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Abstract

In this research article we consider two well known subclasses of starlike and

bounded turning functions associated with nephroid domain. Our aims to

find third Hankel determinant for these classes.

1 Introduction and Definitions

Let A be the collections of all normalized analytic functions defined in the unit

disc D = {z ∈ C : |z| < 1} and of the form

f(z) = z +

∞∑
n=2

anz
n, (z ∈ D). (1.1)
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Let us denote the most basic, well known and important subclass of class A by

S which consists of all univalent functions in D. Since in the early stage of 20th

century, researchers have been interested in coefficients of function f in class A.

In year 1916, Bieberbach see [1] was first to discover a coefficient conjecture for

the function f ∈ S and finally in year 1985 De-Branges [2] solved Bieberbach

coefficient conjecture. In era 1916 to 1985 many researcher have tried to prove

or disprove this conjecture and they discovered different subclasses of the class

S associated with different image domains. The definition of class S∗, C and R
which are subclasses of class S can be written in terms of subordination

S∗ =

{
f ∈ S :

zf ′(z)

f(z)
≺ 1 + z

1− z
, z ∈ D

}
, (1.2)

C =

{
f ∈ S :

(zf ′(z))
′

f ′ (z)
≺ 1 + z

1− z
, z ∈ D

}
,

R =

{
f ∈ S : f ′(z) ≺ 1 + z

1− z
, z ∈ D

}
,

where ”≺” represent subordination. Two analytic functions f and g, a function

f is subordinate to g symbolically f ≺ g if there exist an analytic function w (z)

with limitation w (0) = 0 and |w (z)| < |z| such that f (z) = g (w (z)) . If g ∈ S,

then equivalence conditions

f (0) = g (0) and f (D) ⊂ g (D) .

Let P denote class of all analytic functions p such that Re (p (z)) > 0, and of the

form

p(z) = z +
∞∑
n=1

cnz
n, (z ∈ D). (1.3)

By changing the function right hand side of subordinations in (1.2), we obtain

some subclasses of the class S which have interesting geometric properties, see

[3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. From among these subfamilies we recall here

http://www.earthlinepublishers.com
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the families that are associated with trigonometric function as follows;

S∗N e =

{
f ∈ S :

zf
′
(z)

f (z)
≺ 1 + z − 1

3
z3

}
, (z ∈ D), (1.4)

S∗N e =

{
f ∈ S : f

′
(z) ≺ 1 + z − 1

3
z3
}
, (z ∈ D). (1.5)

Recently, authors in [18], introduced the class S∗N e which are associated with

nephriod domain.

The Hankel determinant Hq,n (f) where parameters q, n ∈ N = {1, 2, 3, · · · }
for function f ∈ S of the form (1.1) was introduced by Pommerenke [14, 15] as;

Hq,n (f) =

∣∣∣∣∣∣∣∣∣∣
an an+1 . . . an+q−1

an+1 an+2 . . . an+q
...

... . . .
...

an+q−1 an+q . . . an+2q−2

∣∣∣∣∣∣∣∣∣∣
. (1.6)

The growth of Hq,n (f) has been evaluated for different subcollections of univalent

functions. Exceptionally, the sharp bound of the determinant H2,2 (f) =∣∣a2a4 − a23∣∣ for class S∗, C and R were found by Janteng et al. [16, 17] while

for the family of close-to-convex functions the sharp estimation is still unknown

(see, [19]). On the other hand, for the set of Bazilevič functions, the best estimate

of |H2,2 (f)| was proved by Krishna et al. [20]. For more work on H2,2 (f) , see

[21, 22, 23, 24, 25].

