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Abstract

In this paper, by linearly combining the numerator and denominator terms

of the Dai-Liao (DL) and Bamigbola-Ali-Nwaeze (BAN) conjugate gradient

methods (CGMs), a general form of DL-BAN method has been proposed.

From this general form, a new hybrid CGM, which was found to possess a

sufficient descent property is generated. Numerical experiment was carried

out on the new CGM in comparison with four existing CGMs, using some

set of large scale unconstrained optimization problems. The result showed a

superior performance of new method over majority of the existing methods.

1 Introduction

No investor wants to go for investment without returns or with high risk; hence

the need for decision making. Optimization is central to any problem involving

decision making which arises from the fields of Engineering, Economics, Science,

etc. It entails choosing the best out of various alternatives (Chong and Zak [3]). A

way to handle this kind of problem involves solving an unconstrained optimization

problem of the form:

minf(x), x ∈ Rn (1)

Problems of the form (1) arise in many theoretical fields because most of the

optimization problems can be reduced to an unconstrained optimization problem
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(Mangasarian [11]). The CGM is a computational scheme for solving the

unconstrained minimization problem (1). The first CGM was developed in 1952

by Hestenes and Stiefel as an algorithm for solving algebraic equations, which

was later applied to nonlinear unconstrained optimization problems as reported

by Fletcher and Reeves in 1964. Since then, the CGM has been an area of active

research. Out of the many iterative methods for solving (1), the CGM is very

popular due to the simplicity of its analysis, its low memory requirements and its

ease of implementation. The iterative scheme is given by:

xk+1 = xk + αkdk, k = 0, 1, 2, ... (2)

where xk is the kth solution iterate to (1), αk > 0 denotes the step size, usually

obtained by a line search and dk, given by

dk =

−gk if k = 0

−gk + βkdk−1 if k ≥ 1
(3)

is the search direction, gk = ∇f(xk) is the gradient and βk is a scalar known as

the conjugate update parameter. Different choices of βk has resulted in different

CGMs. Some well known classical CGMs, developed by Hestenes and Stiefel [9],

Fletcher and Reeves [7], Fletcher [8], Dai and Liao [4] and Bamigbola et al. [2]

are:

βHS
k =

gTk yk−1

dTk−1yk−1
, βFR

k =
‖gk‖2

‖gk−1‖2
, βCD

k =
‖gk‖2

−dTk−1gk−1
, (4)

βDL
k =

gTk (yk−1 − tsk−1)
dTk−1yk−1

, and βBAN
k =

−gTk yk−1
gTk−1yk−1

. (5)

In the classical methods (4 - 5), we have yk−1 = gk−gk−1, t > 0, sk−1 = xk−xk−1
and || . || stands for the Euclidean norm.

To any CGM, the determination of the search direction dk and the step size αk is

very important. A careful choice of the line search strategy is needed to obtain

a descent direction (Nocedal [13]). Basically, two types of line search are used in

computing αk, namely the exact and inexact line search rules. By the exact line

search, αk is computed such that:

αk = argmin{f(xk + αdk);α ≥ 0} (6)
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This approach is expensive in terms of evaluating the function and gradient. The

limitation of the exact line search led researchers to the use of inexact line search,

where αk is computed numerically by ensuring a reasonable reduction in the value

of the objective function at a minimal cost. One of the most popular inexact line

search is the StrongWolfe line search given by:

f(xk)− f(xk + αkdk) ≥ −δαkg
T
k dk (7)

and

|g(xk + αkdk)Tdk| ≤ σ|gTk dk| (8)

with 0 ≤ δ ≤ σ ≤ 1. It is required that the search direction, dk satisfy:

gTk dk < 0, ∀k ≥ 0 (9)

which guarantees a descent direction of f(x) at xk.

