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Abstract

Inequalities involving hyperbolic functions have been the subject of intense
discussion in recent times. In this work, we establish harmonic mean
inequalities for these functions. This complements the results known in the
literature. The techniques adopted in proving our results are analytical in
nature.

1 Introduction

In 1974, Gautschi [9] established that for z > 0, the harmonic mean of Γ(z) and
Γ(1/z) is always greater than or equal to 1, where Γ(z) is the classical gamma
function. That is,

2Γ(z)Γ(1/z)
Γ(z) + Γ(1/z) ≥ 1, z > 0. (1)

Owing to the importance of this elegant inequality, some refinements and
extensions have been studied. One may refer to [1], [2], [3], [4], [5], [6], [10]
and [11] for such results.

In 2017, Alzer and Jameson [7] established that

2ψ(z)ψ(1/z)
ψ(z) + ψ(1/z) ≥ −γ, z > 0 (2)

where ψ(z) is the digamma function.
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In 2018, Yin et al. [16] extended inequality (2) to the k-digamma function by
proving that

2ψk(z)ψk(1/z)
ψk(z) + ψk(1/z) ≥

ln2 k + γ2 − 2(γ + 1) ln k
k [ln k + ψ(1/k)] , z > 0, 1

3√3
≤ k ≤ 1. (3)

In 2019, Nantomah [14] posed the inequality

2β(z)β(1/z)
β(z) + β(1/z) ≤ ln 2, z > 0 (4)

as a conjecture, where β(z) is the Nielsen’s beta function [13]. Shortly thereafter,
Matejicka [12] provided a concrete proof of (4).

Lately, Yildirim [15] improved on inequality (3) by relaxing the condition on
k and proving that

2ψk(z)ψk(1/z)
ψk(z) + ψk(1/z) ≥ ψk(1), z > 0, k > 0. (5)

When k = 1, inequalities (3) and (5) both reduce to inequality (2).
Also, Bouali [8] extended inequalities (1) and (2) to the q-gamma and

q-digamma functions by proving that

2Γq(z)Γq(1/z)
Γq(z) + Γq(1/z) ≥ 1, z > 0 (6)

and
2ψq(z)ψq(1/z)
ψq(z) + ψq(1/z) ≥ ψq(1), z > 0, q ∈ (0, p0) (7)

where p0 ' 3.239945. By letting q → 1, inequalities (6) and (7) respectively
reduce to inequalities (1) and (2).

Inspired by the above works, the aim of this paper is to establish analogous
results for the hyperbolic functions.

2 Main Results

The following lemmas help us to obtain a harmonic mean inequality for the
hyperbolic sine function.
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Lemma 2.1. The inequality
z coth(z) > 1

holds for z ∈ R \ {0}.

Proof. Let g(z) = z coth(z) for z ∈ R \ {0}. Then

g′(z) = coth(z)− zcosech2(z) = cosech2(z)
2 [sinh(2z)− 2z] .

Since sinh(z) > z for z ∈ (0,∞) and sinh(z) < z for z ∈ (−∞, 0), we conclude
that the function g(z) is increasing on (0,∞) and decreasing on (−∞, 0). Thus,

g(z) > lim
z→0+

g(z) = 1

for z ∈ (0,∞) and
g(z) > lim

z→0−
g(z) = 1

for z ∈ (−∞, 0) . This completes the proof.

Lemma 2.2. The function h(z) = z coth(z)cosech(z) is decreasing for z ∈ R\{0}.

Proof. Let z ∈ (0,∞). Then by applying Lemma 2.1, we have

h′(z) = coth(z)cosech(z) [1− z coth(z)]− zcosech3(z) < 0.

By using the fact that the function h′(z) is even, we conclude that h′(z) < 0 for
z ∈ (−∞, 0) as well. Hence h(z) is decreasing for z ∈ R \ {0}.

In the following theorem, we obtain some inequalities for the harmonic mean
of sinh(z) and sinh(1/z).

Theorem 2.3. The inequality

0 < 2 sinh(z) sinh(1/z)
sinh(z) + sinh(1/z) ≤

e2 − 1
2e (8)

holds for z ∈ (0,∞) and the inequality

1− e2

2e ≤ 2 sinh(z) sinh(1/z)
sinh(z) + sinh(1/z) < 0 (9)

holds for z ∈ (−∞, 0). Equality holds in (8) and (9) if z = 1 and z = −1
respectively.
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Proof. The cases for equality are obvious. So let E(z) = 2 sinh(z) sinh(1/z)
sinh(z)+sinh(1/z) for z ∈

R \ {0} and let α(z) be defined as

α(z) = z [cosech(z) + cosech(1/z)] E
′(z)

E(z)

= z coth(z)cosech(z)− 1
z

coth(1/z)cosech(1/z).

Then by using Lemma 2.2, we get the following four cases.

