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Abstract

The aim of this paper is to introduce the concept of coupled anti fuzzy

subrings by using t-conorm C. By using t-conorm C; we consider the

relationship between coupled subrings and coupled anti fuzzy subrings and

we prove that the intersection of two coupled anti fuzzy subrings are also

coupled anti fuzzy subring. Also we obtain some results for coupled anti

fuzzy subrings under the ring homomorphisms. Finally, we show that the

quotient of coupled anti fuzzy subring is also a coupled anti fuzzy subring

with respect to t-conorm C. Our work is inspired by [1].

1 Some Old and New Notions and Notations

Definition 1.1. Let X be a set. A fuzzy subset of X × X will be a function

from X ×X into [0, 1]. The set of all fuzzy subsets of X ×X will be called the

[0, 1]-power set of X ×X, and will be denoted by [0, 1]X×X .

Definition 1.2. [2] A t-conorm C is a function C : [0, 1] × [0, 1] 7→ [0, 1] having

the following four properties:

(a) C(x, 0) = x,

(b) C(x, y) ≤ C(x, z), if y ≤ z

(c) C(x, y) = C(y, x),
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(d) C(x,C(y, z)) = C(C(x, y), z)

for all x, y, z ∈ [0, 1].

Example 1.3. The basic t-conorms are standard union, Cm(x, y) = max{x, y}.
Bounded sum, Cb(x, y) = min{1, x+ y}, and algebraic sum, Cp(x, y) = x+ y−xy
for all x, y ∈ [0, 1].

Definition 1.4. The t-conorm C is called idempotent if for all x ∈ [0, 1], C(x, x) =

x.

Lemma 1.5. [3] Let C be a t-conorm. Then

C(C(x, y), C(w, z)) = C(C(x,w), C(y, z))

for all x, y, z, w ∈ [0, 1].

Definition 1.6. (Compare with [4]) Let f be a mapping from ring R into S,

µ ∈ [0, 1]R×R, β ∈ [0, 1]S×S . Define f(µ) ∈ [0, 1]S×S and f−1(β) ∈ [0, 1]R×R such

that for all (y, v) ∈ S × S, if f−1(y), f−1(v) 6= ∅, then

f(µ)(y, v) = sup{µ(x,m)|(x,m) ∈ R×R, f(x) = y, f(m) = v}.

If f−1(y), f−1(v) = ∅, then

f(µ)(y, v) = 0.

Theorem 1.7. (Compare with [5]) Let R be a ring. A nonempty subset S of

R ×R is a coupled subring of R ×R iff (x− y,m− v) ∈ S and (xy,mv) ∈ S for

all (x,m), (y, v) ∈ S.

Definition 1.8. (Compare with [5]) Let R be a ring, and I be a nonempty subset

of R × R. We say I is a left(right) ideal of R × R if for all (x,m), (y, v) ∈ I and

for all r ∈ R, (x− y,m− v) ∈ I, (rx, rm) ∈ I[(x− y,m− v) ∈ I, (xr,mr) ∈ I].

Definition 1.9. Let R be a ring, and µ be a fuzzy subset of R×R. We say µ is

an anti fuzzy subring of R×R under a t-conorm C iff for all (x,m), (y, v) ∈ R×R,

we have the following
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(a) µ(x− y,m− v) ≤ C[µ(x,m), µ(y, v)];

(b) µ(xy,mv) ≤ C[µ(x,m), µ(y, v)].

Notation 1.10. By AF (R × R) we mean the set of all anti fuzzy subrings of

R×R under t-conorm C.

Definition 1.11. Let µ1, µ2 ∈ AF (R × R) and (x,m) ∈ R × R. We define the

following

(a) µ1 ⊆ µ2 iff µ1(x,m) ≤ µ2(x,m);

(b) µ1 = µ2 iff µ1(x,m) = µ2(x,m);

(c) (µ1 ∩ µ2)(x,m) = C[µ1(x,m), µ2(x,m)].

Remark 1.12. By (c) and (d) of Definition 1.2, we also have

(a) µ1 ∩ µ2 = µ2 ∩ µ1;

(b) µ1 ∩ µ2 ∩ µ3 = (µ1 ∩ µ2) ∩ µ3 = µ1 ∩ (µ2 ∩ µ3).

Definition 1.13. Let R be a ring, I be an ideal of R and µI ∈ AF (R × R). If

x 6= i,m 6= j, define µ : R×R
I 7→ [0, 1] by µ(x + I,m + I) = C[µI(x,m), µI(i, j)],

and if x = i,m = j, define µ : R×R
I 7→ [0, 1] by µ(x + I,m + I) = 1, for all

(x,m) ∈ R×R, i, j ∈ I.

2 Some Properties

Proposition 2.1. Let µ1, µ2 ∈ AF (R×R). Then µ1 ∩ µ2 ∈ AF (R×R).

