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Yüksel Soykan

Department of Mathematics, Art and Science Faculty,

Zonguldak Bülent Ecevit University, 67100, Zonguldak, Turkey

e-mail: yuksel soykan@hotmail.com

Abstract

In this paper, we investigate the recurrence properties of the generalized

Tribonacci sequence and present how the generalized Tribonacci sequence at

negative indices can be expressed by the sequence itself at positive indices.

1 Introduction

In 2021, Lin [8] stated on page 4 of 12 that “Recently, Professor Tianxin Cai

visited Northwest University and gave a talk about a series of linear recurrence

sequences and their properties, which incited our interest in this field. There

are many recursive identities concerning the Fibonacci, Tribonacci, and Lucas

sequences, etc. However, few studies have been conducted regarding the Narayana

sequence. Professor Cai proposed an open problem: Whether and how can the

Narayana sequence at negative indices be expressed by the sequence itself at

positive indices?” Then Lin presented the following theorem as a main result and

proved it:

Theorem 1. For n ∈ Z, we have

N−n = 2N2
n +N2n − 3Nn+1Nn.
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Here, Narayana’s cows sequence {Nn} satisfies a third-order recurrence

relation:

Nn = Nn−1 +Nn−3, for n ≥ 3

with the initial values N0 = 0, N2 = 1, N2 = 1. It can be extended to negative

indices by defining

N−n = −N−(n−2) +N−(n−3), for n = 1, 2, 3, ....

Lin also stated on the same page that “Theorem 1 solves Professor Cai’s

problem completely. It illustrates the connection between the Narayana sequence

at the positive index and the negative index. By Theorem 1, we obtain the

recurrence property of the sequence at the negative index, which deepens our

knowledge of the nature of the sequence.”

Now, we can propose an open problem as follows: Whether and how can

the generalized Tribonacci sequence Wn at negative indices be expressed by the

sequence itself at positive indices?

We present our main result as follows which completely solves the above

problem for the generalized Tribonacci sequence Wn.

Theorem 2. For n ∈ Z, we have

W−n = t−n(W2n −HnWn +
1

2
(H2

n −H2n)W0).

Note that Hn can be written in terms of Wn using Lemma 4 below. Next,

we recall the definitions of generalized Tribonacci sequence Wn and its two

special cases, namely (r, s, t) sequence Gn and (r, s, t) Lucas sequence Hn. The

generalized (r, s, t) sequence (or generalized Tribonacci sequence or generalized

3-step Fibonacci sequence) {Wn(W0,W1,W2; r, s, t)}n≥0 (or shortly {Wn}n≥0) is

defined as follows:

Wn = rWn−1 + sWn−2 + tWn−3, W0 = a,W1 = b,W2 = c, n ≥ 3 (1.1)

where W0,W1,W2 are arbitrary complex (or real) numbers and r, s, t are real

numbers. This sequence has been studied by many authors, see for example [1, 2,

3, 4, 5, 7, 9, 10, 11, 13, 22, 24, 25].
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The sequence {Wn}n≥0 can be extended to negative subscripts by defining

W−n = −s
t
W−(n−1) −

r

t
W−(n−2) +

1

t
W−(n−3)

for n = 1, 2, 3, ... when t 6= 0. Therefore, recurrence (1.1) holds for all integer n.

In the following Table 1 we present some special cases of generalized Tribonacci

sequence.

Table 1. A few special case of generalized Tribonacci sequences.