A class of CGMs known as hybrid CGMs, which are modifications of the classical

CGMs have been proposed by various authors. This is due to the part it plays

in achieving better computational performance as well as retaining the strong

global convergence of the methods involved (Li and Zhao [10]). By taking into

consideration the convex combination of the numerators and denominators of the

update parameters of Fletcher-Reeves and Hestenes-Stiefel methods, Nazareth

[12] proposed a two-parameter family of CGMs. Dai and Liao [4] extended this

by adding one more parameter, where their three-parameter family included six

standard CGMs. By forming a linear combination of the update parameters

of the Dai-Yuan and Hestenes-Stiefel methods and that of Fletcher-Reeves and

Polak-Ribiere-Polyak methods, Xu and Kong [15] proposed two new hybrid

CGMs, with the aid of the generalized Wolfe line search. Recently, Osinuga and

Olofin [14] presented an extended hybrid CGM which was proved to be globally

convergent with Armijo-type line search, while Djordjevic [5] proposed another

new CGM by a convex combination of the update parameters of Liu-Storey and

Fletcher-Reeves methods.
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Desirous to generate many methods by varying coefficients from a linear

combination of the numerator and denominator terms of the update parameters

of DL and BAN methods, this paper presents a new CGM.

2 The New Method

By linearly combining the update parameters of DL and BAN methods, the

following general form of the DL-BAN method is proposed:

βDB
k =

λ1g
T
k yk−1 + λ2tg

T
k Sk−1

ω1dTk−1yk−1 + ω2gTk−1yk−1
, (10)

where λi, ωi ∈ < and t > 0. Taking λ1 = 1, λ2 = −1, ω1 = 1, and ω2 = 0, we have

βDL
k and by taking λ1 = −1, λ2 = 0, ω1 = 0, and ω2 = 1, we have βBAN

k . Thus,

several new methods can be generated from (10) by varying the values of λi and

ωi. Therefore, taking λ1 = 0, λ2 = 1, ω1 = 0, and ω2 = 1 and t = 1 from (10), a

new hybrid of DL and BAN methods is proposed in this paper and it is given by:

βNM
k =

gTk sk−1

gTk−1yk−1
(11)

The following Algorithm is used to implement the NM CG method

Algorithm 2.1

Step 1: Choose ε = 10−6 and x0 ∈ <n, set k := 0

Step 2: Stop if ‖gk‖ ≤ ε
Step 3: Compute βk based on (11)

Step 4: Compute dk by (3)

Step 5: Compute αk by (7) and (8)

Step 6: Update a new point by (2)

Step 7: Set k := k + 1, and return to step 2.
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3 Sufficient Descent Analysis of βNMk Method

The sufficient descent analysis of βNM
k shall be carried out based on the following

lemmas

Lemma 3.1. In the Conjugate Gradient Method,

gTi dk = 0, k = i− 1 (12)

Proof. See Chong and Zak ([3]; Lemma 10.2, pp. 174-176) for the proof.

Lemma 3.2. The new CG method βNM
k satisfy the sufficient descent condition,

i.e.,

gTk dk ≤ −c ‖gk‖
2 , 0 < c ≤ 1. (13)

Proof. By (3) and (11),

gTk dk = −gTk gk + βNM
k gTk dk−1 = −gTk gk +

gTk sk−1

gTk−1yk−1
gTk dk−1.

Let the second term be expressed in the form uT v ≤ 1
2(‖u‖2 + ‖v‖2) by making

u = 2√
5
gk, v =

√
5
2

sk−1g
T
k dk−1

gTk−1yk−1
and applying Lemma 3.1, we have:

gTk dk ≤ −‖gk‖2 +
1

2

∥∥∥∥ 2√
5
gk

∥∥∥∥2 +

∥∥∥∥∥
√

5

2

sk−1g
T
k dk−1

gTk−1yk−1

∥∥∥∥∥
2
 ,

≤ 1

2

[
4

5
‖gk‖2 +

5

4

‖sk−1‖2 (gTk dk−1)
2(

gTk−1yk−1
)2

]
,

≤ −‖gk‖2 +
2

5
‖gk‖2

≤ −3

5
‖gk‖2

Therefore, βNM
k method satisfies (13) with c = 3

5 .
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4 Numerical Consideration

In this section, a report of the numerical experiment carried out on the new CGM,

using a set of large-scale unconstrained minimization problems, taken from Andrei

[1], is presented.