H3,1 (f) =

∣∣∣∣∣∣∣
1 a2 a3

a2 a3 a4

a3 a4 a5

∣∣∣∣∣∣∣ (1.7)

is known as third order Hankel determinant and the estimation of this determinant

|H3,1 (f)| is so hard. In 2010, the first article on H3,1 (f) by Babalola [26], in

which he obtained the upper bound of |H3,1 (f)| for the groups of S∗, K and R.
Later on, a few creators distributed their work regarding |H3,1 (f)| for various

subcollections of holomorphic and univalent functions, see [34, 35, 36, 37, 38],

which served as a base for the research in this field. Recently various authors

explored some interesting classes for the said property of Hankel determinant.
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Srivastava et al. [27] discussed this result for a class of Bi-valent functions defined

by q-derivative and gave various interesting properties of it. Then he along with

coauthors in [28] investigated the class of close to convex functions associated

with lemniscate of Bernouli and evaluated its Hankel determinant. Continuing

the same trend he in [29] incorporated the research on Toeplitz forms and Hankel

determinant for some q-starlike functions associated with a generalized domain.

Many other domains were also investigated for its Hankel determinant like a class

of starlike functions associated with k-Fibonacci numbers. Whose third Hankel

was evaluated by Shafiq et al. [30]. Further related work on the subject the

reader is referred to [31, 32, 33]. Motivated from above discussed work on the

topic we investigate |H3,1 (f)| for classes of functions defined in the relations (1.4)

and (1.5).

2 Sets of Lemma

The following lemmas are important as they help in our main results.

Lemma 1. If p(z) ∈ P and it is of the form (1.3), then

|cn| ≤ 2 for n ≥ 1, (2.1)

|cn+k − δcnck| ≤

2 for 0 ≤ δ ≤ 1,

2 |2δ − 1| elsewhere.
, (2.2)

|cncm − clck| ≤ 4 for n+m = l + k, (2.3)∣∣cn+2k − δcnc2k
∣∣ ≤ 2 (1 + 2δ) for δ ∈ R, (2.4)∣∣∣∣c2 − c21

2

∣∣∣∣ ≤ 2− |c1|
2

2
, (2.5)

and for ξ ∈ C ∣∣c2 − ξc21∣∣ ≤ 2 max {1; |2ξ − 1|} . (2.6)

For the results in (2.1), (2.2), (2.3), (2.4), (2.5) see [44]. Also see [43] for (2.6).
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Lemma 2. [46]. If p(z) ∈ P and is represented by (1.3), then

∣∣c2 − νc21∣∣ ≤

−4ν + 2 (ν ≤ 0),

2 (0 ≤ ν ≤ 1),

4ν − 2 (ν ≥ 1).

Lemma 3. [47]. If p(z) ∈ P and is represented by (1.3), then∣∣ac31 − bc1c2 + dc3
∣∣ ≤ 2 |a|+ 2 |b− 2a|+ 2 |a− b+ d| .

3 Bounds of |H3,1 (f)| for class S∗N e
Theorem 1. Let f ∈ S∗N e of the form (1.1). Then

|a2| ≤ 1,

|a3| ≤
1

2
,

|a4| ≤
7

18
,

|a5| ≤
5

12
.

The first two bounds are sharp.

Proof. Since f ∈ S∗N e, there exists an analytic function s(z), |s(z)| ≤ 1 and

s (0) = 0, such that

zf ′(z)

f(z)
= 1 + w (z)− 1

3
(w (z))3 . (3.1)

Denote

Ψ (s(z)) = 1 + w (z)− 1

3
(w (z))3 ,

and

k(z) = 1 + c1z + c2z
2 + · · · = 1 + w (z)

1− w (z)
. (3.2)

Obviously, the function k(z) ∈ P, and w(z) = k(z)−1
k(z)+1 . This gives

w(z) =
k(z)− 1

k(z) + 1
=

c1z + c2z
2 + c3z

3 + · · ·
2 + c1z + c2z2 + c3z3 + · · ·

.
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And

1 + (w(z))− 1

3
(w(z))3

= 1 +
1

2
c1z +

(
1

2
c2 −

1

4
c21

)
z2 +

(
1

12
c31 −

1

2
c2c1 +

1

2
c3

)
z3

+

(
1

4
c21c2 −

1

2
c3c1 −

1

4
c22 +

1

2
c4

)
z4 + · · · . (3.3)

And other side,

zf ′(z)

f(z)
= 1 + a2z +

(
2a3 − a22

)
z2 +

(
a32 − 3a2a3 + 3a4

)
z3 +(

−a42 + 4a22a3 − 4a2a4 − 2a23 + 4a5
)
z4 + · · · . (3.4)

On equating coefficients of (3.3), and (3.4), we get

a2 =
1

2
c1, (3.5)

a3 =
1

4
c2, (3.6)

a4 = − 1

72
c31 −

1

24
c2c1 +

1

6
c3, (3.7)

a5 =
5

576
c41 −

1

48
c21c2 −

1

24
c3c1 −

1

32
c22 +

1

8
c4. (3.8)

Now using (2.1) in (3.5) and (3.6), we get

|a2| ≤ 1 and |a3| ≤
1

2
.

