

Special Subfamilies of Holomorphic and Bi-univalent Functions related to Quasi-subordination

S. R. Swamy^{1,*} and Y. Sailaja²

 $¹$ Department of Computer Science and Engineering, RV College of Engineering,</sup> Bengaluru - 560 059, Karnataka, India ORCID: https://orcid.org/0000-0002-8088-4103 e-mail: mailtoswamy@rediffmail.com

² Department of Mathematics, RV College of Engineering, Bengaluru - 560 059, Karnataka, India ORCID: https://orcid.org/0000-0002-9155-9146 e-mail: sailajay@rvce.edu.in

Abstract

In the current work, special subfamilies of holomorphic bi-univalent functions based on quasi-subordination are introduced. Initial coefficient estimates for functions belonging to these subfamilies are established. Several consequences of our results and connections to known families are indicated.

1 Preliminaries

Let $\mathcal A$ be the set of normalized holomorphic functions that have the form

$$
s(z) = z + \sum_{k=2}^{\infty} d_k z^k,
$$
\n(1.1)

in $\mathfrak{D} = \{z \in \mathbb{C} : |z| < 1\}$. Let S be the set of all elements of A that are univalent in \mathfrak{D} . Let $\varsigma(z)$ be holomorphic in \mathfrak{D} with $|\varsigma(z)| \leq 1$, $z \in \mathfrak{D}$, such that

$$
\varsigma(z) = R_0 + R_1 z + R_2 z^2 + \cdots \tag{1.2}
$$

Received: February 25, 2021; Accepted: March 7, 2021

2010 Mathematics Subject Classification: 30C45, 30C50, 30D60.

Keywords and phrases: quasi-subordination, holomorphic function, coefficient estimates, bi-univalent function.

where R_0, R_1, R_2, \cdots are real and let $\mathfrak{h}(z)$ be holomorphic in \mathfrak{D} , with $\mathfrak{h}(0) =$ $1, \mathfrak{h}'(0) > 0$, having positive real part, such that

$$
\mathfrak{h}(z) = 1 + Q_1 z + Q_2 z^2 + \cdots \tag{1.3}
$$

where Q_1, Q_2, Q_3, \cdots are real and $Q_1 > 0$. Throughout this work we shall consider ς and \frak{h} follow the above mentioned conditions unless otherwise mentioned. One - quarter theorem of Koebe $[6]$, assures that the image of $\mathfrak D$ under every function $s \in \mathcal{S}$ contains a disc of radius 1/4. According to this, every function $s \in \mathcal{S}$ has an inverse $g = s^{-1}$ satisfying $s^{-1}(s(z)) = z, z \in \mathfrak{D}$ and $s(s^{-1}(\omega)) = \omega, |\omega|$ $r_0(s)$, $r_0(s) \geq 1/4$ and is in fact given by

$$
g(\omega) = s^{-1}(\omega) = \omega - d_2\omega^2 + (2d_2^2 - d_3)\omega^3 - (5d_2^3 - 5d_2d_3 + d_4)\omega^4 + \cdots
$$
 (1.4)

A member s of A is bi-univalent in $\mathfrak D$ if both s and s^{-1} are univalent in $\mathfrak D$. We symbolize the set of bi-univalent functions of the form (1.1) , by Σ . In [\[9\]](#page-11-1), Lewin examined the bound for $|d_2|$ of elements of the family \sum and proved that $|d_2|$ < 1.51 and in [\[3\]](#page-10-0), Brannan et al. conjectured that $|d_2|$ < √ 2. Brannan and Taha in [\[4\]](#page-10-1), proposed bi-starlike and bi-convex functions which are similar to the subfamilies of univalent functions. They have obtained non-sharp estimates on $|d_2|$ and $|d_3|$ for members of such families. For various subfamilies of the class \sum , coefficient estimates and other properties of functions in these subfamilies, one can refer the works of [\[2\]](#page-10-2), [\[5\]](#page-10-3), [\[12\]](#page-11-2), [\[17\]](#page-12-0), and [\[22\]](#page-12-1).

We recall the rule of subordination and also the rule of majorization, between holomorphic functions $s(z)$ and $\tau(z)$ in \mathfrak{D} . We say that $s(z)$ is subordinate to $\tau(z)$, indicated as $s(z) \prec \tau(z)$, $z \in \mathfrak{D}$, if there is a $\psi(z)$ holomorphic in \mathfrak{D} , with $\psi(0) = 0$ and $|\psi(z)| < 1$, $z \in \mathfrak{D}$, such that $s(z) = \tau(\psi(z))$. Moreover $s(z) \prec \tau(z)$ is equivalent to $s(0) = \tau(0)$ and $s(\mathfrak{D}) \subset \tau(\mathfrak{D})$, if τ is univalent in \mathfrak{D} . We know that $s(z)$ is majorized by $\tau(z)$, indicated as $s(z) \prec \prec \tau(z)$, $z \in \mathfrak{D}$, if there exists a $\varsigma(z)$ holomorphic in \mathfrak{D} , with $|\varsigma(z)| \leq 1$, satisfying $s(z) = \varsigma(z)\tau(z)$, $z \in \mathfrak{D}$.