(a) α(z) > 0 for z ∈ (−∞,−1),

(b) α(z) < 0 for z ∈ (−1, 0),

(c) α(z) > 0 for z ∈ (0, 1),

(d) α(z) < 0 for z ∈ (1,∞).

Since sinh(z) > 0 for z ∈ (0,∞) and sinh(z) < 0 for z ∈ (−∞, 0), we have E(z) >
0 for z ∈ (0,∞), E(z) < 0 for z ∈ (−∞, 0) and z [cosech(z) + cosech(1/z)] > 0 for
all z ∈ R. Hence

(a) α(z) > 0⇒ E′(z)
E(z) > 0⇒ E′(z) < 0 for z ∈ (−∞,−1),

(b) α(z) < 0⇒ E′(z)
E(z) < 0⇒ E′(z) > 0 for z ∈ (−1, 0),

(c) α(z) > 0⇒ E′(z)
E(z) > 0⇒ E′(z) > 0 for z ∈ (0, 1),

(d) α(z) < 0⇒ E′(z)
E(z) < 0⇒ E′(z) < 0 for z ∈ (1,∞).

Thus, the function E(z) is increasing on (−1, 0) ∪ (0, 1) and decreasing on
(−∞,−1) ∪ (1,∞). Consequently, for z ∈ (0, 1), we have

0 = lim
z→0+

E(z) < E(z) < lim
z→1−

E(z) = e2 − 1
2e

and for z ∈ (1,∞), we have

0 = lim
z→∞

E(z) < E(z) < lim
z→1+

E(z) = e2 − 1
2e .
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Hence, inequality (8) holds. Also, for z ∈ (−1, 0), we have

1− e2

2e = lim
z→−1+

E(z) < E(z) < lim
z→0−

E(z) = 0

and for z ∈ (−∞,−1), we have

1− e2

2e = lim
z→−1−

E(z) < E(z) < lim
z→−∞

E(z) = 0.

Hence, inequality (9) holds. This completes the proof of the theorem.

The following lemma is required in order to prove our next results.

Lemma 2.4. The function f(z) = zcosech2(z) is decreasing for z ∈ R \ {0}.

Proof. Since z coth(z) > 1 for all z ∈ R \ {0}, then direct computation yields

f ′(z) = [1− 2z coth(z)] cosech2(z) < 0

which completes the proof.

In the following theorem, we obtain some inequalities for the harmonic mean
of tanh(z) and tanh(1/z).

Theorem 2.5. The inequality

0 < 2 tanh(z) tanh(1/z)
tanh(z) + tanh(1/z) ≤

e2 − 1
e2 + 1 (10)

holds for z ∈ (0,∞) and the inequality

1− e2

e2 + 1 ≤
2 tanh(z) tanh(1/z)
tanh(z) + tanh(1/z) < 0 (11)

holds for z ∈ (−∞, 0). Equality holds in (10) and (11) if z = 1 and z = −1
respectively.
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Proof. The cases for equality are obvious. So let F (z) = 2 tanh(z) tanh(1/z)
tanh(z)+tanh(1/z) for

z ∈ R \ {0} and let β(z) be defined as

β(z) = z [coth(z) + coth(1/z)] F
′(z)

F (z)

= zcosech2(z)− 1
z

cosech2(1/z).

Then by applying Lemma 2.4, we obtain the following cases.

(i) β(z) > 0 for z ∈ (−∞,−1),

(ii) β(z) < 0 for z ∈ (−1, 0),

(iii) β(z) > 0 for z ∈ (0, 1),

(iv) β(z) < 0 for z ∈ (1,∞).

Since tanh(z) > 0 for z ∈ (0,∞) and tanh(z) < 0 for z ∈ (−∞, 0), we have
F (z) > 0 for z ∈ (0,∞), F (z) < 0 for z ∈ (−∞, 0) and z [coth(z) + coth(1/z)] > 0
for all z ∈ R. Moreover,

(i) β(z) > 0⇒ F ′(z)
F (z) > 0⇒ F ′(z) < 0 for z ∈ (−∞,−1),

(ii) β(z) < 0⇒ F ′(z)
F (z) < 0⇒ F ′(z) > 0 for z ∈ (−1, 0),

(iii) β(z) > 0⇒ F ′(z)
F (z) > 0⇒ F ′(z) > 0 for z ∈ (0, 1),

(iv) β(z) < 0⇒ F ′(z)
F (z) < 0⇒ F ′(z) < 0 for z ∈ (1,∞).

