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Abstract

The purpose of this paper is two-fold. A first and more concrete aim is to
give new characterizations of equivalence distributive Goursat categories (which
extend 3-permutable varieties) through variations of the little Pappian Theorem
involving reflexive and positive relations. A second and more abstract aim is to
show that every finitely complete category E satisfying the n-scheme is locally
anticommutative.

1 Introduction and Preliminaries

In this section we recall some basic definitions and results from the literature, needed
throughout the article.

1.1 n-schemes

For a sublattice L of an equivalence lattice EqA, Gumm’s Shifting Lemma [11] is stated
as follows. Given congruencesR,S and T on the same algebraX in V such thatR∧S 6
T , whenever x, y, z, t are elements in X with (x, y) ∈ R ∧ T , (x, t) ∈ S, (y, z) ∈ S and
(t, z) ∈ R, it then follows that (t, z) ∈ T . We display this condition as
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A variety V of universal algebras satisfies the Shifting Lemma precisely when it is
congruence modular, this meaning that the lattice of congruences on any algebra in V is
modular. In particular, since any 3-permutable variety is congruence modular, it always
satisfies the Shifting Lemma.

Recall from [11] that a sublattice L of an equivalence lattice EqA satisfies the
Triangular scheme if for each R,S, T ∈ L with R ∧ S 6 T and for x, y, z ∈ A such that
〈x, y〉 ∈ T , 〈x, z〉 ∈ S, 〈z, y〉 ∈ R we have 〈z, y〉 ∈ T.
This can be visualized as follows
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A sublattice L of EqA satisfies the n-scheme if for each R,S, T ∈ L with R ∧ S 6 T

and for x, y, z1, · · · , zn ∈ A such that

〈x, y〉 ∈ R, 〈x, z1〉 ∈ S, 〈z1, z2〉 ∈ T, 〈z2, z3〉 ∈ S, · · · , 〈zn−1, y〉 ∈ S

for n odd and 〈zn−1, y〉 ∈ T for n even we have 〈x, y〉 ∈ T . These schemes can be also
visualized but, contrary to the previous cases, classes of the same congruence fail to be
parallel:
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A sublattice L of EqA satisfies the little Pappian Theorem, [21] if given congruences
R,Si and T on the same algebra X in L such that R ∧ Si 6 T , whenever
x, y, u, z, x′, y′, z′ are element in X with (u, y′), (x, z) ∈ S1, (x′, x), (u, z′) ∈
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S2, (x
′, u), (u, z), (y′, x), (x, z′) ∈ R and (z, z′) ∈ T, then (x′, y′) ∈ T :
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(1.1)

Similarly, on identifying S2 with T and u with z′ we obtain A sublattice L of EqA
satisfies the scheme-1 if given congruences R,S and T on the same algebra X in L such
that R ∧ S 6 T , one has
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(1.2)

1.2 Anticommutative categories

Our categories will always be regular, in the sense of Barr [2]; we recall that a category is
regular if it has finite limits, each arrow factors as a regular epi followed by a mono, and
regular epis are pull-back stable. (It turns out that in a regular category the kernel pair
of an arrow always has a coequalizer, given by the regular epi part of the factorization
of the arrow) In a regular category, it is possible to compose relations. If (R, r1, r2) is
a relation from X to Y and (S, s1, s2) a relation from Y to Z, their composite SR is a
relation from X to Z obtained as the regular image of the arrow

(r1π1, s2π2) : R×Y S −→ X × Z,

where (R ×Y S, π1, π2) is the pullback of r2 along s1. The composition of relations is
then associative, thanks to the fact that regular epimorphisms are assumed to be pullback
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stable. A relation E on X is called positive when it is of the form E = R◦R for some
relation R� X×Y. Recall that a category is said to be pointed if it admits a zero object
0, i.e., an object which is both initial and terminal. A point in a category E is a split
epimorphism p : A→ X together with a fixed splitting s : X → A, usually depicted as

A
p // X .
s

oo

Let E be an arbitrary category. The category PtE(X) [3] of points of E over X is
the category of pointed objects of the comma category E ↓ X , that is,

PtE(X) = (X, 1X) ↓ (E ↓ X).

Explicitly, objects of this category are triples (A, p, s) where A is an object of E and
p : A → X and s : X → A are morphisms in E with p ◦ s = 1X . A morphism f :

(A, p, s)→ (B, q, t) in PtE(X) is a morphism f : A→ B in E such that q ◦ f = p and
f ◦s = t. The category PtE(X) is always pointed, where the zero-object is (X, 1X , 1X),
and if E is finitely complete, then so is PtE(X). Recall that two morphisms f : A → C

and g : B → C in a pointed category E with binary products are said to commute [15]
if there exists a morphism ρ : A × B → C such that ρ ◦ ι1 = f and ρ ◦ ι2 = g , where
ι1 : A→ A×B and ι2 : B → A×B are the canonical product inclusions.