Robertson [\[15\]](#page-11-3) innovated a concept called quasi-subordination, which generalizes both the concepts of majorization and subordination. For holomorphic functions $s(z)$ and $\tau(z)$, $s(z)$ is quasi-subordinate to $\tau(z)$, indicated as $s(z) \prec_q$

 $\tau(z), z \in \mathfrak{D}$, if there exists two holomorphic functions ς and ψ with $|\varsigma(z)| \leq$ $1, \psi(0) = 0$ and $|\psi(z)| < 1$ such that $s(z) = \varsigma(z)\tau(\psi(z))$, $z \in \mathfrak{D}$. Observe that if $\varsigma(z) = 1$, then $s(z) = \tau(\psi(z))$, $z \in \mathfrak{D}$, so that $s(z) \prec \tau(z)$ in \mathfrak{D} . Also note that if $\psi(z) = z$, then $s(z) = \varsigma(z)\tau(z)$, $z \in \mathfrak{D}$ and hence $s(z) \prec \prec \tau(z)$ in \mathfrak{D} . There are more studies related to quasi-subordination such as [\[1\]](#page-10-4), [\[7\]](#page-11-4), [\[8\]](#page-11-5), [\[11\]](#page-11-6), [\[14\]](#page-11-7), [\[16\]](#page-11-8), [\[19\]](#page-12-2) and [\[21\]](#page-12-3).

Motivated by the papers [\[18\]](#page-12-4), [\[20\]](#page-12-5) and earlier works on quasi-subordination, we now define new special families $\mathfrak{S}_{\sum}^{q}(\mu,\nu,\eta,\mathfrak{h})$ and $\mathfrak{M}_{\sum}^{q}(\mu,\nu,\eta,\mathfrak{h})$.

Definition 1.1. For $0 \le \nu \le 1$, $\mu \ge 0$, $\mu \ge \nu$, $\eta \in \mathbb{C} - \{0\}$, we say that s in \sum , belongs to $\mathfrak{S}_{\sum}^{q}(\mu,\nu,\eta,\mathfrak{h}),$ if

$$
\frac{1}{\eta} \left(\frac{zs'(z) + \mu z^2 s''(z)}{(1-\nu)s(z) + \nu zs'(z)} - 1 \right) \prec_q (\mathfrak{h}(z) - 1), z \in \mathfrak{D}
$$

and

$$
\frac{1}{\eta} \left(\frac{\omega g'(\omega) + \mu \omega^2 g''(\omega)}{(1 - \nu)g(\omega) + \nu \omega g'(\omega)} - 1 \right) \prec_q (\mathfrak{h}(\omega) - 1), \omega \in \mathfrak{D},
$$

where h and $g(\omega) = s^{-1}(\omega)$ are as stated in [\(1.3\)](#page-1-0) and [\(1.4\)](#page-1-1) respectively.

We observe that certain values of ν and μ lead the class $\mathfrak{S}_{\sum}^{q}(\mu,\nu,\eta,\mathfrak{h})$ to the following few subfamilies:

1.
$$
\mathcal{K}^q_{\sum}(\eta, \mathfrak{h}) = \mathfrak{S}^q_{\sum}(\frac{1}{2}, \frac{1}{2}, \eta, \mathfrak{h})
$$
 is the family of $s \in \sum$ of the form (1.1) satisfying $\frac{1}{\eta} \left(\frac{(z^2 s'(z))'}{(zs(z))'} - 1 \right) \prec_q (\mathfrak{h}(z) - 1)$ and $\frac{1}{\eta} \left(\frac{(w^2 g'(\omega))'}{(\omega g(\omega))'} - 1 \right) \prec_q (\mathfrak{h}(\omega) - 1),$

where $z, \omega \in \mathfrak{D}$, \mathfrak{h} and $g(\omega) = s^{-1}(\omega)$ are as stated in [\(1.3\)](#page-1-0) and [\(1.4\)](#page-1-1) respectively. 2. $\mathscr{J}^q_{\sum}(\eta, \mathfrak{h}) = \mathfrak{S}^q_{\sum}(\frac{1}{2})$ $(\frac{1}{2}, 0, \eta, \mathfrak{h})$ is the family of $s \in \sum$ of the form (1.1) satisfying

$$
\frac{1}{\eta} \left(\frac{(z^2 s'(z))'}{2s(z)} - 1 \right) \prec_q (\mathfrak{h}(z) - 1) \quad \text{and} \quad \frac{1}{\eta} \left(\frac{(\omega^2 g'(\omega))'}{2g(\omega)} - 1 \right) \prec_q (\mathfrak{h}(\omega) - 1),
$$

where z, $\omega \in \mathfrak{D}$, h and $g(\omega) = s^{-1}(\omega)$ are as stated in [\(1.3\)](#page-1-0) and [\(1.4\)](#page-1-1) respectively. 3. $\mathscr{L}^q_{\sum}(\eta, \mathfrak{h}) = \mathfrak{S}^q_{\sum}(1, \frac{1}{2})$ $(\frac{1}{2}, \eta, \mathfrak{h})$ is the family of $s \in \sum$ of the form (1.1) satisfying