Thus, the function F (z) is increasing on (−1, 0) ∪ (0, 1) and decreasing on
(−∞,−1) ∪ (1,∞). Because of this, for z ∈ (0, 1), we have

0 = lim
z→0+

F (z) < F (z) < lim
z→1−

F (z) = e2 − 1
e2 + 1

and for z ∈ (1,∞), we have

0 = lim
z→∞

F (z) < F (z) < lim
z→1+

F (z) = e2 − 1
e2 + 1 .

http://www.earthlinepublishers.com



Harmonic Mean Inequalities for Hyperbolic Functions 123

Hence, inequality (10) holds. Likewise, for z ∈ (−1, 0), we have

1− e2

e2 + 1 = lim
z→−1+

F (z) < F (z) < lim
z→0−

F (z) = 0

and for z ∈ (−∞,−1), we have

1− e2

e2 + 1 = lim
z→−1−

F (z) < F (z) < lim
z→−∞

F (z) = 0.

Hence, inequality (11) holds. This completes the proof of the theorem.

In the following theorem, we obtain some inequalities for the harmonic mean
of cosh(z) and cosh(1/z).

Theorem 2.6. The inequality

e2 + 1
2e <

2 cosh(z) cosh(1/z)
cosh(z) + cosh(1/z) < k (12)

holds for z ∈ (0.161872635, 1) or z ∈ (1, 6.177696420) and the inequality

2 < 2 cosh(z) cosh(1/z)
cosh(z) + cosh(1/z) < k (13)

holds for z ∈ (0, 0.161872635) or z ∈ (6.177696420,∞). Where, k = 2.017775507.

Proof. Let G(z) = 2 cosh(z) cosh(1/z)
cosh(z)+cosh(1/z) and θ(z) = lnG(z) for z > 0 and z 6= 1. Then

θ′(z) = sinh(z)
cosh(z) −

1
z2

sinh(1/z)
cosh(1/z) −

sinh(z)− 1
z2 sinh(1/z)

cosh(z) + cosh(1/z)

which implies that

z [cosech(z) + cosech(1/z)] θ′(z) = z tanh(z)sech(z)− 1
z

tanh(1/z)sech(1/z)

= γ(z).

The function γ(z) has the roots z1 ≈ 0.161872635, z2 = 1 and z3 ≈ 6.177696420.
In addition, γ(z) < 0 if z ∈ (z1, z2) or z ∈ (z3,∞) and γ(z) > 0 if z ∈ (0, z1)
or z ∈ (z2, z3). Thus, θ′(z) < 0 if z ∈ (z1, z2) or z ∈ (z3,∞) and θ′(z) > 0 if
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z ∈ (0, z1) or z ∈ (z2, z3). As a result of these, G(z) is decreasing if z ∈ (z1, z2) or
z ∈ (z3,∞) and increasing if z ∈ (0, z1) or z ∈ (z2, z3). Then for z ∈ (z1, z2) we
have

e2 + 1
2e = G(z2) < G(z) < G(z1) = 2.017775507

which gives the inequality (12). Also, for z ∈ (z2, z3) we have

G(z2) < G(z) < G(z3) = 2.017775507

which coincides with (12). Furthermore, for z ∈ (0, z1) we have

2 = lim
z→0+

G(z) = G(0+) < G(z) < G(z1)

which gives the inequality (13). Likewise, for z ∈ (z3,∞) we have

2 = lim
z→∞

G(z) = G(∞) < G(z) < G(z3)

which agrees with (13). This completes the proof.

Remark 2.7. Since the function G(z) in Theorem 2.6 is even, inequality (12)
also holds for z ∈ (−1,−0.161872635) or z ∈ (−6.177696420,−1) and inequality
(13) also holds for z ∈ (−0.161872635, 0) or z ∈ (−∞,−6.177696420).

In the following theorem, we obtain some inequalities for the harmonic mean
of cosech(z) and cosech(1/z).

Theorem 2.8. The inequality

0 < 2cosech(z)cosech(1/z)
cosech(z) + cosech(1/z) ≤

2e
e2 − 1 (14)

holds for z ∈ (0,∞) and the inequality

2e
1− e2 ≤

2cosech(z)cosech(1/z)
cosech(z) + cosech(1/z) < 0 (15)

holds for z ∈ (−∞, 0). Equality holds in (14) and (15) if z = 1 and z = −1
respectively.
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Proof. The cases for equality are obvious. So let H(z) = 2cosech(z)cosech(1/z)
cosech(z)+cosech(1/z) for

z ∈ R \ {0}. Then

z [sinh(z) + sinh(1/z)] H
′(z)

H(z) = 1
z

cosh(1/z)− z cosh(z)

= φ(z).

Since the function z cosh(z) increasing for all real values, we conclude that φ(z) >
0 if z ∈ (−∞,−1) or z ∈ (0, 1) and φ(z) < 0 if z ∈ (−1, 0) or z ∈ (1,∞). These
imply that H(z) is increasing on (−1, 0) ∪ (0, 1) and decreasing on (−∞,−1) ∪
(1,∞). Consequently, for z ∈ (0, 1), we have

0 = lim
z→0+

H(z) < H(z) < lim
z→1−

H(z) = 2e
e2 − 1

and for z ∈ (1,∞), we have

0 = lim
z→∞

H(z) < H(z) < lim
z→1+

H(z) = 2e
e2 − 1 .