No Sequences (Numbers) Notation

1 Generalized Tribonacci {Vn} = {Wn(W0,W1,W2; 1, 1, 1)}
2 Generalized Third Order Pell {Vn} = {Wn(W0,W1,W2; 2, 1, 1)}
3 Generalized Padovan {Vn} = {Wn(W0,W1,W2; 0, 1, 1)}
4 Generalized Pell-Padovan {Vn} = {Wn(W0,W1,W2; 0, 2, 1)}
5 Generalized Jacobsthal-Padovan {Vn} = {Wn(W0,W1,W2; 0, 1, 2)}
6 Generalized Narayana {Vn} = {Wn(W0,W1,W2; 1, 0, 1)}
7 Generalized Third Order Jacobsthal {Vn} = {Wn(W0,W1,W2; 1, 1, 2)}
8 Generalized 3-primes {Vn} = {Wn(W0,W1,W2; 2, 3, 5)}
9 Generalized Reverse 3-primes {Vn} = {Wn(W0,W1,W2; 5, 3, 2)}

Earthline J. Math. Sci. Vol. 6 No. 2 (2021), 253-269



256 Yüksel Soykan

In literature, for example, the following names and notations (see Table 2)

are used for the special case of r, s, t and initial values.

Table 2. A few special case of generalized (r, s, t) (generalized Tribonacci)

sequence

No Sequences (Numbers) Notation OEIS [12] References

1 Tribonacci {Tn} = {Wn(0, 1, 1; 1, 1, 1)} A000073, A057597 [14]

2 Tribonacci-Lucas {Kn} = {Wn(3, 1, 3; 1, 1, 1)} A001644, A073145 [14]

3 Tribonacci-Perrin {Mn} = {Wn(3, 0, 2; 1, 1, 1)} [14]

4 modified Tribonacci {Un} = {Wn(1, 1, 1; 1, 1, 1)} [14]

5 modified Tribonacci-Lucas {Gn} = {Wn(4, 4, 10; 1, 1, 1)} [14]

6 adjusted Tribonacci-Lucas {Hn} = {Wn(4, 2, 0; 1, 1, 1)} [14]

7 third order Pell {P (3)
n } = {Wn(0, 1, 2; 2, 1, 1)} A077939, A077978 [15]

8 third order Pell-Lucas {Q(3)
n } = {Wn(3, 2, 6; 2, 1, 1)} A276225, A276228 [15]

9 third order modified Pell {E(3)
n } = {Wn(0, 1, 1; 2, 1, 1)} A077997, A078049 [15]

10 third order Pell-Perrin {R(3)
n } = {Wn(3, 0, 2; 2, 1, 1)} [22]

11 Padovan (Cordonnier) {Pn} = {Wn(1, 1, 1; 0, 1, 1)} A000931 [16]

12 Perrin (Padovan-Lucas) {En} = {Wn(3, 0, 2; 0, 1, 1)} A001608, A078712 [16]

13 Padovan-Perrin {Sn} = {Wn(0, 0, 1; 0, 1, 1)} A000931, A176971 [16]

14 modified Padovan {An} = {Wn(3, 1, 3; 0, 1, 1)} [16]

15 adjusted Padovan {Un} = {Wn(0, 1, 0; 0, 1, 1)} [22]

16 Pell-Padovan {Rn} = {Wn(1, 1, 1; 0, 2, 1)} A066983, A128587 [17]

17 Pell-Perrin {Cn} = {Wn(3, 0, 2; 0, 2, 1)} [17]

18 third order Fibonacci-Pell {Gn} = {Wn(1, 0, 2; 0, 2, 1)} [17]

19 third order Lucas-Pell {Bn} = {Wn(3, 0, 4; 0, 2, 1)} [17]

20 adjusted Pell-Padovan {Mn} = {Wn(0, 1, 0; 0, 2, 1)} [22]

21 Jacobsthal-Padovan {Qn} = {Wn(1, 1, 1; 0, 1, 2)} A159284 [18]

22 Jacobsthal-Perrin (-Lucas) {Ln} = {Wn(3, 0, 2; 0, 1, 2)} A072328 [18]

23 adjusted Jacobsthal-Padovan {Kn} = {Wn(0, 1, 0; 0, 1, 2)} [18]

24 modified Jacobsthal-Padovan {Mn} = {Wn(3, 1, 3; 0, 1, 2)} [18]