$$
\frac{1}{\eta} \left(\frac{2z(zs'(z))'}{(zs(z))'} - 1 \right) \prec_q (\mathfrak{h}(z) - 1) \quad \text{and} \quad \frac{1}{\eta} \left(\frac{2\omega(\omega g'(\omega))'}{(\omega g(\omega))'} - 1 \right) \prec_q (\mathfrak{h}(\omega) - 1),
$$

where $z, \omega \in \mathfrak{D}$, \mathfrak{h} and $g(\omega) = s^{-1}(\omega)$ are as stated in [\(1.3\)](#page-1-0) and [\(1.4\)](#page-1-1) respectively. 4. $\mathscr{R}^q_{\sum}(\eta, \mathfrak{h}) = \mathfrak{S}^q_{\sum}(\mu, 0, \eta, \mathfrak{h})$ is the family of $s \in \sum$ of the form (1.1) satisfying

$$
\frac{1}{\eta} \left(\left(\frac{zs'(z)}{s(z)} \right) \left(1 + \mu \frac{zs''(z)}{s'(z)} \right) - 1 \right) \prec_q (\mathfrak{h}(z) - 1), z \in \mathfrak{D}
$$

and

$$
\frac{1}{\eta}\left(\left(\frac{\omega g'(\omega)}{g(\omega)}\right)\left(1+\mu\frac{\omega g''(\omega)}{g'(\omega)}\right)-1\right) \prec_q (\mathfrak{h}(\omega)-1), \omega \in \mathfrak{D},
$$

where h and $g(\omega) = s^{-1}(\omega)$ are as stated in [\(1.3\)](#page-1-0) and [\(1.4\)](#page-1-1) respectively.

Definition 1.2. For $0 \le \nu \le 1, \mu \ge 0, \mu \ge \nu, \eta \in \mathbb{C} - \{0\}$, we say that s in \sum belongs to $\mathfrak{M}^q_{\sum}(\mu,\nu,\eta,\mathfrak{h}),$ if

$$
\frac{1}{\eta} \left(\frac{zs'(z) + \mu z^2 s''(z)}{(1 - \nu)z + \nu z s'(z)} - 1 \right) \prec_q \mathfrak{h}(z) - 1, z \in \mathfrak{D}
$$

and

$$
\frac{1}{\eta}\left(\frac{\omega g'(\omega) + \mu \omega^2 g''(\omega)}{(1-\nu)\omega + \nu \omega g'(\omega)} - 1\right) \prec_q (\mathfrak{h}(\omega) - 1), \omega \in \mathfrak{D},
$$

where h and $g(\omega) = s^{-1}(\omega)$ are given by [\(1.3\)](#page-1-0) and [\(1.4\)](#page-1-1) respectively.

It is easy to see that certain choices of ν lead the family $\mathfrak{M}^q_{\sum}(\mu,\nu,\eta,\mathfrak{h})$ to the following few subfamilies.

1. $\mathfrak{R}_{\sum}^{q}(\mu,\eta,\mathfrak{h}) = \mathfrak{M}_{\sum}^{q}(\mu,0,\eta,\mathfrak{h})$ is the family of $s \in \sum$ of the form (1.1) satisfying

$$
\frac{1}{\eta}(s'(z)+\mu zs''(z)-1) \prec_q (\mathfrak{h}(z)-1) \quad \text{and} \quad \frac{1}{\eta}(g'(\omega)+\mu \omega g''(\omega)-1) \prec_q (\mathfrak{h}(\omega)-1),
$$

where $z, \omega \in \mathfrak{D}$, \mathfrak{h} and $g(\omega) = s^{-1}(\omega)$ are as stated in [\(1.3\)](#page-1-0) and [\(1.4\)](#page-1-1) respectively.

2. $\mathfrak{R}_{\sum}^{q}(\mu,\eta,\mathfrak{h}) = \mathfrak{M}_{\sum}^{q}(\mu,1,\eta,\mathfrak{h})$ is the family of $s \in \sum$ of the form (1.1) satisfying

$$
1 + \frac{\mu}{\eta} \left(\frac{zs''(z)}{s'(z)} \right) \prec_q \mathfrak{h}(z) \quad \text{and} \quad 1 + \frac{\mu}{\eta} \left(\frac{\omega g''(\omega)}{s'(\omega)} \right) \prec_q \mathfrak{h}(\omega),
$$

where $z, \omega \in \mathfrak{D}$, \mathfrak{h} and $g(\omega) = s^{-1}(\omega)$ are as stated in [\(1.3\)](#page-1-0) and [\(1.4\)](#page-1-1) respectively.

In the second section, we find bounds on $|d_2|$ and $|d_3|$ in the Taylor-Maclaurin's expansion belonging to the family $\mathfrak{S}_{\sum}^{q}(\mu,\nu,\eta,\mathfrak{h})$. We also present results related to four families defined above. In the third section, we obtain bounds on $|d_2|$ and |d₃| in the Taylor-Maclaurin's expansion belonging to the family $\mathfrak{M}^q_{\sum}(\mu, \nu, \eta, \mathfrak{h})$. We also point out results related to two families defined above.