A

f ##

ι1 // A×B
ρ

��

B
ι2oo

g
{{

C

Two morphisms f : X → Z and g : Y → Z in a pointed category E are said to be
disjoint if for any commutative diagram

V
a //

b
��

Y

g

��
X

f
// Z

we have g ◦ a = 0 = f ◦ b . This brings us to the main definition of this paper: A pointed
category E with binary products is a called anticommutative if every pair of commuting
morphisms are disjoint.
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2 Majority Categories and Goursat Categories

For a regular category E the property of being a majority category can be equivalently
defined as follows (see [16]): for any reflexive relations R,S and T on the same object
X in E , the inequality

R ∧ (ST ) 6 (R ∧ S)(R ∧ T )

holds. We then observe that any regular majority category satisfies the 3-scheme and,
consequently, also the 2-scheme and Shifting Lemma):

Lemma 2.1. The n-scheme holds true in any regular majority category E .

Proof. Given equivalence relations R,S and T on the same object such that R∧ S 6 T ,
then

R ∧ (S, T )n 6 (R ∧ S)(R ∧ T ) · · · (R ∧ S) 6 T

for n odd and
R ∧ (S, T )n 6 (R ∧ S)(R ∧ T ) · · · (R ∧ T ) 6 T

for n even. Here (S, T )n denotes the composite STST · · · of S and T , n times. �

Corollary 2.2. Let E be a regular majority category.

(1) The little Pappian Theorem holds true in E .

(2) The scheme-1 holds true in E .

A variety V of universal algebras is called 3-permutable when the strictly weaker
equality RSR = SRS holds. Such varieties are characterized by the existence of two
quaternary operations p and q satisfying the identities p(x, y, y, z) = x, p(u, u, v, v) =
q(u, u, v, v), q(x, y, y, z) = z (see [10]). The notions of 3-permutability can be extended
from varieties to regular categories by replacing congruences with (internal) equivalence
relations, allowing one to explore some interesting new (non-varietal) examples. Regular
categories that are 3-permutable are usually called Goursat categories. As examples of
Goursat categories we have :compact groups, topological groups, torsion-free abelian
groups, reduced commutative rings. It is well-known that any 3-permutable variety
is congruence modular, thus the Shifting Lemma and 3-scheme hold. This result also
extends to the regular categorical context.
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Theorem 2.3. [10] Let E be a regular category. The following statements are equivalent:

(i) E is a Goursat category;

(ii) ∀R,S ∈ Equiv(X), RSR = SRS ∈ Equiv(X), for any X;

(iii) every relation P → X × Y in E , PP ◦PP ◦ = PP ◦;

(iv) every reflexive relation F in E , F ◦F = FF ◦ ∈ Equiv(X);

(v) every reflexive and positive relation in E is an equivalence relation.

Let us begin with the following observation:

Proposition 2.4. Let E be an equivalence distributive Goursat categories.

(1) The Little Pappian Theorem holds true in E when Si is a reflexive relation and R
and T are equivalence relations.

(2) The scheme-1 holds true in E when S is a reflexive relation and R and T are
equivalence relations.

Proof. The proof of this result is based on that of Proposition 5.3 in [12] which claims
that a Goursat category satisfies the Shifting Lemma, 2-scheme and 3-scheme when S is
a reflexive relation and R and T are equivalence relations.
We prove (1). Let R and T be equivalence relations and let Si be a reflexive relation on
an object X such that R ∧ Si 6 T . Suppose that x, y, z, u, x′, y′, z′ are elements in X
related as in (1.1). We are going to show that (x′, y′) ∈ T .
We apply 2-scheme to
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We now apply the Shifting Lemma to
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Next we apply 2-scheme to

z′

R T
T

z
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x

We now apply the Shifting Lemma to

x
S2

R

x′

R T

z′

T

S2
u

It follows that,(x′, u), (u, z) ∈ T and (z, z′), (z′, x) ∈ T , (x, y′) ∈ T . We conclude
that x′Ty′ (T is transitive), as desired. �

We are now ready to prove the main result in this section:

Theorem 2.5. Let E be a regular category. The following conditions are equivalent:

(1) E is an equivalence distributive Goursat category;

(2) the Little Pappian Theorem holds true in E when Si is a reflexive relation and R
and T are reflexive and positive relations;

(3) the scheme-1 holds true in E when S is a reflexive relation and R and T are
reflexive and positive relations.