Proof. Let (x,m), (y, v) ∈ R×R. Observe

(µ1 ∩ µ2)(x− y,m− v) = C[µ1(x− y,m− v), µ2(x− y,m− v)]

≤ C[C[µ1(x,m), µ1(y, v)], C[µ2(x,m), µ2(y, v)]]

= C[C[µ1(x,m), µ2(x,m)], C[µ1(y, v), µ1(y, v)]]

= C[(µ1 ∩ µ2)(x,m), (µ1 ∩ µ2)(y, v)].
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Also

(µ1 ∩ µ2)(xy,mv) = C[µ1(xy,mv), µ2(xy,mv)]

≤ C[C[µ1(x,m), µ1(y, v)], C[µ2(x,m), µ2(y, v)]]

= C[C[µ1(x,m), µ2(x,m)], C[µ1(y, v), µ1(y, v)]]

= C[(µ1 ∩ µ2)(x,m), (µ1 ∩ µ2)(y, v)].

It follows that µ1 ∩ µ2 ∈ AF (R×R).

Proposition 2.2. Let µ ∈ AF (R×R) and C be idempotent. Then for all t ∈ [0, 1],

Rt = {(x,m) ∈ R×R|µ(x,m) ≤ t} is a coupled subring of R×R.

Proof. Let (x,m), (y, v) ∈ Rt. Then

µ(x− y,m− v) ≤ C[µ(x,m), µ(y, v)]

≤ C(t, t)

= t

which implies (x− y,m− v) ∈ Rt. Also

µ(xy,mv) ≤ C[µ(x,m), µ(y, v)]

≤ C(t, t)

= t

which implies (xy,mv) ∈ Rt. Thus Rt is a coupled subring of R×R.

Proposition 2.3. Let R be a ring, and µ be a fuzzy subset of R × R, and C be

idempotent, such that for all (x,m), (y, v) ∈ R×R, and r ∈ R, µ(x− y,m− v) ≤
C[µ(x,m), µ(y, v)] and µ(rx, rm) ≤ µ(x,m). Then

(a) µ(0, 0) ≤ µ(x,m), for all (x,m) ∈ R×R;

(b) µ(x,m) = µ(−x,−m), for all (x,m) ∈ R×R;

(c) For all t ∈ [0, 1], Rt = {(x,m) ∈ R×R|µ(x,m) ≤ t} is a left ideal of R×R;
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(d) R0 = {(x,m) ∈ R×R|µ(x,m) = µ(0, 0)} is a left ideal of R×R.

Proof. Let (x,m) ∈ R×R.

(a): µ(0, 0) = µ(x− x,m−m) ≤ C[µ(x,m), µ(x,m)] = µ(x,m).

(b):

µ(x,m) = µ(0− (−x), 0− (−m))

≤ C[µ(0, 0), µ(−x,−m)]

≤ C[µ(−x,−m), µ(−x,−m)]

= µ(−x,−m)

= µ(0− x, 0−m)

≤ C[µ(0, 0), µ(x,m)]

≤ C[µ(x,m), µ(x,m)]

= µ(x,m).

So µ(x,m) = µ(−x,−m).

(c): If (x,m), (y, v) ∈ Rt, r ∈ R, then, µ(x − y,m − v) ≤ C[µ(x,m), (y, v)] ≤
C[t, t] = t and µ(rx, rm) ≤ C[µ(rx, rm), µ(rx, rm)] ≤ C[µ(x,m), µ(x,m)] ≤
C[t, t] = t. So, (x− y,m− v), (rx, rm) ∈ Rt, thus Rt is a left ideal of R×R.

(d): If (x,m), (y, v) ∈ R0, r ∈ R, then, µ(x − y,m − v) ≤ C[µ(x,m), (y, v)] ≤
C[µ(0, 0), µ(0, 0)] = µ(0, 0) and µ(rx, rm) ≤ C[µ(rx, rm), µ(rx, rm)] ≤
C[µ(x,m), µ(x,m)] ≤ C[µ(0, 0), µ(0, 0)] = µ(0, 0). So, (x − y,m − v), (rx, rm) ∈
R0, thus R0 is a left ideal of R×R.

Proposition 2.4. Let µ ∈ AF (R×R) and C be idempotent. Then µ(x− y,m−
v) = µ(−y,−v) iff µ(x,m) = µ(0, 0) for all (x,m), (y, v) ∈ R×R.

Proof. Let (x,m), (y, v) ∈ R × R and µ(x − y,m − v) = µ(−y,−v). By letting

y = v = 0, we get µ(x,m) = µ(0, 0). Conversely, suppose that µ(x,m) = µ(0, 0).
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Then from the previous Proposition µ(x,m) ≤ µ(x− y,m− v), µ(−y,−v). Now

µ(x− y,m− v) ≤ C[µ(x,m), µ(y, v)]

≤ C[µ(−y,−v), µ(y, v)]

= C[µ(−y,−v), µ(−y,−v)]

= µ(−y,−v)

= µ(x− y − x,m− v −m)

≤ C[µ(x− y,m− v), µ(x,m)]

≤ C[µ(x− y,m− v), µ(x− y,m− v)]

= µ(x− y,m− v).