2 Initial Coefficients for the Family $\mathfrak{S}_{\sum}^{q}(\mu,\nu,\eta,\mathfrak{h})$

Theorem 2.1. Let $\mu \geq 0$, $\mu \geq \nu$, $0 \leq \nu \leq 1$ and $\eta \in \mathbb{C} - \{0\}$. If the function $s \in \mathcal{A}$ belongs to the class $\mathfrak{S}_{\sum}^{q}(\mu, \nu, \eta, \mathfrak{h})$, then

$$
|d_2| \le \frac{|\eta||R_0|Q_1\sqrt{Q_1}}{\sqrt{\left[|(\nu^2 - 2(1+\mu)\nu + 1 + 4\mu)\eta R_0Q_1^2 - (Q_2 - Q_1)(1-\nu+2\mu)^2|\right]}} \quad (2.1)
$$

and

$$
|d_3| \le \frac{|\eta|Q_1}{2(1-\nu+3\mu)} \left\{ |R_0| \left[1 + \frac{2|\eta|(1-\nu+3\mu)|R_0|Q_1}{(1-\nu+2\mu)^2} \right] + |R_1| \right\}.
$$
 (2.2)

Proof. Let $s \in \mathfrak{S}_{\sum}^{q}(\mu,\nu,\eta,\mathfrak{h})$. Then there exists a function $\varsigma(z)$ holomorphic in $\mathfrak D$ and holomorphic functions $u, v : \mathfrak D \to \mathfrak D$ with $u(0) = 0, |u(z)| < 1, v(0) = 0$ $0, |v(z)| < 1$ satisfying

$$
\frac{1}{\eta} \left(\frac{zs'(z) + \mu z^2 s''(z)}{(1 - \nu)s(z) + \nu zs'(z)} - 1 \right) = \varsigma(z)(\mathfrak{h}(u(z)) - 1),\tag{2.3}
$$

$$
\frac{1}{\eta} \left(\frac{\omega g' \omega + \mu \omega^2 g''(\omega)}{(1 - \nu)g(\omega) + \nu \omega g' \omega} - 1 \right) = \varsigma(\omega)(\mathfrak{h}(v(\omega)) - 1). \tag{2.4}
$$

Define $M(z)$ and $N(z)$ by

$$
M(z) = \frac{1 + u(z)}{1 - u(z)} = 1 + m_1 z + m_2 z^2 + \cdots
$$
 (2.5)

and

$$
N(z) = \frac{1 + v(z)}{1 - v(z)} = 1 + n_1 z + n_2 z^2 + \cdots
$$
 (2.6)

or equivalently

$$
u(z) = \frac{M(z) - 1}{M(z) + 1} = \frac{1}{2} \left[m_1 z + \left(m_2 - \frac{m_1^2}{2} \right) z^2 + \dots \right]
$$
 (2.7)

and

$$
v(z) = \frac{N(z) - 1}{N(z) + 1} = \frac{1}{2} \left[n_1 z + \left(n_2 - \frac{n_1^2}{2} \right) z^2 + \dots \right].
$$
 (2.8)

It is apparent that two functions $M(z)$ and $N(z)$ are holomorphic having positive real parts in $\mathfrak D$ with $M(0) = 1 = N(0)$. In view of (2.3) - (2.8) , one gets

$$
\frac{1}{\eta} \left(\frac{zs'(z) + \mu z^2 s''(z)}{(1 - \nu)s(z) + \nu zs'(z)} - 1 \right) = \varsigma(z) \left[\mathfrak{h} \left(\frac{M(z) - 1}{M(z) + 1} \right) - 1 \right] \tag{2.9}
$$

and

$$
\frac{1}{\eta} \left(\frac{\omega g'(\omega) + \mu \omega^2 g''(\omega)}{(1 - \nu)g(\omega) + \nu \omega g'(\omega)} - 1 \right) = \varsigma(\omega) \left[\mathfrak{h} \left(\frac{N(\omega) - 1}{N(\omega) + 1} \right) - 1 \right].
$$
 (2.10)

The Maclaurin series expansions of functions in [\(2.9\)](#page-5-1) and [\(2.10\)](#page-5-2) provide us

$$
\frac{1}{\eta} \left\{ (1 - \nu + 2\mu) d_2 z + [2(1 - \nu + 3\mu) d_3 - (1 + \nu)(1 - \nu + 2\mu) d_2^2] z^2 + \cdots \right\}
$$
\n
$$
= \frac{R_0 Q_1 m_1}{2} z + \left[\frac{R_1 Q_1 m_1}{2} + \frac{R_0 Q_1}{2} (m_2 - \frac{m_1^2}{2}) + \frac{R_0 Q_2 m_1^2}{4} \right] z^2 + \cdots
$$
\n(2.11)

and

$$
\frac{1}{\eta} \left\{ -(1 - \nu + 2\mu) d_2 \omega + \left[2(1 - \nu + 3\mu)(2d_2^2 - d_3) \right. \right.\n\left. - (1 + \nu)(1 - \nu + 2\mu) d_2^2 \right] \omega^2 + \cdots \left\} \n= \frac{R_0 Q_1 n_1}{2} \omega + \left[\frac{R_1 Q_1 n_1}{2} + \frac{R_0 Q_1}{2} \left(n_2 - \frac{n_1^2}{2} \right) + \frac{R_0 Q_2 n_1^2}{4} \right] \omega^2 + \cdots.
$$
\n(2.12)