25 Narayana {Nn} = {Wn(0, 1, 1; 1, 0, 1)} A078012 [19]

26 Narayana-Lucas {Un} = {Wn(3, 1, 1; 1, 0, 1)} A001609 [19]

27 Narayana-Perrin {Hn} = {Wn(3, 0, 2; 1, 0, 1)} [19]

28 third order Jacobsthal {J(3)
n } = {Wn(0, 1, 1; 1, 1, 2)} A077947 [20]

29 third order Jacobsthal-Lucas {j(3)n } = {Wn(2, 1, 5; 1, 1, 2)} A226308 [20]

30 modified third order Jacobsthal-Lucas {K(3)
n } = {Wn(3, 1, 3; 1, 1, 2)} [20]

31 third order Jacobsthal-Perrin {Q(3)
n } = {Wn(3, 0, 2; 1, 1, 2)} [20]

32 3-primes {Gn} = {Wn(0, 1, 2; 2, 3, 5)} [21]

33 Lucas 3-primes {Hn} = {Wn(3, 2, 10; 2, 3, 5)} [21]

34 modified 3-primes {En} = {Wn(0, 1, 1; 2, 3, 5)} [21]

35 reverse 3-primes {Nn} = {Wn(0, 1, 5; 5, 3, 2)} [23]

36 reverse Lucas 3-primes {Sn} = {Wn(3, 5, 31; 5, 3, 2)} [23]

37 reverse modified 3-primes {Un} = {Wn(0, 1, 4; 5, 3, 2)} [23]

Here, OEIS stands for On-line Encyclopedia of Integer Sequences. For easy

writing, from now on, we drop the superscripts from the sequences, for example

we write Jn for J
(3)
n .
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It is well known that the generalized (r, s, t) numbers (the generalized

Tribonacci numbers) can be expressed, for all integers n, using Binet’s formula

Wn = A1α
n +A2β

n +A3γ
n (1.2)

where

A1 =
W2 − (β + γ)W1 + βγW0

(α− β)(α− γ)
, A2 =

W2 − (α+ γ)W1 + αγW0

(β − α)(β − γ)
,

A3 =
W2 − (α+ β)W1 + αβW0

(γ − α)(γ − β)
.

and α, β, γ are the roots of characteristic equation of Wn which is given by

x3 − rx2 − sx− t = 0 (1.3)

Note that we have the following identities
α+ β + γ = r,

αβ + αγ + βγ = −s,
αβγ = t.

(1.4)

Note that the Binet form of a sequence satisfying (1.3) for non-negative

integers is valid for all integers n. Now we define two special cases of the

generalized (r, s, t) sequence {Wn}. (r, s, t) sequence {Gn}n≥0 and Lucas (r, s, t)

sequence {Hn}n≥0 are defined, respectively, by the third-order recurrence relations

Gn+3 = rGn+2 + sGn+1 + tGn, G0 = 0, G1 = 1, G2 = r,

Hn+3 = rHn+2 + sHn+1 + tHn, H0 = 3, H1 = r,H2 = 2s+ r2,

The sequences {Gn}n≥0 and {Hn}n≥0 can be extended to negative subscripts by

defining

G−n = −s
t
G−(n−1) −

r

t
G−(n−2) +

1

t
G−(n−3),

H−n = −s
t
H−(n−1) −

r

t
H−(n−2) +

1

t
H−(n−3),

for n = 1, 2, 3, ... respectively. Some special cases of (r, s, t) sequence

{Gn(0, 1, r; r, s, t)}n≥0 and Lucas (r, s, t) sequence {Hn(3, r, 2s+r2; r, s, t)}n≥0 are

as follows:
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1. Gn(0, 1, 1; 1, 1, 1) = Tn, Tribonacci sequence,