So, µ(x− y,m− v) = µ(−y,−v).

Proposition 2.5. Let µ ∈ AF (R × R) and S be a ring. Suppose that f is onto

homomorphism of R into S. Then f(µ) ∈ AF (S × S).

Proof. Let s1, s2, s3, s4 ∈ S, then there exists (x,m), (y, v) ∈ R × R such that

s1 = f(x), s2 = f(y), s3 = f(m), s4 = f(v). Now

f(µ)(s1 − s2, s3 − s4)

= sup{µ(x− y,m− v)|s1 = f(x), s2 = f(y), s3 = f(m), s4 = f(v)}

≤ sup{C[µ(x,m), µ(y, v)]|s1 = f(x), s2 = f(y), s3 = f(m), s4 = f(v)}

= C[sup{µ(x,m)|s1 = f(x), s3 = f(m)}, sup{µ(y, v)|s2 = f(y), s4 = f(v)}]

= C[f(µ)(s1, s3), f(µ)(s2, s4)].

Also

f(µ)(s1s2, s3s4)

= sup{µ(xy,mv)|s1 = f(x), s2 = f(y), s3 = f(m), s4 = f(v)}

≤ sup{C[µ(x,m), µ(y, v)]|s1 = f(x), s2 = f(y), s3 = f(m), s4 = f(v)}

= C[sup{µ(x,m)|s1 = f(x), s3 = f(m)}, sup{µ(y, v)|s2 = f(y), s4 = f(v)}]

= C[f(µ)(s1, s3), f(µ)(s2, s4)].

Therefore, f(µ) ∈ AF (S × S).
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Proposition 2.6. Let S be a ring, and β ∈ AF (S×S). If f is a homomorphism

of R into S, then f−1(β) ∈ AF (R×R).

Proof. Let (x,m), (y, v) ∈ R×R. Observe

f−1(β)(x− y,m− v) = β(f(x− y), f(m− v))

= β(f(x)− f(y), f(m)− f(v))

≤ C[β(f(x), f(m)), β(f(y), f(v))]

= C[f−1(β)(x,m), f−1(β)(y, v)].

Also

f−1(β)(xy,mv) = β(f(xy), f(mv))

= β(f(x)f(y), f(m)f(v))

≤ C[β(f(x), f(m)), β(f(y), f(v))]

= C[f−1(β)(x,m), f−1(β)(y, v)].

So, f−1(β) ∈ AF (R×R).

Proposition 2.7. Let R be a ring, and I be an ideal of R. If C is idempotent,

then µ ∈ AF
(

R×R
I

)
.

Proof. Let (x+ I,m+ I), (y+ I, v+ I) ∈ R×R
I , and i, j ∈ I, and µI ∈ AF (R×R)

such that x 6= i 6= y, m 6= j 6= v. Observe

µ[(x+ I)− (y + I), (m+ I)− (v + I)]

= µ[(x− y) + I, (m− v) + I]

= C[µI(x− y,m− v), µI(i, j)]

≤ C[C[µI(x,m), µI(y, v)], µI(i, j)]

= C[C[µI(x,m), µI(y, v)], C[µI(i, j), µI(i, j)]]

= C[C[µI(x,m), µI(i, j)], C[µI(y, v), µI(i, j)]]

= C[µ(x+ I,m+ I), µ(y + I, v + I)].
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Also

µ[(x+ I)(y + I), (m+ I)(v + I)] = µ[xy + I,mv + I]

= C[µI(xy,mv), µI(i, j)]

≤ C[C[µI(x,m), µI(y, v)], µI(i, j)]

= C[C[µI(x,m), µI(y, v)], C[µI(i, j), µI(i, j)]]

= C[C[µI(x,m), µI(i, j)], C[µI(y, v), µI(i, j)]]

= C[µ(x+ I,m+ I), µ(y + I, v + I)].

Finishing the proof.

3 An Open Problem

We begin by introducing the following

Definition 3.1. Let R and S be two rings such that µ ∈ AF (R × R) and β ∈
AF (S ×S). The direct product of µ and β, denoted by µ× β, is the fuzzy subset

of ring R2 × S2 such that for all (x,m) ∈ R×R and (y, v) ∈ S × S, we have

(µ× β)[(x,m), (y, v)] = C[µ(x,m), β(y, v)].

Conjecture 3.2. If µI ∈ AF (Ri×Ri) for i = 1, 2, then µ1×µ2 ∈ AF (R2
1×R2

2).

Conjecture 3.3. Let µi ∈ AF (Ri ×Ri) for i = 1, 2, · · · , n. Then

µ1 × µ2 × · · · × µn ∈ AF (R2
1 ×R2

2 × · · · ×R2
n).
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