Comparing the coefficients in (2.11) and (2.12) , we get

$$
\frac{(1-\nu+2\mu)d_2}{\eta} = \frac{1}{2}R_0Q_1m_1,\tag{2.13}
$$

$$
\frac{\left[2(1-\nu+3\mu)d_3 - (1+\nu)(1-\nu+2\mu)d_2^2\right]}{\eta} = \frac{R_1Q_1m_1}{2} + \frac{R_0Q_1}{2}\left(m_2 - \frac{m_1^2}{2}\right) + \frac{R_0Q_2m_1^2}{4} \tag{2.14}
$$

and

$$
-\frac{(1-\nu+2\mu)d_2}{\eta} = \frac{1}{2}R_0Q_1n_1,\tag{2.15}
$$

$$
\frac{\left[2(1-\nu+3\mu)(2d_2^2-d_3)-(1+\nu)(1-\nu+2\mu)d_2^2\right]}{\eta} = \frac{R_1Q_1n_1}{2} + \frac{R_0Q_1}{2}\left(n_2 - \frac{n_1^2}{2}\right) + \frac{R_0Q_2n_1^2}{4}.
$$
 (2.16)

Solving the equations (2.13) , (2.14) , (2.15) , and (2.16) , we obtain

$$
d_2^2 = \frac{\eta^2 R_0^2 Q_1^3 (m_2 + n_2)}{4\left\{[\nu^2 - 2(1 + \mu)\nu + (1 + 4\mu)]\eta R_0 Q_1^2 - (Q_2 - Q_1)(1 - \nu + 2\mu)^2\right\}} \tag{2.17}
$$

and

$$
d_3 = \frac{\eta}{4(1 - \nu + 3\mu)} \left[R_1 Q_1 m_1 + \frac{1}{2} R_0 Q_1 (m_2 - n_2) + \frac{\eta (1 - \nu + 3\mu)}{(1 - \nu + 2\mu)^2} R_0^2 Q_1^2 m_1^2 \right].
$$
\n(2.18)

Using well-known inequalities $|m_i| \leq 2$ and $|n_i| \leq 2$ $(i = 1, 2)$ [\[13\]](#page-11-9) we get [\(2.1\)](#page-4-1) and (2.2) from (2.17) and (2.18) respectively. This ends the proof. \Box

Remark [2.1](#page-4-3). For $\mu = \nu = 0$, in Theorem 2.1 we get the estimates [\[10,](#page-11-10) Corollary 9] and for $\mu = \nu$, $0 \le \nu \le 1$, in Theorem [2.1,](#page-4-3) we obtain [\[23,](#page-12-6) Theorem 2.1]. Also, for $\gamma = \mu = 1$, Theorem [2.1](#page-4-3) coincide with estimates [\[10,](#page-11-10) Corollary 11].

We now present below the four consequences of Theorem [2.1.](#page-4-3)

Corollary 2.1. If the function $s \in \mathcal{K}^q_{\sum}(\eta, \mathfrak{h}), \eta \in \mathbb{C} - \{0\},\$ then

$$
|d_2| \le \frac{2|\eta||R_0|Q_1\sqrt{Q_1}}{\sqrt{[7\eta R_0Q_1^2 - (Q_2 - Q_1)]}}
$$

and

$$
|d_3| \le \frac{|\eta|Q_1}{4} \left[|R_0| \left(1 + \frac{8}{9} |\eta| |R_0| Q_1 \right) + |R_1| \right].
$$

Corollary 2.2. If the function $s \in \mathcal{J}_{\sum}^{q}(\eta, \mathfrak{h}), \eta \in \mathbb{C} - \{0\},\$ then

$$
|d_2| \le \frac{|\eta||R_0|Q_1\sqrt{Q_1}}{\sqrt{[|3\eta R_0Q_1^2 - 4(Q_2 - Q_1)|]}}
$$

and

$$
|d_3| \le \frac{|\eta|Q_1}{5} \left[|R_0| \left(1 + \frac{5}{4} |\eta| |R_0| Q_1 \right) + |R_1| \right].
$$

Corollary 2.3. If the function $s \in \mathcal{L}^q_{\sum}(\eta, \mathfrak{h}), \eta \in \mathbb{C} - \{0\}$, then

$$
|d_2| \le \frac{2|\eta||R_0|Q_1\sqrt{Q_1}}{\sqrt{[|13\eta R_0Q_1^2 - 25(Q_2 - Q_1)|]}}
$$

and

$$
|d_3| \le \frac{|\eta|Q_1}{7} \left[|R_0| \left(1 + \frac{28}{25} |\eta| |R_0| Q_1 \right) + |R_1| \right].
$$

