ( ) ( ) .0>− xhf  Hence ( ) .01 >xh  On the other hand, if 

( ) ,01 >xh  then since ( ) 1hhf ≥−  and ,hfgf −≥−  therefore ( ) ( ) .0>− xgf  For 

each n, let 

( ) { ( ) ( ) },2:2,
nn

xgfXxgfA
−− ≤−∈=−  

{ ( ) }1
1 2:

+−≥∈= n
n xhXxF  

and  

{ { } } .22,2,infsup
1

1
nnn

n hk
−−+− −=  

Since ( ) ( ){ } ( ){ },0:0: 1 >∈=>−∈ xhXxxgfXx  it follows that 

( ) ( ){ } ∪
∞

=

=>−∈
1

.0:

n

nFxgfXx  

We next show that nk  is a contra-continuous function which completely separates nF  

and ( ).2,
n

gfA
−−  From its definition and by the properties of contra-continuous 

functions, it is clear that nk  is a contra-continuous function. Let .nFx ∈  Then, from the 

definition of ,nk  ( ) .2
n

n xk
−=  If ( ),2,

n
gfAx

−−∈  then since ,1 gfhfh −≤−≤  

( ) .21
n

xh
−≤  Thus ( ) ,0=xkn  according to the definition of .nk  Hence nk  completely 

separates nF  and ( ).2,
n

gfA
−−   □ 

Theorem 2.3. Let 1P  and 2P  be cc-properties and assume that the space X satisfied 

the weak cc-insertion property for ( )., 21 PP  The space X satisfies the strong cc-insertion 

property for ( )21, PP  if and only if X satisfies the strong cc-insertion property for 

( )ccP ,1  and for ( )., 2Pcc   

Proof. Assume that X satisfies the strong cc-insertion property for ( )ccP ,1  and for 

( )., 2Pcc  If g and f are functions on X such that ,fg ≤  g satisfies property ,1P  and f 

satisfies property ,2P  then since X satisfies the weak cc-insertion property for ( )21, PP  

there is a contra-continuous function k such that .fkg ≤≤  Also, by hypothesis there 

exist contra-continuous functions 1h  and 2h  such that khg ≤≤ 1  and if ( ) ( ),xkxg <  
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then ( ) ( ) ( )xkxhxg << 1  and such that fhk ≤≤ 2  and if ( ) ( ),xfxk <  then 

( ) ( ) ( ).2 xfxhxk <<  If a function h is defined by ( ) ( ) ( )( ) ,212 xhxhxh +=  then h is a 

contra-continuous function, ,fhg ≤≤  and if ( ) ( ),xfxg <  then ( ) ( ) ( ).xfxhxg <<  

Hence X satisfies the strong cc-insertion property for ( )., 21 PP   

The converse is obvious since any contra-continuous function must satisfy both 

properties 1P  and .2P  (The technique of this proof is by Lane [17].) □ 

3. Applications  

Before stating the consequences of Theorems 2.1, 2.2, and 2.3 we suppose that X is a 

topological space whose kernel sets are open.  

Corollary 3.1. If for each pair of disjoint preopen (resp. semi-open) sets ,1G  2G  of 

X, there exist closed sets 1F  and 2F  of X such that ,11 FG ⊆  22 FG ⊆  and 

,21 ∅=FF ∩  then X has the weak cc-insertion property for ( )cpccpc,  (resp. 

( )csccsc, ).  

Proof. Let g and f be real-valued functions defined on X, such that f and g are cpc 

(resp. csc), and .fg ≤  If a binary relation ρ is defined by BA ρ  in case 

( ) ( )V
BpAp ⊆Λ  (resp. ( ) ( )V

BsAs ⊆Λ ), then by hypothesis ρ is a strong binary 

relation in the power set of X. If 1t  and 2t  are any elements of Q with ,21 tt <  then  

( ) ( ){ } ( ){ } ( ) ;,::, 2211 tgAtxgXxtxfXxtfA ⊆<∈⊆≤∈⊆  

since ( ){ }1: txfXx ≤∈  is a preopen (resp. semi-open) set and since 

( ){ }2: txgXx <∈  is a preclosed (resp. semi-closed) set, it follows that 

( ( ) ) ( ( ) )V
tgAptfAp 21 ,, ⊆Λ

 (resp. ( ( ) ) ( ( ) ).,, 21
V

tgAstfAs ⊆Λ
 Hence 21 tt <  

implies that ( ) ( ).,, 21 tgAtfA ρ  The proof follows from Theorem 2.1. □ 

Corollary 3.2. If for each pair of disjoint preopen (resp. semi-open) sets ,1G ,2G  

there exist closed sets 1F  and 2F  such that ,11 FG ⊆ 22 FG ⊆  and ,21 ∅=FF ∩  then 

every contra-precontinuous (resp. contra-semi-continuous) function is contra-

continuous.  