Proof. (1) ⇒ (2) This implication follows from the fact that reflexive and positive
relations are necessarily equivalence relations in the Goursat context (Theorem 2.3) and
from Proposition 2.4.
(2) ⇒ (3) Obvious. (3) ⇒ (1) We shall prove that for any reflexive relation E on X in
E , EE◦ = E◦E (see Theorem 2.3 (iv)). Suppose that (x, y) ∈ EE◦. Then, for some z in
X , one has that (z, x) ∈ E and (z, y) ∈ E. Consider the reflexive and positive relations
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R = EE◦ and T = E◦E, and the reflexive relation E on X . Then we have:

x
T

R
y

y y
R
T

z
E

y
R

E

z
T

E

to conclude that (x, y) ∈ E◦E. Having proved that EE◦ 6 E◦E for every reflexive
relation E, the equality EE◦ = E◦E follows immediately.

�

3 Locally Anticommutative Categories

The fibration of points π : Pt(E) → E classifies many central notions in categorical
algebra, such as, Mal’tsev categories:a finitely complete category E is Mal’tsev if
and only if every fibre PtE(X) of the fibration of points is unital, strongly unital or
subtractives [3].

Definition 3.1. [15] A category E is locally anticommutative if for any object X in E ,
the category PtE(X) is anticommutative.

Proposition 3.2. If D is any finitely complete category which satisfies the n-scheme and
U : E → D is any conservative functor (i.e., reflects isomorphisms) which preserves
pullbacks and equalizers, then E satisfies the n-scheme.

Note that the assumptions on the functor U imply that it preserves monomorphisms,
and that if R is an equivalence relation in E , then U(R) the relation obtained by applying
U to the representative of R is an equivalence relation in D.

Proof. Let R,S, T are equivalence relations on an object X in E such that R ∧ S 6 T

and for x, y, z1, · · · , zn are related such that

〈x, y〉 ∈ R, 〈x, z1〉 ∈ S, 〈z1, z2〉 ∈ T, 〈z2, z3〉 ∈ S, · · · , 〈zn−1, y〉 ∈ S
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for n odd and 〈zn−1, y〉 ∈ T for n even. Then we are required to show that xTy, which
is equivalent to showing that in the pullback diagram

P
p1 //

p2
��

T

t
��

R
〈x,y〉
// X ×X

p2 is an isomorphism. Applying U to the diagram above, we obtain a pullback diagram
in D. The assumptions on U easily imply that the canonical morphism U(X × X) →
U(X) × U(X) is a monomorphism, which implies that (U(P ), U(p1), U(p2)) form a
pullback of U(t) along (U(x), U(y)). Since

〈U(x), U(y)〉 ∈ U(R), 〈U(x), U(z1)〉 ∈ U(S), 〈U(z1), U(z2)〉 ∈ U(T ),

〈U(z2), U(z3)〉 ∈ U(S), · · · , 〈U(zn−1), U(y)〉 ∈ U(S)

for n odd and 〈U(zn−1), U(y)〉 ∈ U(T ) for n even. Since D satisfies the n-scheme
(U(x), U(y)) factors through T , which implies that U(p2) is an isomorphism, so that p2
is an isomorphism since U reflects isomorphisms. �

Corollary 3.3.

(i) If E is a finitely complete category which satisfies the n-scheme, then so does E ↓ X
and X ↓ E for any object X . In particular, it follows that PtE(X) satisfies the
n-scheme if E does.

(ii) Every finitely complete category E satisfying the n-scheme is locally
anticommutative.

Proof. The proof follows from the fact that the codomain-assigning functor X ↓ E → E
and the domain-assigning functors E ↓ X → E and PtC(X) → E satisfy the conditions
of Proposition 3.2. �

Proposition 3.4. If D is any finitely complete category which satisfies the the scheme-1
and U : E → D is any conservative functor (i.e., reflects isomorphisms) which preserves
pullbacks and equalizers, then E satisfies the scheme-1.
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Proof. Let R,S, T are equivalence relations on an object X in E such that R ∧ S 6 T

and for x, y, z, x′, u, y′, z′ are related as follows

x′
R

z′

y′ u
R

T

z
S

y
R

S

x
T

S

we show that x′Ty′.
We apply Proposition 3.2 (3-scheme) to

x′
R

S

T

z′
S
z

Tx

Next, We apply Proposition 3.2 (2-scheme) to

y′
R

S

u

T

y

T

It follows that,(x′, z′) ∈ T, (z′, y) ∈ T and (y, y′) ∈ T , we conclude that x′Ty′ (T is
transitive), as desired. �

Corollary 3.5.

(i) If E is a finitely complete category which satisfies the scheme-1, then so does E ↓ X
and X ↓ E for any object X . In particular, it follows that PtE(X) satisfies the the
scheme-1 if E does.

(ii) Every finitely complete category E satisfying the the scheme-1 is locally
anticommutative.
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