Corollary 2.4. If the function $s \in \mathcal{R}^q_{\sum}(\mu, \eta, \mathfrak{h}), \eta \in \mathbb{C} - \{0\},\$ then

$$
|d_2| \le \frac{|\eta||R_0|Q_1\sqrt{Q_1}}{\sqrt{\left[|(1+4\mu)\eta R_0Q_1^2 - (Q_2 - Q_1)(1+2\mu)^2|\right]}}
$$

and

$$
|d_3| \le \frac{|\eta|Q_1}{2(3\mu+1)} \left\{ |R_0| \left[1 + \frac{|\eta|(3\mu+1)|R_0|Q_1}{(1+2\mu)^2} \right] + |R_1| \right\}.
$$

3 Coefficient Estimates for the Family $\mathfrak{M}^q_{\sum}(\mu,\nu,\eta,\mathfrak{h})$

Theorem 3.1. Let $0 \le \nu \le 1, \mu \ge 0, \mu \ge \nu$ and $\eta \in \mathbb{C} - \{0\}$. If the function $s \in \mathcal{A}$ belongs to $\mathfrak{M}^q_{\sum}(\mu, \nu, \eta, \mathfrak{h})$, then

$$
|d_2| \le \frac{R_0 Q_1 \sqrt{Q_1} |\eta|}{\sqrt{\left| \left(4\nu^2 - (7 + 4\mu)\nu + 3(1 + 2\mu) \right) \eta R_0 Q_1^2 - 4(Q_2 - Q_1)(1 - \nu + \mu)^2 \right|}} (3.1)
$$

and

$$
|d_3| \le \frac{|\eta|Q_1}{3(1-\nu+2\mu)} \left[|R_1| + |R_0| \left(1 + \frac{3|\eta|(1-\nu+2\mu)|R_0|Q_1}{4(1-\nu+\mu)^2} \right) \right].
$$
 (3.2)

Proof. Let $s \in \mathfrak{M}^q_{\sum}(\mu, \nu, \eta, \mathfrak{h})$. Then there exists a function $\varsigma(z)$ holomorphic in \mathfrak{D} and holomorphic functions $u, v : \mathfrak{D} \to \mathfrak{D}$ with $u(0) = 0, |u(z)| < 1, v(0) = 0$ 0, $|v(z)| < 1$ satisfying

$$
\frac{1}{\eta} \left(\frac{zs'(z) + \mu z^2 s''(z)}{(1 - \nu)z + \nu zs'(z)} - 1 \right) \prec \varsigma(z) (\mathfrak{h}(u(z)) - 1)
$$
\n(3.3)

$$
\frac{1}{\eta} \left(\frac{\omega g'(\omega) + \mu \omega^2 g''(\omega)}{(1 - \nu)\omega + \nu \omega g'(\omega)} - 1 \right) \prec \varsigma(\omega) (\mathfrak{h}(v(\omega)) - 1).
$$
\n(3.4)

Following the steps of Theorem [2.1,](#page-4-3) with $M(z)$ and $N(z)$ as defined in [\(2.5\)](#page-4-4) and (2.6) , respectively, one gets in view of (3.3) and (3.4)

$$
\frac{1}{\eta} \left(\frac{zs'(z) + \mu z^2 s''(z)}{(1 - \nu)z + \nu z s'(z)} - 1 \right) = \varsigma(z) \left[\mathfrak{h} \left(\frac{M(z) - 1}{M(z) + 1} \right) - 1 \right]
$$
(3.5)

and

$$
\frac{1}{\eta} \left(\frac{\omega g'(\omega) + \mu \omega^2 g''(\omega)}{(1 - \nu)\omega + \nu \omega g'(\omega)} - 1 \right) = \varsigma(\omega) \left[\mathfrak{h} \left(\frac{N(\omega) - 1}{N(\omega) + 1} \right) - 1 \right].
$$
 (3.6)

The Maclaurin series expansions of functions in [\(3.5\)](#page-8-2) and [\(3.6\)](#page-8-3) provide us

$$
\frac{1}{\eta} \left\{ (1 - \nu + \mu) 2d_2 z + [3(1 - \nu + 2\mu)d_3 - (1 - \nu + \mu)4\nu d_2^2] z^2 + \cdots \right\}
$$

= $\frac{R_0 Q_1 m_1}{2} z + \left[\frac{R_1 Q_1 m_1}{2} + \frac{R_0 Q_1}{2} \left(m_2 - \frac{m_1^2}{2} \right) + \frac{R_0 Q_2 m_1^2}{4} \right] z^2 + \cdots$ (3.7)

and

$$
\frac{1}{\eta} \left\{ -(1 - \nu + \mu) 2d_2 \omega + \left[3(1 - \nu + 2\mu)(2d_2^2 - d_3) - (1 - \nu + \mu) 4\nu d_2^2 \right] \omega^2 + \cdots \right\}
$$
\n
$$
= \frac{R_0 Q_1 n_1}{2} \omega + \left[\frac{R_1 Q_1 n_1}{2} + \frac{R_0 Q_1}{2} \left(n_2 - \frac{n_1^2}{2} \right) + \frac{R_0 Q_2 n_1^2}{4} \right] \omega^2 + \cdots \tag{3.8}
$$