2. Hn(3, 1, 3; 1, 1, 1) = Kn, Tribonacci-Lucas sequence,

3. Gn(0, 1, 2; 2, 1, 1) = Pn, third order Pell sequence,

4. Hn(3, 2, 6; 2, 1, 1) = Qn, third order Pell-Lucas sequence,

5. Gn(0, 1, 0; 0, 1, 1) = Un, adjusted Padovan sequence,

6. Hn(3, 0, 2; 0, 1, 1) = En, Perrin (Padovan-Lucas) sequence,

7. Gn(0, 1, 0; 0, 2, 1) = Mn, adjusted Pell-Padovan sequence

8. Hn(3, 0, 4; 0, 2, 1) = Bn, third order Lucas-Pell sequence,

9. Gn(0, 1, 0; 0, 1, 2) = Kn, adjusted Jacobsthal-Padovan sequence,

10. Hn(3, 0, 2; 0, 1, 2) = Ln, Jacobsthal-Perrin (-Lucas) sequence,

11. Gn(0, 1, 1; 1, 0, 1) = Nn, Narayana sequence,

12. Hn(3, 1, 1; 1, 0, 1) = Un, Narayana-Lucas sequence,

13. Gn(0, 1, 1; 1, 1, 2) = Jn, third order Jacobsthal sequence,

14. Hn(3, 1, 3; 1, 1, 2) = Kn, modified third order Jacobsthal-Lucas sequence,

15. Gn(0, 1, 2; 2, 3, 5) = Gn, 3-primes sequence,

16. Hn(3, 2, 10; 2, 3, 5) = Hn, Lucas 3-primes sequence.

17. Gn(0, 1, 5; 5, 3, 2) = Nn, reverse 3-primes sequence,

18. Hn(3, 5, 31; 5, 3, 2) = Sn, reverse Lucas 3-primes sequence.

For all integers n, (r, s, t) and Lucas (r, s, t) numbers can be expressed using

Binet’s formulas as

Gn =
αn+1

(α− β)(α− γ)
+

βn+1

(β − α)(β − γ)
+

γn+1

(γ − α)(γ − β)
,

Hn = αn + βn + γn,

respectively.
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2 The Proof of Theorem 2

To prove Theorem 2, we need following lemma.

Lemma 3. For n ∈ Z, denote

Sn = αnβn + αnγn + βnγn

where α, β and γ are as in defined in Formula (1.4). Then the followings hold:

(a) For n ∈ Z, we have Sn = tnH−n and S−n = t−nHn.

(b) Sn has the recurrence relation so that

Sn = −sSn−1 − rtSn−2 + t2Sn−3

with the initial conditions S0 = 3, S1 = −s, S2 = s2 − 2rt. The sequence at

negative indices is given by

S−n = −−rt
t2

S−(n−1) −
−s
t2
S−(n−2) +

1

t2
S−(n−3), for n = 1, 2, 3, ....

(c) Sn has the identity so that

Sn =
1

2
(H2

n −H2n).

Proof.

(a) From the definition of Sn and Hn, we obtain

tnH−n = α−ntn + β−ntn + γ−ntn = αnβn + αnγn + βnγn = Sn

i.e., Sn = tnH−n and so S−n = t−nHn.

(b) With Formula (1.4) or using the formula Sn = (−u)nH−n, we obtain initial

values of Sn as

S0 = t0H0 = 3,

S1 = t1H−1 = t× (−s
t
) = −s

S2 = t2H−2 = t2 × 1

t2
(s2 − 2rt) = s2 − 2rt,
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or

S2 = α2β2 +α2γ2 + β2γ2 = (αβ +αγ + βγ)2− 2αβγ(α+ β + γ) = s2− 2rt.

For n ≥ 3, we have

S1Sn−1 = (αnβn + αnγn + βnγn) + αβγ(αn−2βn−2(α+ β)

+αn−2γn−2(α+ γ) + βn−2γn−2(β + γ))

= Sn + rtSn−2 − t2Sn−3 = (−s)Sn−1.

(c) From the definition of Sn we get

2Sn = (αn + βn + γn)2 − (α2n + β2n + γ2n) = H2
n −H2n. �

Now, we shall complete the proof of Theorem 2.