Majid Mirmiran and Binesh Naderi 

http://www.earthlinepublishers.com 

288 

Proof. Let f be a real-valued contra-precontinuous (resp. contra-semi-continuous) 

function defined on X. Set ,fg =  then by Corollary 3.1, there exists a contra-

continuous function h such that .fhg ==  □ 

Corollary 3.3. If for each pair of disjoint preopen (resp. semi-open) sets ,1G  2G  of 

X, there exist closed sets 1F  and 2F  of X such that ,11 FG ⊆  22 FG ⊆  and 

,21 ∅=FF ∩  then X has the cc-insertion property for ( )cpccpc,  (resp. ( )csccsc, ).  

Proof. Let g and f be real-valued functions defined on the X, such that f and g are     

cpc (resp. csc), and .fg <  Set ( ) ,2gfh +=  thus fhg ≤≤  and if ( ) ( )xfxg <  for 

any x in X, then ( ) ( ) ( ).xfxhxg <<  Also, by Corollary 3.2, since g and f are contra-

continuous functions hence h is a contra-continuous function. □ 

Corollary 3.4. If for each pair of disjoint subsets 21, GG  of X, such that 1G  is 

preopen and 2G  is semi-open, there exist closed subsets 1F  and 2F  of X such that 

,11 FG ⊆  22 FG ⊆  and ,21 ∅=FF ∩  then X have the weak cc-insertion property for 

( )csccpc,  and ( )cpccsc, .  

Proof. Let g and f be real-valued functions defined on X, such that g is cpc (resp. 

csc) and f is csc (resp. cpc), with .fg ≤  If a binary relation ρ is defined by BA ρ  in 

case ( ) ( )V
BpAs ⊆Λ  (resp. ( ) ( )V

BsAp ⊆Λ ), then by hypothesis ρ is a strong binary 

relation in the power set of X. If 1t  and 2t  are any elements of Q with ,21 tt <  then  

( ) ( ){ } ( ){ } ( ) ;,::, 2211 tgAtxgXxtxfXxtfA ⊆<∈⊆≤∈⊆  

since ( ){ }1: txfXx ≤∈  is a semi-open (resp. preopen) set and since 

( ){ }2: txgXx <∈  is a preclosed (resp. semi-closed) set, it follows that 

( ( ) ) ( ( ) )V
tgAptfAs 21 ,, ⊆Λ  (resp. ( ( ) ) ( ( ) )V

tgAstfAp 21 ,, ⊆Λ ). Hence ,21 tt <  

implies that ( ) ( ).,, 21 tgAtfA ρ  The proof follows from Theorem 2.1. □ 

Before stating consequences of Theorems 2.2, 2.3 we state and prove the necessary 

lemmas.  
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Lemma 3.1. The following conditions on the space X are equivalent:  

 (i) For each pair of disjoint subsets ,1G  2G  of X, such that 1G  is preopen and 2G  

is semi-open, there exist closed subsets ,1F  2F  of X such that ,11 FG ⊆  22 FG ⊆  and 

.21 ∅=FF ∩  

(ii) If G is a semi-open (resp. preopen) subset of X which is contained in a preclosed 

(resp. semi-closed) subset F of X, then there exists a closed subset H of X such that 

.FHHG ⊆⊆⊆ Λ
 

Proof. (i) ⇒ (ii) Suppose that ,FG ⊆  where G and F are semi-open (resp. preopen) 

and preclosed (resp. semi-closed) subsets of X, respectively. Hence, c
F  is a preopen 

(resp. semi-open) and .∅=c
FG ∩   

By (i) there exists two disjoint closed subsets ,1F  2F  such that 1FG ⊆  and 

.2F
c

F ⊆  But  

,22 FFF
c

F
c ⊆⇒⊆  

and  

c
FFFF 2121 ⊆⇒∅=∩  

hence  

FFFG
c ⊆⊆⊆ 21  

and since c
F2  is an open subset containing 1F , we conclude that ,21

c
FF ⊆Λ  i.e.,  

.11 FFFG ⊆⊆⊆ Λ  

By setting ,1FH =  condition(ii) holds.  

(ii) ⇒ (i) Suppose that 21, GG  are two disjoint subsets of X, such that 1G  is preopen 

and 2G  is semi-open.  