Comparing the coefficients in [\(3.7\)](#page-8-4) and [\(3.8\)](#page-8-5), we get

$$
\frac{(1 - \nu + \mu)2d_2}{\eta} = \frac{1}{2}R_0Q_1m_1\tag{3.9}
$$

$$
\frac{\left[3(1-\nu+2\mu)d_3 - (1-\nu+\mu)4\nu d_2^2\right]}{\eta} = \frac{R_1Q_1m_1}{2} + \frac{R_0Q_1}{2}\left(m_2 - \frac{m_1^2}{2}\right) + \frac{R_0Q_2m_1^2}{4} \tag{3.10}
$$

and

$$
-\frac{(1-\nu+\mu)2d_2}{\eta} = \frac{1}{2}R_0Q_1n_1\tag{3.11}
$$

$$
\frac{\left[3(1-\nu+2\mu)(2d_2^2-d_3)-(1-\nu+\mu)4\nu d_2^2\right]}{\eta} = \frac{R_1Q_1n_1}{2} + \frac{R_0Q_1}{2}\left(n_2 - \frac{n_1^2}{2}\right) + \frac{R_0Q_2n_1^2}{4}.
$$
 (3.12)

From (3.9) and (3.11) , we have

$$
m_1 = -n_1. \t\t(3.13)
$$

By adding (3.10) and (3.12) , we obtain

$$
\frac{[4\nu^2 - (7 + 4\mu)\nu + 3(1 + 2\mu)]}{\eta} 2d_2^2 = \frac{R_0Q_1}{2}(m_2 + n_2) + \frac{R_0(Q_2 - Q_1)}{4}(m_1^2 + n_1^2).
$$
\n(3.14)

Using [\(3.9\)](#page-8-6), [\(3.11\)](#page-9-0) and [\(3.13\)](#page-9-2) in [\(3.14\)](#page-9-3), we get

$$
d_2^2 = \frac{R_0^2 Q_1^3 \eta^2 (m_2 + n_2)}{4\{[4\nu^2 - 4(1 + \mu)\nu + 3(1 - \nu + 2\mu)]\eta R_0 Q_1^2 - 4(Q_2 - Q_1)(1 - \nu + \mu)^2\}}.
$$
\n(3.15)

By subtracting (3.12) from (3.10) , we get

$$
d_3 = \frac{\eta}{6(1 - \nu + 2\mu)} \left[\frac{R_1 Q_1}{2} (m_1 - n_1) + \frac{R_0 Q_1}{2} (m_2 - n_2) + \frac{R_0}{4} (Q_2 - Q_1) (m_1^2 - n_1^2) \right] + d_2^2.
$$
\n(3.16)

By well-known inequalities $|m_i| \leq 2$ and $|n_i| \leq 2$ $(i = 1, 2)$ [\[13\]](#page-11-9), we get the results (3.1) and (3.2) using (3.9) , (3.13) , (3.15) and (3.16) respectively. This ends \Box the proof.

Remark [3.1](#page-7-2). For $\mu = \nu = 0$, in Theorem 3.1 we get the estimates [\[10,](#page-11-10) Corollary 3] and for $\mu = \nu$, $0 \le \nu \le 1$, in Theorem [3.1,](#page-7-2) we obtain [\[16,](#page-11-8) Theorem 2.1]. Also, for $\gamma = \mu = 1$, Theorem [3.1](#page-7-2) coincide with [\[10,](#page-11-10) Corollary 11].

We now present below the two consequences of Theorem [3.1.](#page-7-2)

Corollary 3.1. If the function $s \in \Re^q_{\sum}(\mu, \eta, \mathfrak{h}), \eta \in \mathbb{C} - \{0\}, \mu \geq 0$, then

$$
|d_2| \le \frac{|\eta||R_0|Q_1\sqrt{Q_1}}{\sqrt{\left[|3(1+2\mu)\eta R_0Q_1^2 - 4(Q_2 - Q_1)(1+\mu)^2|\right]}}
$$

and

$$
|d_3| \le \frac{|\eta|Q_1}{3(1+2\mu)} \left\{ |R_0| \left[1 + \frac{3|\eta|(1+2\mu)|R_0|Q_1}{4(1+\mu)^2} \right] + |R_1| \right\}.
$$

Corollary 3.2. If the function $s \in \mathfrak{L}_{\sum}^{q}(\mu, \eta, \mathfrak{h}), \eta \in \mathbb{C} - \{0\}, \mu \geq 1$, then

$$
|d_2| \le \frac{|\eta||R_0|Q_1\sqrt{Q_1}}{\sqrt{[|2\mu\eta R_0Q_1^2 - 4(Q_2 - Q_1)\mu^2|]}}
$$

and

$$
|d_3| \le \frac{|\eta|Q_1}{6\mu} \left\{ |R_0| \left[1 + \frac{3|\eta||R_0|Q_1}{2\mu} \right] + |R_1| \right\}.
$$