Rearrange the equation (3.7), we may write

|a4| =
∣∣∣∣ 1

12

(
c3 −

1

2
c1c2

)
+

1

12

(
c3 −

1

6
c31

)∣∣∣∣ .
Using triangle inequality along with (2.2) and (2.4), we get

|a4| ≤
7

18
.

Now rearrange the (3.8), we may write

|a5| =
∣∣∣∣ 1

16

(
c4 −

2

3
c1c3

)
+

1

16

(
c4 −

1

2
c22

)
− c21

48

(
c2 −

5

12
c21

)∣∣∣∣
http://www.earthlinepublishers.com
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Application of triangle inequality along with (2.1) and (2.2), we get

|a5| ≤
5

12
.

The first two bounds are sharp for function define as

f (z) = z exp

(
z − z3

9

)
= z + z2 +

z3

2
+ · · · .

Theorem 2. Let f(z) ∈ S∗N e be of the form (1.1). Then

∣∣a3 − λa22∣∣ ≤


1−2λ
2 , λ ≤ 0
1
2 , 0 ≤ λ ≤ 1

2λ−1
2 , λ ≥ 1.

.

Proof. Since using (3.5) and (3.6), we get∣∣a3 − λa22∣∣ =
1

4

∣∣c2 − λc21∣∣ ,
applying Lemma 2, we get the required results.

Theorem 3. Let f(z) ∈ S∗N e be of the form (1.1). Then for ξ ∈ C, we have∣∣a3 − ξa22∣∣ ≤ 1

2
max {1, |2ξ − 1|} .

Proof. Since using (3.5) and (3.6), we get∣∣a3 − ξa22∣∣ =
1

4

∣∣c2 − ξc21∣∣ ,
applying Lemma 2.6, we get the required results.

If we put ξ = 1, the above result become as:

Theorem 4. Let f(z) ∈ S∗N e be of the form (1.1). Then∣∣a3 − a22∣∣ ≤ 1

2
.

This results is sharp.
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Theorem 5. Let f(z) ∈ S∗N e be of the form (1.1). Then

|a2a3 − a4| ≤
7

18
.

Proof. Since using (3.5), (3.6) and (3.7) also rearranging term, we get

|a2a3 − a4| =
∣∣∣∣ 1

12
(c3 − c2c1) +

1

12

(
c3 −

1

6
c31

)∣∣∣∣ ,
Using triangle inequality along with (2.2) and (2.4), we get

|a2a3 − a4| ≤
7

18
.

Theorem 6. Let f(z) ∈ S∗N e be of the form (1.1). Then∣∣a2a4 − a23∣∣ ≤ 4

9
.

Proof. Since using (3.5), (3.6) and (3.7), we get∣∣a2a4 − a23∣∣ =

∣∣∣∣− 1

144
c41 −

1

48
c21c2 +

1

12
c3c1 −

1

16
c22

∣∣∣∣
=

∣∣∣∣ 1

16

(
c1c3 − c22

)
+

1

48
c1 (c3 − c1c2)−

1

144
c41

∣∣∣∣ ,
applying (2.1), (2.2) and (2.3), we get the required result.

Theorem 7. Let f(z) ∈ S∗N e be of the form (1.1). Then

|H3,1 (f)| ≤ 377

648
' 0.581 79.