4.1 Computational details

A total of 27 unconstrained optimization problems, each of dimensions 5000 and

10000, were solved using the Strong Wolfe line search. The iterations were

terminated when ‖gk‖ ≤ 10−6, and a failure declared if this condition was not

satisfied after 2000 iterations. The nonlinear conjugate gradient algorithm (CGA)

was written in Matlab codes and run on a PC with 2.16 GHz processor, 4GB Ram

and Windows 10 operating system.

4.2 Presentation of numerical results

The numerical results obtained for the new method in comparison with four

existing CGMs are presented in Tables 1-2. In tabulating the numerical results,

the following notations were used:

Dim - Dimension; NM- new method; CD - Conjugate Descent

method; F - Failed; Itr - Iteration; HS - Hestenes-Stiefel method; DL

- Dai-Liao method; BAN - Bamigbola-Ali-Nwaeze method; ‖g(x∗)‖
- norm of gradient of the objective function at iteration x∗; Cpu -

computational time.

The performance profile of Dolan and More [6] was adopted to compare the new

method with the four existing CGMs. For each method, a fraction P (τ) of the

problems for which the method is within a factor τ of the best time is plotted as

shown in Figures 1 and 2. The vertical axis to the left hand side of the curves

gives the percentage of the test problems for which a method is the fastest. The

percentage of the problems solved successfully for each method, based on the

number of iterations and the CPU time, are as follows: 56.6% for NM , 49.1% for

BAN , 50.9% for HS, 41.5% for CD, and 83.0% for DL methods.
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The figures indicate that, based on the number of iterations and the CPU time,

the NM method is the next in performance after the DL method, with the CD

method as the least performer. This shows that the new method is ranked second

out of five methods, thus competing favourably with the existing methods.

Figure 1: Performance profile for CPU time.

Figure 2: Performance profile for number of iterations.
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Table 1: Numerical Results for NM, BAN and DL Methods
NM BAN DL

Test problems Dim ‖g(x∗)‖ Iter cpu ‖g(x∗)‖ Iter cpu ‖g(x∗)‖ Iter cpu

Arwhead 5000 F F F 6.12E-07 85 1.996 4.74E-07 163 3.565

10000 F F F F F F 9.01E-07 193 7.976

Diagonal 4 5000 7.30E-07 44 2.208 4.90E-07 30 0.551 F F F

10000 7.11E-07 45 2.642 6.93E-07 30 1.306 F F F

Diagonal 5 5000 2.46E-07 19 0.867 2.64E-19 7 0.095 1.97E-09 5 0.078

10000 8.09E-07 33 2.049 1.24E-19 7 0.167 2.79E-09 5 0.139

Extended Beale 5000 9.01E-07 1223 137.086 F F F F F F

10000 9.94E-07 1243 218.033 F F F F F F

Extended Block Diagonal 5000 9.70E-07 31 1.86 F F F 9.37E-07 43 0.969

10000 5.57E-07 41 2.913 F F F 9.03E-07 36 1.155

Extended Powell 5000 F F F F F F 8.42E-07 177 10.937

10000 F F F 4.46E-07 329 22.263 F F F

Extended Rosenbrock 5000 9.84E-07 260 9.78 F F F F F F

10000 7.91E-07 239 12.755 F F F F F F

Extended Tridiagonal-1 5000 F F F F F F 9.96E-07 48 1.042

10000 F F F F F F 9.30E-07 50 1.244

Generalized Tridiagonal-1 5000 8.62E-07 155 9.917 6.17E-07 407 8.29 8.32E-07 159 3.087