References

- [1] Abdul Rahman S. Juma and Mohammed H. Saloomi, Generalized differential operator on bistarlike and biconvex functions associated by quasi-subordination, J. Phys.: Conf. Ser. 1003 (2018), 012046. <https://doi.org/10.1088/1742-6596/1003/1/012046>
- [2] R. M. Ali, S. K. Lee, V. Ravichandran and S. Subramaniam, Coefficient estimates for bi-univalent Ma- Minda starlike and convex functions, Appl. Math. Lett. 25(3) (2012), 344-351. <https://doi.org/10.1016/j.aml.2011.09.012>
- [3] D. A. Brannan, J. Clunie and W. E. Kirwan, Coefficient estimates for a class of starlike functions, Canad. J. Math. 22 (1970), 476-485. <https://doi.org/10.4153/CJM-1970-055-8>
- [4] D. A. Brannan and T. S. Taha, On some classes of bi-univalent functions, Mathematical Analysis and Its Applications 3 (1985), 18-21.
- [5] E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Class. Anal. 2(1) (2013), 49-60. <https://doi.org/10.7153/jca-02-05>
- [6] P. L. Duren, Univalent Functions, Springer-Verlag, New York, 1983.
- [7] S. P. Goyal and Rakesh Kumar, Coefficient estimates and quasi-subordination properties associated with certain subclasses of analytic and bi-univalent functions, Math. Slovaca 65(3) (2015), 533-544. <https://doi.org/10.1515/ms-2015-0038>
- [8] S. P. Goyal, O. Singh and R. Mukherjee, Certain results on a subclass of analytic and bi-univalent functions associated with coefficient estimates and quasi-subordination, Palestine Journal of Mathematics 5(1) (2016), 79-85.
- [9] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. $Soc. 18$ (1967), 63-68. <https://doi.org/10.1090/S0002-9939-1967-0206255-1>
- [10] N. Magesh, V. K. Balaji and J. Yamini, Certain subclasses of bistarlike and biconvex functions based on quasi-subordination, *Abstract and Applied Analysis* 2016 (2016), Article ID 3102960, 6 pp. <https://doi.org/10.1155/2016/3102960>
- [11] M. H. Mohd and M. Darus, Fekete-Szego problems for quasi-subordination classes, Abstract and Applied Analysis 2012 (2012), Article ID 192956, 14 pp. <https://doi.org/10.1155/2012/192956>
- [12] Z. Peng, G. Murugusundaramoorthy and T. Janani, Coefficient estimate of bi-univalent functions of complex order associated with the Hohlov operator, Journal of Complex Analysis 2014 (2014), Article ID 693908, 6 pp. <https://doi.org/10.1155/2014/693908>
- [13] Ch. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht, Gottingen, 1975.
- [14] F. Y. Ren, S. Owa and S. Fukui, Some inequalities on quasi-subordinate functions, Bull. Aust. Math. Soc. 43(2) (1991), 317-324. <https://doi.org/10.1017/S0004972700029117>
- [15] M. S. Robertson, Quasi-subordination and coefficient conjecture, Bull. Amer. Math. $Soc. 76$ (1970), 1-9. <https://doi.org/10.1090/S0002-9904-1970-12356-4>
- [16] Shashi Kant, Coefficients estimate for certain subclass of bi-univalent functions associated with quasi-subordination, J. Fract. Calc. Appl. 9(1) (2018), 195-203.
- [17] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses analytic and bi-univalent functions, Appl. Math. Lett. 23(10) (2010), 1188-1192. <https://doi.org/10.1016/j.aml.2010.05.009>
- [18] S. R. Swamy, Ruscheweyh derivative and a new generalized Multiplier differential operator, Annals of Pure and Applied Mathematics 10(2) (2015), 229-238.
- [19] S. R. Swamy and Y. Sailaja, Fekete-Szegö inequality and quasi-subordination, Palestine Journal of Mathematics 10(2) (2021), in press.
- [20] S. R. Swamy and Y Sailaja, Horadam polynomial coefficient estimates for two families of holomorphic and bi-univalent functions, International Journal of Mathematics Trends and Technology 66(8) (2020), 131-138. <https://doi.org/10.14445/22315373/IJMTT-V66I8P514>
- [21] S. R. Swamy and Y. Sailaja, Sharp bounds of Fekete-Szego functional for quasi-subordination class, International Journal of Mathematics Trends and Technology 66(11) (2020), 87-94. <https://doi.org/10.2478/ausm-2019-0008>
- [22] H. Tang, G. Deng and S. Li, Coefficient estimates for new subclasses of Ma-Minda bi-univalent functions, J. Inequal. Appl. 2013 (2013), Article No. 317, 10 pp. <https://doi.org/10.1186/1029-242X-2013-317>
- [23] P. P. Vyas and S. Kant, Coefficients estimate for new subclass of bi-univalent functions associated with quasi-subordination, AIP Conference Proceedings 1953 (2018), 140068. <https://doi.org/10.1063/1.5033243>
- [24] P. P. Vyas and S. Kant, Certain subclasses of bi-univalent functions associated with quasi-subordination, *Journal of Rajasthan Academy of Physical Sciences* 15(4) (2016), 315-325.

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted, use, distribution and reproduction in any medium, or format for any purpose, even commercially provided the work is properly cited.