This implies that c
GG 12 ⊆  and c

G1  is a preclosed subset of X. Hence by (ii) there 

exists a closed set H such that .12
c

GHHG ⊆⊆⊆ Λ   
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But  

( ) ∅=⇒⊆ ΛΛ c
HHHH ∩  

and  

( ) .11
cc

HGGH
ΛΛ ⊆⇒⊆  

Furthermore, ( )c
H

Λ  is a closed subset of X. Hence ( )c
HGHG

Λ⊆⊆ 12 ,  and 

( ) .∅=Λ c
HH ∩  This means that condition (i) holds. □ 

Lemma 3.2. Suppose that X is a topological space. If each pair of disjoint subsets 

,1G  2G  of X, where 1G  is preopen and 2G  is semi-open, can be separated by closed 

subsets of X, then there exists a contra-continuous function [ ]1,0: →Xh  such that 

( ) { }02 =Gh  and ( ) { }.11 =Gh   

Proof. Suppose 1G  and 2G  are two disjoint subsets of X, where 1G  is preopen and 

2G  is semi-open. Since ,21 ∅=GG ∩  hence .12
c

GG ⊆  In particular, since c
G1  is a 

preclosed subset of X containing the semi-open subset 2G  of X, by Lemma 3.1, there 

exists a closed subset 21H  such that  

.121212
c

GHHG ⊆⊆⊆ Λ  

Note that 21H  is also a preclosed subset of X and contains ,2G  and c
G1  is a preclosed 

subset of X and contains the semi-open subset Λ
21

H  of X. Hence, by Lemma 3.1, there 

exists closed subsets 41H  and 43H  such that  

.14343212141412
c

GHHHHHHG ⊆⊆⊆⊆⊆⊆⊆ ΛΛΛ  

By continuing this method for every ,Dt ∈  where [ ]1,0⊆D  is the set of rational 

numbers that their denominators are exponents of 2, we obtain closed subsets tH  with 

the property that if Dtt ∈21,  and ,21 tt <  then .
21 tt HH ⊆  We define the function h 

on X by ( ) { }tHxtxh ∈= :inf  for 1Gx ∉  and ( ) 1=xh  for .1Gx ∈   
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Note that for every ,Xx ∈  ( ) ,10 ≤≤ xh  i.e., h maps X into [ ].1,0  Also, we note 

that for any ;, 2 tHGDt ⊆∈  hence ( ) { }.02 =Gh  Furthermore, by definition, 

( ) { }.11 =Gh  It remains only to prove that h is a contra-continuous function on X. For 

every ,R∈α  we have if ,0≤α  then ( ){ } ∅=α<∈ xhXx :  and if ,0 α<  then 

( ){ } { },:: α<=α<∈ tHxhXx t∪  hence, they are closed subsets of X. Similarly, if 

,0<α  then ( ){ } XxhXx =α>∈ :  and if ,0 α≤  then ( ){ } =α>∈ xhXx :  

{( ) }α>Λ
tH

c
t :∪  hence, every of them is a closed subset. Consequently h is a contra-

continuous function. □ 

Lemma 3.3. Suppose that X is a topological space. If each pair of disjoint subsets 

,1G  2G  of X, where 1G  is preopen and 2G  is semi-open, can separate by closed subsets 

of X, and 1G  (resp. 2G ) is a closed subsets of X, then there exists a contra-continuous 

function [ ]1,0: →Xh  such that, ( ) 1
1

0 Gh =−
 (resp. ( ) 2

1
0 Gh =− ) and ( ) { }12 =Gh  

(resp. ( ) { }11 =Gh ).  

Proof. Suppose that 1G  (resp. 2G ) is a closed subset of X. By Lemma 3.2, there 

exists a contra-continuous function [ ]1,0: →Xh  such that, ( ) { }01 =Gh  (resp. 

( ) { }02 =Gh ) and ( ) { }1\ 1 =GXh  (resp. ( ) { }1\ 2 =GXh ). Hence, ( ) 1
1

0 Gh =−  (resp. 

( ) 2
1

0 Gh =− ) and since 12 \ GXG ⊆  (resp. 21 \ GXG ⊆ ), therefore ( ) { }12 =Gh  

(resp. ( ) { }11 =Gh ). □ 

Lemma 3.4. Suppose that X is a topological space such that every two disjoint semi-

open and preopen subsets of X can be separated by closed subsets of X. The following 

conditions are equivalent:  

  (i) For every two disjoint subsets 1G  and 2G  of X, where 1G  is preopen and 2G  is 

semi-open, there exists a contra-continuous function [ ]1,0: →Xh  such that, 

( ) 1
1

0 Gh =−  (resp. ( ) 2
1

0 Gh =− ) and ( ) 2
1

1 Gh =−  (resp. ( ) 1
1

1 Gh =− ).  

   (ii) Every preopen (resp. semi-open) subset of X is a closed subsets of X.  