10000 7.35E-07 155 12.967 6.11E-07 406 16.111 5.36E-07 289 14.705

Generalized White and Holst 5000 7.51E-07 163 10.892 F F F 9.97E-07 80 2.566

10000 7.51E-07 163 18.046 F F F 9.97E-07 80 5.861

Hager 5000 9.58E-07 11 1.281 F F F 1.54E-09 9 0.307

10000 1.15E-14 13 1.533 F F F 1.46E-09 8 0.367

Modified Extended Beale 5000 F F F 7.23E-07 367 17.898 1.17E-07 31 3.236

10000 F F F 7.70E-07 1067 101.431 8.24E-07 95 15.635

RMODF COSINE 5000 F F F F F F 5.04E-07 17 0.324

10000 F F F 9.88E-07 19 0.718 7.12E-07 17 0.485

Staircase1 5000 0.00E+00 1 0.039 0.00E+00 1 0.018 0.00E+00 1 0.012

10000 0.00E+00 1 0.032 0.00E+00 1 0.022 0.00E+00 1 0.018

Staircase2 5000 7.29E-08 23 0.922 F F F 0.00E+00 3 0.038

Diagonal 9 5000 F F F F F F 9.87E-07 194 2.961

10000 F F F F F F 3.06E-07 80 2.712

Extended MCCORMCK 5000 F F F 9.33E-07 121 1.219 3.14E-07 56 0.732

10000 F F F 7.34E-07 195 2.783 5.60E-07 43 1.245

Extended DENSCHNB 5000 4.87E-07 19 0.46 8.74E-07 28 0.405 3.14E-07 28 0.332

10000 6.88E-07 19 0.558 4.69E-07 29 0.744 4.44E-07 28 0.59

Full Hessian FH3 5000 3.51E-07 20 1.7 F F F 1.34E-11 4 0.111

10000 5.92E-07 34 4.262 F F F 1.39E-11 4 0.218

Generalized PSC1 5000 F F F F F F 7.17E-07 793 12.608

10000 F F F F F F 8.59E-07 744 18.092

MDF EXPLIN 1 5000 3.68E-07 18 1.267 8.90E-07 147 1.246 1.13E-09 5 0.055

10000 9.54E-07 40 6.691 F F F 1.59E-09 5 0.087

MODF COSINE 5000 F F F F F F 7.98E-09 3 0.042

10000 F F F F F F 1.41E-09 3 0.066

MODF SINE 5000 1.76E-07 1 0.048 1.76E-07 1 0.018 1.76E-07 1 0.022

10000 6.23E-08 1 0.047 6.23E-08 1 0.031 6.23E-08 1 0.034

NONSCOMP 5000 F F F 9.63E-07 53 0.917 1.32E-05 F F

10000 F F F 2.58E-07 76 3.684 5.82E-06 F F

QUARTC 5000 0.00E+00 1 0.037 0.00E+00 1 0.018 0.00E+00 1 0.019

10000 0.00E+00 1 0.042 0.00E+00 1 0.033 0.00E+00 1 0.034

RMDF GENHUMPS 5000 1.98E-07 18 1.445 F F F 9.35E-09 10 0.139

10000 F F F F F F 1.32E-08 10 0.236

RMDF SINE 5000 F F F 7.76E-07 116 0.82 1.55E-08 7 0.08

10000 F F F 8.20E-07 118 1.648 2.19E-08 7 0.137
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Table 2: Numerical Results for HS and CD Methods
HS CD