The Proof of Theorem 2:

Using our Lemma 3 (i.e., Sn = tnH−n = 1
2(H2

n−H2n)) and taking m = −n in

Howard [6, Identity (1.5)] we obtain Theorem 2. For completeness, we give the

detailed proof. For n ∈ Z, we have

WnHn = (A1α
n +A2β

n +A3γ
n)(αn + βn + γn)

= W2n + (A1 +A2 +A3)α
nβn + (A1 +A3 +A2)α

nγn

+(A2 +A3 +A1)β
nγn − (A3α

nβn +A2α
nγn +A1β

nγn)

= W2n + (A1 +A2 +A3)(α
nβn + αnγn + βnγn)

−(A3α
nβn +A2α

nγn +A1β
nγn)

= W2n +W0Sn − tnW−n.

By Lemma 3 (c), it follows that

WnHn = W2n +
1

2
(H2

n −H2n)W0 − tnW−n

and so

W−n = t−n(W2n −HnWn +
1

2
(H2

n −H2n)W0). �

Now, we present a basic relation between {Hn} and {Wn} which can be used

to write Hn in terms of Wn.
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Lemma 4. The following equality is true:

(W 3
2 + (t+ rs)W 3

1 + t2W 3
0 + (r2− s)W 2

1W2− 2rW1W
2
2 − sW0W

2
2 + rtW 2

0W2 +

(s2+rt)W0W
2
1 +2stW 2

0W1+(rs−3t)W0W1W2)Hn = (3W 2
2 +(r2−s)W 2

1 +rtW 2
0 −

4rW1W2−2sW0W2+(rs−3t)W0W1)Wn+2+(−2rW 2
2 +3tW 2

1−2sW1W2−3tW0W2+

3rsW 2
1 + 2stW 2

0 + 2r2W1W2 + 2s2W0W1 + rsW0W2 + 2rtW0W1)Wn+1 + (−sW 2
2 +

(s2 + rt)W 2
1 + 3t2W 2

0 + (rs− 3t)W1W2 + 2rtW0W2 + 4stW0W1)Wn.

Proof. It is given in Soykan [22]. �

Next, we present a remark which presents how Hn can be written in terms of

Wn.

Remark 5. To express W−n by the sequence itself at positive indices we need

that Hn can be written in terms of Wn. For this, writing

Hn = a×Wn+2 + b×Wn+1 + c×Wn

and solving the system of equations

H0 = a×W2 + b×W1 + c×W0

H1 = a×W3 + b×W2 + c×W1

H2 = a×W4 + b×W3 + c×W2

or  a

b

c

 =

 W2 W1 W0

W3 W2 W1

W4 W3 W2


−1 H0

H1

H2


we find a, b, c so that Hn can be written in terms of Wn and we can replace this

Hn in Theorem 2.

Using Theorem 2 and Lemma 4 or Remark 5, we have the following corollary.

Corollary 6. For n ∈ Z, we have

(a) G−n = 1
tn+1 ((2rt− s2)G2

n + tG2n + sGn+2Gn − (3t+ rs)Gn+1Gn).

(b) H−n = 1
2tn (H2

n −H2n).
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Note that if we take r = 1, s = 0, t = 1 and Gn = Nn in the above Corollary,

we obtain Lin’s Theorem 1. Using Theorem 2 and Lemma 4 or Remark 5 (or

using the last corollary for special cases), we can give some formulas for the special

cases of generalized Tribonacci sequence (generalized (r,s,t)-sequence) as follows.

We have the following corollary which gives the connection between the special

cases of generalized Tribonacci sequence at the positive index and the negative

index.

Corollary 7. For n ∈ Z, we have the following recurrence relations:

(a) Tribonacci sequence:

T−n = T 2
n + T2n + Tn+2Tn − 4Tn+1Tn.

(b) Tribonacci-Lucas sequence:

K−n = 1
2(K2

n −K2n).

(c) Tribonacci-Perrin sequence:

M−n = 1
3362(243M2

n+2 + 12M2
n+1 + 805M2

n − 1107M2n+2 + 246M2n+1 −
943M2n − 108Mn+2Mn+1 + 1152Mn+2Mn − 256Mn+1Mn).