Hence, inequality (14) holds. Also, for z ∈ (−1, 0), we have

2e
1− e2 = lim

z→−1+
H(z) < H(z) < lim

z→0−
H(z) = 0

and for z ∈ (−∞,−1), we have

2e
1− e2 = lim

z→−1−
H(z) < H(z) < lim

z→−∞
H(z) = 0.

Hence, inequality (15) holds. This completes the proof of the theorem.

In the following theorem, we obtain an inequality for the harmonic mean of
sech(z) and sech(1/z).

Theorem 2.9. The inequality

0 < 2sech(z)sech(1/z)
sech(z) + sech(1/z) ≤

2e
e2 + 1 (16)

holds for z ∈ R \ {0}. Equality holds if z = 1 or z = −1 .
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Proof. First, we prove the results for z ∈ (0,∞). The case for z = 1 is obvious.
So, let K(z) = 2sech(z)sech(1/z)

sech(z)+sech(1/z) for z ∈ (0, 1) ∪ (1,∞). Then

z [sech(z) + sech(1/z)] K
′(z)

K(z) = 1
z

tanh(1/z)sech(z)− z tanh(z)sech(1/z)

which implies that

z [cosh(z) + cosh(1/z)] K
′(z)

K(z) = 1
z

sinh(1/z)− z sinh(z)

= δ(z).

Since the function z sinh(z) increasing for all real values, we conclude that δ(z) > 0
if z ∈ (0, 1) and δ(z) < 0 if z ∈ (1,∞). Thus, K(z) is increasing on (0, 1) and
decreasing on (1,∞). Consequently, we obtain

0 = lim
z→0+

K(z) < K(z) < lim
z→1−

K(z) = 2e
e2 + 1

for z ∈ (0, 1) and

0 = lim
z→∞

K(z) < K(z) < lim
z→1+

K(z) = 2e
e2 + 1

for z ∈ (1,∞). Hence the inequality (16) holds for all z ∈ (0,∞). Since K(z) is
an even function, it implies that (16) also holds for z ∈ (−∞, 0). This completes
the proof of the theorem.

In the following theorem, we obtain some inequalities for the harmonic mean
of coth(z) and coth(1/z).

Theorem 2.10. The inequality

e2 + 1
e2 − 1 ≤

2coth(z)coth(1/z)
coth(z) + coth(1/z) < 2 (17)

holds for z ∈ (0,∞) and the inequality

− 2 < 2coth(z)coth(1/z)
coth(z) + coth(1/z) ≤

e2 + 1
1− e2 (18)

holds for z ∈ (−∞, 0). Equality holds in (17) and (18) if z = 1 and z = −1
respectively.
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Proof. The cases for equality are obvious. So let T (z) = 2coth(z)coth(1/z)
coth(z)+coth(1/z) for z ∈

R \ {0}. Then

z [tanh(z) + tanh(1/z)] T
′(z)
T (z) = 1

z
sech2(1/z)− zsech2(z)

= λ(z).

It follows that λ(z) > 0 if z ∈ (−1, 0) or z ∈ (1,∞) and λ(z) < 0 if z ∈ (−∞,−1, 0)
or z ∈ (0, 1). Since T (z) > 0 for z ∈ (0,∞) and T (z) < 0 for z ∈ (−∞, 0),
we conclude that T (z) is increasing on (−∞,−1) ∪ (1,∞) and decreasing on
(−1, 0) ∪ (0, 1). Consequently, for z ∈ (0, 1), we obtain

e2 + 1
e2 − 1 = lim

z→1−
T (z) < T (z) < lim

z→0+
H(z) = 2

and for z ∈ (1,∞), we obtain

e2 + 1
e2 − 1 = lim

z→1+
T (z) < T (z) < lim

z→∞
H(z) = 2.

Hence, inequality (17) holds. Also, for z ∈ (−∞,−1), we obtain

−2 = lim
z→−∞

T (z) < T (z) < lim
z→−1−

H(z) = e2 + 1
1− e2

and for z ∈ (−1, 0), we obtain

−2 = lim
z→0−

T (z) < T (z) < lim
z→−1+

H(z) = e2 + 1
1− e2 .

Hence, inequality (18) holds. This completes the proof of the theorem.

3 Conclusion

In this work, we have established harmonic mean inequalities for the hyperbolic
functions. The inequalities provide lower and upper bounds for harmonic means
of these functions. The results established could trigger further investigations on
inequalities involving hyperbolic functions. Also, the techniques used could be
adopted to establish similar results for trigonometric functions.
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