(iii) Every preclosed (resp. semi-closed) subset of X is an open subsets of X.  
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Proof. (i) ⇒ (ii) Suppose that G is a preopen (resp. semi-open) subset of X. Since ∅  

is a semi-open (resp. preopen) subset of X, by (i) there exists a contra-continuous 

function [ ]1,0: →Xh  such that, ( ) .0
1

Gh =−  Set ( ) .
1

:






 <∈=

n
xhXxFn  Then for 

every ,N∈n  nF  is a closed subset of X and ( ){ } .0:
1

GxhXxF
n n ==∈=∞

=∩   

(ii) ⇒ (i) Suppose that 1G  and 2G  are two disjoint subsets of X, where 1G  is 

preopen and 2G  is semi-open. By Lemma 3.3, there exists a contra-continuous function 

[ ]1,0: →Xf  such that, ( ) 1
1

0 Gf =−  and ( ) { }.12 =Gf  Set ( ) ,
2

1
:







 <∈= xfXxG  

( ) ,
2

1
:







 =∈= xfXxF  and ( ) .

2

1
:







 >∈= xfXxH  Then FG ∪  and FH ∪  are 

two open subsets of X and ( ) .2 ∅=GFG ∩∪  By Lemma 3.3, there exists a contra-

continuous function 




→ 1,
2

1
: Xg  such that, ( ) 2

1
1 Gg =−  and ( ) .

2

1







=FGg ∪  

Define h by ( ) ( )xfxh =  for ,FGx ∪∈  and ( ) ( )xgxh =  for .FHx ∪∈  Then h is 

well-defined and a contra-continuous function, since ( ) ( ) FFHFG =∪∩∪  and for 

every Fx ∈  we have ( ) ( )
2

1== xgxf . Furthermore, ( ) ( ) ,XFHFG =∪∪∪  hence 

h defined on X and maps to [ ].1,0  Also, we have ( ) 1
1 0 Gh =−  and ( ) .1 2

1
Gh =−   

(ii) ⇔ (iii) By De Morgan law and noting that the complement of every open subset 

of X is a closed subset of X and complement of every closed subset of X is an open subset 

of X, the equivalence is hold. □ 

Corollary 3.5. If for every two disjoint subsets 1G  and 2G  of X, where 1G  is 

preopen (resp. semi-open) and 2G  is semi-open (resp. preopen), there exists a contra-

continuous function [ ]1,0: →Xh  such that, ( ) 1
1

0 Gh =−  and ( ) ,1 2
1

Gh =−  then X has 

the strong cc-insertion property for ( )csccpc,  (resp. ( )cpccsc, ).  

Proof. Since for every two disjoint subsets 1G  and 2G  of X, where 1G  is preopen 

(resp. semi-open) and 2G  is semi-open (resp. preopen), there exists a contra-continuous 

function [ ]1,0: →Xh  such that, ( ) 1
1

0 Gh =−  and ( ) ,1 2
1

Gh =−  define 
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( )






 <∈=

2

1
:1 xhXxF  and ( ) .

2

1
:2







 >∈= xhXxF  Then 1F  and 2F  are two 

disjoint closed subsets of X that contain 1G  and ,2G  respectively. Hence by Corollary 

3.4, X has the weak cc-insertion property for ( )csccpc,  and ( )., cpccsc  Now, assume 

that g and f are functions on X such that ,fg ≤  g is cpc (resp. csc) and f is cc. Since 

gf −  is cpc (resp. csc), therefore the lower cut set ( ) =− −n
gfA 2,  

{ ( ) ( ) }n
xgfXx

−≤−∈ 2:  is a preopen (resp. semi-open) subset of X. Now setting 

{ ( ) ( ) }n
n xgfXxH

−>−∈= 2:  for every ,N∈n  then by Lemma 3.4, nH  is an 

open subset of X and we have { ( ) ( ) } ∪
∞

==>−∈
1

0:
n nHxgfXx  and for every 

,N∈n  nH  and ( )n
gfA

−− 2,  are disjoint subsets of X. By Lemma 3.2, nH  and 

( )n
gfA

−− 2,  can be completely separated by contra-continuous functions. Hence by 

Theorem 2.2, X has the strong cc-insertion property for ( )cccpc,  (resp. ( )cccsc, ).  

By an analogous argument, we can prove that X has the strong cc-insertion property 

for ( )csccc,  (resp. ( )cpccc, ). Hence, by Theorem 2.3, X has the strong cc-insertion 

property for ( )csccpc,  (resp. ( )cpccsc, ). □ 
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