Test problems Dim ‖g(x∗)‖ Iter cpu ‖g(x∗)‖ Iter cpu

Arwhead 5000 2.97E-07 69 1.595 F F F

10000 8.10E-07 62 3.357 F F F

Diagonal 4 5000 F F F 1.95E-07 24 0.535

10000 F F F 2.78E-07 24 0.806

Diagonal 5 5000 F F F 5.20E-07 17 0.22

10000 F F F 7.36E-07 17 0.394

Extended Beale 5000 F F F F F F

10000 F F F F F F

Extended Block Diagonal 5000 9.99E-07 882 16 F F F

10000 F F F F F F

Extended Powell 5000 F F F F F F

10000 6.07E-07 382 25.599 F F F

Extended Rosenbrock 5000 F F F F F F

10000 F F F F F F

Extended Tridiagonal-1 5000 F F F F F F

10000 F F F F F F

Generalized Tridiagonal-1 5000 5.98E-07 214 4.661 3.59 F F

10000 6.51E-07 166 6.394 3.599 F F

Generalized White and Holst 5000 8.43E-07 80 2.268 195.87 F F

10000 8.43E-07 80 4.668 195.87 F F

Hager 5000 F F F 8.33E-109 22 0.647

10000 F F F F F F

Modified Extended Beale 5000 6.85E-07 115 7.095 5.56E+01 F F

10000 8.40E-07 66 12.387 7.87E+01 F F

RMODF COSINE 5000 8.60E-07 92 0.96 6.76E-07 39 1.051

10000 3.73E-07 47 2.002 7.98E-07 38 0.562

Staircase1 5000 0.00E+00 1 0.011 0.00E+00 1 0.011

10000 0.00E+00 1 0.016 0.00E+00 1 0.017

Staircase2 5000 F F F 7.57E-07 26 0.402

Diagonal 9 5000 F F F F F F

10000 F F F F F F

Extended MCCORMCK 5000 4.39E-07 575 5.162 F F F

10000 F F F F F F

Extended DENSCHNB 5000 5.72E-07 19 0.568 F F F

10000 9.11E-07 63 1.323 F F F

Full Hessian FH3 5000 F F F 7.04E-07 18 0.605

10000 F F F 1.84E-07 46 2.774

Generalized PSC1 5000 1.00E-06 1408 42.258 2.9158 F F

10000 9.96E-07 1724 91.176 6.3358 F F

MDF EXPLIN 1 5000 F F F 9.40E-07 41 0.3

10000 F F F 8.87E-07 42 0.44

MODF COSINE 5000 4.41E-03 F F 8.26E-07 72 0.685

10000 3.12E-03 F F 9.94E-07 74 0.886

MODF SINE 5000 1.76E-07 1 0.018 1.76E-07 1 0.024

10000 6.23E-08 1 0.03 6.23E-08 1 0.033

NONSCOMP 5000 8.84E-07 126 2.051 2.45E+02 F F

10000 7.36E-07 59 1.885 4.66E+02 F F

QUARTC 5000 0.00E+00 1 0.025 0.00E+00 1 0.019

10000 0.00E+00 1 0.037 0.00E+00 1 0.032

RMDF GENHUMPS 5000 F F F F F F

10000 F F F F F F

RMDF SINE 5000 4.22E-07 69 0.81 2.64E-07 10 0.108

10000 4.57E-07 42 1.039 3.74E-07 10 0.169
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5 Conclusion

In this paper, a general form of the DL-BAN CGM was proposed by forming

a linear combination of numerator and denominator terms in the two existing

classical CGMs. This approach is capable of producing many new methods,

which can be obtained by the different arrangements of the coefficients in the

DL-BAN update parameter. A new hybrid CGM has been generated from this

general form which has been shown to possess a desirable feature, such as the

satisfaction of the sufficient descent condition, which is very vital to the global

convergence of the method.

A numerical test of the new method in comparison with four existing classical

CGMs, confirmed that the new CGM is capable of superior computational

performance over a larger number of the existing methods, with respect to the

number of iterations and the CPU time. This result is indicative that it is very

probable to generate other CGMs from (10) that are computationally optimal

in efficiency. Hence, there is a need to explore the DL-BAN CGM for the best

possible classical CGM.
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