(d) modified Tribonacci sequence:

U−n = 1
2(U2

n+2+4U2
n+1+U2n+2−2U2n+1−4Un+2Un+1−2Un+2Un+4Un+1Un).

(e) modified Tribonacci-Lucas sequence:

G−n = 1
2(G2

n+2 + 4G2
n+1 − 2G2n+2 + 4G2n+1 − 4Gn+2Gn+1 + Gn+2Gn −

2Gn+1Gn).

(f) adjusted Tribonacci-Lucas sequence:

H−n = 1
2(H2

n+1 − 2H2n+1 +Hn+1Hn).

The following corollary illustrates the connection between the special cases of

generalized third-order Pell sequence at the positive index and the negative index.

Corollary 8. For n ∈ Z, we have the following recurrence relations:
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(a) third order Pell sequence:

P−n = 3P 2
n + P2n + Pn+2Pn − 5Pn+1Pn.

(b) third order Pell-Lucas sequence:

Q−n = 1
2(Q2

n −Q2n).

(c) third order modified Pell sequence:

E−n = 1
3(−E2

n + 3E2n − 11En+1En + 2En+2En).

(d) third order Pell-Perrin sequence:

R−n = 1
6962(972R2

n+2+48R2
n+1+1081R2

n−3186R2n+2+708R2n+1−1357R2n−
432Rn+2Rn+1 + 2952Rn+2Rn − 656Rn+1Rn).

The following corollary presents the connection between the special cases of

generalized Padovan sequence at the positive index and the negative index.

Corollary 9. For n ∈ Z, we have the following recurrence relations:

(a) Padovan (Cordonnier) sequence:

P−n = 1
2(9P 2

n+2 + 4P 2
n+1 + 8P 2

n + 3P2n+2 − 2P2n+1 − 2P2n − 12Pn+2Pn+1 −
18Pn+2Pn + 12Pn+1Pn).

(b) Perrin (Padovan-Lucas) sequence:

E−n = 1
2(E2

n − E2n).

(c) Padovan-Perrin sequence:

S−n = S2
n + S2n − 3Sn+2Sn.

(d) modified Padovan sequence:

A−n = 1
722(3A2

n+2 + 108A2
n+1 + 616A2

n + 57A2n+2 + 342A2n+1 − 532A2n +

36An+2An+1 − 94An+2An − 564An+1An).

(e) adjusted Padovan sequence:

U−n = −U2
n + U2n + Un+2Un − 3Un+1Un.
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We have the following corollary which gives the connection between the special

cases of generalized Pell-Padovan sequence at the positive index and the negative

index.

Corollary 10. For n ∈ Z, we have the following recurrence relations:

(a) Pell-Padovan sequence:

R−n = 1
8(16R2

n+1+9R2
n+2+5R2

n+6R2n+2−8R2n+1−2R2n−24Rn+2Rn+1−
18Rn+2Rn + 24Rn+1Rn).

(b) Pell-Perrin sequence:

C−n = 1
242(432C2

n+2 + 972C2
n+1 + 665C2

n + 396C2n+2− 594C2n+1− 385C2n−
1296Cn+2Cn+1 − 1104Cn+2Cn + 1656Cn+1Cn).

(c) third order Fibonacci-Pell sequence:

G−n = 1
2(16G2

n+2+4G2
n+1+35G2

n−4G2n+2+2G2n+1+7G2n−16Gn+2Gn+1−
48Gn+2Gn + 24Gn+1Gn).

(d) third order Lucas-Pell sequence:

B−n = 1
2(B2

n −B2n).

(e) adjusted Pell-Padovan sequence:

M−n = −4M2
n +M2n + 2Mn+2Mn − 3Mn+1Mn.

The following corollary illustrates the connection between the special cases

of generalized generalized Jacobsthal-Padovan sequence at the positive index and

the negative index.