Proof. Since

H3,1 (f) = a3
(
a2a4 − a23

)
− a4 (a4 − a2a3) + a5

(
a3 − a22

)
,

by applying triangle inequality, we obtain

|H3,1 (f)| ≤ |a3|
∣∣a2a4 − a23∣∣+ |a4| |a4 − a2a3|+ |a5|

∣∣a3 − a22∣∣ .
Next, from Theorems 1, 4, 5 and 6, we get the required result.
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4 Bounds of |H3,1 (f)| for class RN e

Theorem 8. Let f ∈ RN e of the form (1.1). Then

|a2| ≤
1

2
,

|a3| ≤
1

3
,

|a4| ≤
1

4
,

|a5| ≤
3

5
.

Proof. Since f ∈ RN e, there exists an analytic function w(z), |w(z)| ≤ 1 and

w (0) = 0, such that

f ′(z) = 1 + w (z)− 1

3
(w (z))3 .

And

f ′(z) = 1 + 2a2z + 3a3z
2 + 3a4z

3 + 4a5z
4 + · · · . (4.1)

On equating coefficients of (3.3), and (4.1), we get
(
1
6c2 −

1
12c

2
1

)2
= 1

144c
4
1− 1

36c
2
1c2+

1
36c

2
2

a2 =
1

4
c1, (4.2)

a3 =
1

6
c2 −

1

12
c21, (4.3)

a4 =
1

48
c31 −

1

8
c2c1 +

1

8
c3, (4.4)

a5 =
1

20
c21c2 −

1

10
c3c1 −

1

20
c22 +

1

10
c4. (4.5)

Now using (2.1) to (4.2), we get

|a2| ≤
1

2
.

Using (2.5) to (4.3), we obtain

|a3| ≤
1

3
.
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Application of Lemma 3 to (4.4), lead us to

|a4| ≤
1

4
.

Rearranging the (4.5), we have

|a5| =
∣∣∣∣ 1

10

(
c4 −

1

2
c22

)
− c1

10

(
c3 −

1

2
c1c2

)∣∣∣∣ ,
applying (2.1) and (2.2), we get

|a5| ≤
3

5
.

Theorem 9. Let f(z) ∈ RN e be of the form (1.1). Then for ξ ∈ C, we have∣∣a3 − ξa22∣∣ ≤ 1

3
max

{
1,

3 |ξ|
4

}
.

Proof. Since using (4.2) and (4.3), we get∣∣a3 − ξa22∣∣ =
1

6

∣∣∣∣c2 − 4 + 3ξ

8
c21

∣∣∣∣ ,
application of relation (2.6), we get the required results.

If we put ξ = 1, the above result become as:

Theorem 10. Let f(z) ∈ RN e be of the form (1.1). Then∣∣a3 − a22∣∣ ≤ 1

3
.

Theorem 11. Let f(z) ∈ RN e be of the form (1.1). Then

|a2a3 − a4| ≤
1

4
.

Proof. Since using (4.2), (4.3) and (4.4), we get

|a2a3 − a4| =
∣∣∣∣ 1

24
c31 −

1

6
c2c1 +

1

8
c3

∣∣∣∣ ,
using Lemma 3, we have

|a2a3 − a4| ≤
1

4
.
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Theorem 12. Let f(z) ∈ RN e be of the form (1.1). Then∣∣a2a4 − a23∣∣ ≤ 11

72
.

Proof. Since using (4.2), (4.3) and (4.4), we get

∣∣a2a4 − a23∣∣ =

∣∣∣∣− 1

576
c41 −

1

288
c21c2 +

1

32
c3c1 −

1

36
c22

∣∣∣∣
=

∣∣∣∣ 1

36

(
c1c3 − c22

)
+

1

288
c1 (c3 − c1c2)−

1

576
c41

∣∣∣∣ ,
application of triangle inequality along with (2.1), (2.2) and (2.3), we get the

required result.

Theorem 13. Let f(z) ∈ RN e be of the form (1.1). Then

|H3,1 (f)| ≤ 677

2160
' 0.313 43.

Proof. Since

H3,1 (f) = a3
(
a2a4 − a23

)
− a4 (a4 − a2a3) + a5

(
a3 − a22

)
,

by applying triangle inequality, we obtain

|H3,1 (f)| ≤ |a3|
∣∣a2a4 − a23∣∣+ |a4| |a4 − a2a3|+ |a5|

∣∣a3 − a22∣∣ .
Next, from Theorems 8, 10, 11 and 12, we get the required result.
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