Corollary 11. For n ∈ Z, we have the following recurrence relations:

(a) Jacobsthal-Padovan sequence:

Q−n = 1
2n+3 (9Q2

n+2 + 4Q2
n+1 + 21Q2

n + 6Q2n+2 − 4Q2n+1 − 6Q2n −
12Qn+2Qn+1 − 30Qn+2Qn + 20Qn+1Qn).
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(b) Jacobsthal-Perrin (-Lucas) sequence:

L−n = 1
2n+1 (L2

n − L2n).

(c) adjusted Jacobsthal-Padovan sequence:

K−n = 1
2n+1 (−K2

n + 2K2n +Kn+2Kn − 6Kn+1Kn).

(d) modified Jacobsthal-Padovan sequence:

M−n = 1
529×2n+3 (108M2

n+1 + 75M2
n+2 + 3551M2

n + 690M2n+2 + 828M2n+1 −
3082M2n + 180Mn+2Mn+1 − 1130Mn+2Mn − 1356Mn+1Mn).

The following corollary presents the connection between the special cases of

generalized Narayana sequence at the positive index and the negative index.

Corollary 12. For n ∈ Z, we have the following recurrence relations:

(a) Narayana sequence:

N−n = 2N2
n +N2n − 3Nn+1Nn.

(b) Narayana-Lucas sequence:

U−n = 1
2(U2

n − U2n).

(c) Narayana-Perrin sequence:

H−n = 1
5618(2028H2

n+1 + 1323H2
n+2 + 429H2

n − 3339H2n+2 + 4134H2n+1 −
583H2n − 3276Hn+2Hn+1 + 2688Hn+2Hn − 3328Hn+1Hn).

We have the following corollary which gives the connection between the special

cases of generalized third-order Jacobsthal sequence at the positive index and the

negative index.

Corollary 13. For n ∈ Z, we have the following recurrence relations:

(a) third order Jacobsthal sequence:

J−n = 1
2n+1 (3J2

n + 2J2n + Jn+2Jn − 7Jn+1Jn).
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(b) third order Jacobsthal-Lucas sequence:

j−n = 1
9×2n+6 (121j2n+2 + 441j2n+1 − 95j2n − 264j2n+2 + 504j2n+1 + 120j2n −

462jn+2jn+1 + 154jn+2jn − 294jn+1jn).

(c) modified third order Jacobsthal-Lucas sequence:

K−n = 1
2n+1 (K2

n −K2n).

(d) third order Jacobsthal-Perrin sequence:

Q−n = 1
1225×2n+3 (243Q2

n+2 + 3Q2
n+1 + 3328Q2

n − 1890Q2n+2 + 210Q2n+1 −
3640Q2n − 54Qn+2Qn+1 + 2196Qn+2Qn − 244Qn+1Qn).

The following corollary illustrates the connection between the special cases of

generalized generalized 3-primes sequence at the positive index and the negative

index.

Corollary 14. For n ∈ Z, we have the following recurrence relations:

(a) 3-primes sequence:

G−n = 1
5n+1 (11G2

n + 5G2n + 3Gn+2Gn − 21Gn+1Gn).

(b) Lucas 3-primes sequence:

H−n = 1
2×5n (H2

n −H2n).

(c) modified 3-primes sequence:

E−n = 1
9×5n (−7E2

n + 9E2n + 4En+2En − 31En+1En).

The following corollary presents the connection between the special cases of

generalized reverse 3-primes sequence at the positive index and the negative index.

Corollary 15. For n ∈ Z, we have the following recurrence relations:

(a) reverse 3-primes sequence:

N−n = 1
2n+1 (11N2

n + 2N2n + 3Nn+2Nn − 21Nn+1Nn).
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(b) reverse Lucas 3-primes sequence:

S−n = 1
2n+1 (S2

n − S2n).

(c) reverse modified 3-primes sequence:

U−n = 1
9×2n (−7U2

n + 9U2n + 10Un+2Un − 67Un+1Un).
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